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Abstract—In this paper, we propose a 3rd-order nonlinear
IIR filter for compensating nonlinear distortions of loudspeaker
systems. The 2nd-order nonlinear IIR filter based on the Mirror
filter is used for reducing nonlinear distortions of loudspeaker
systems. However, the 2nd-order nonlinear IIR filter cannot
reduce nonlinear distortions at high frequencies because it does
not include the nonlinearity of the self-inductance of loudspeaker
systems. On the other hand, the proposed filter includes the effect
of such self-inductance and thus can reduce nonlinear distortions
at high frequencies. Experimental results demonstrate that the
proposed filter can realize a reduction by 3.2 dB more than
the conventional filter on intermodulation distortions at high
frequencies.

I. INTRODUCTION

The fundamental principle of loudspeaker systems has not
changed since their invention. Loudspeaker systems employ a
very complex structure to transform an electric signal into a
mechanical vibration that generates acoustic waves. Nonlinear
distortions are common in the vicinity of the lowest resonance
frequency for electrodynamic loudspeaker systems that are
widely used at present. This is because of the nonlinearity of
the voice coil driving system and the mechanical nonlinearity
of the edge and damper that support the diaphragm [1]. It is
clear that these distortions lead to the degradation of sound
quality. It seems impossible to compensate these distortions
completely by only structural improvements. Therefore, some
researchers have attempted to compensate nonlinear distortions
by digital signal processing [2], [3], [4]. One interesting
approach to compensating nonlinear distortions is to employ
the 2nd-order nonlinear IIR filter [5] based on the Mirror filter
[6], [7]. The 2nd-order nonlinear IIR filter is derived from
a nonlinear differential equation of loudspeaker systems and
includes the nonlinearities of the force factor and stiffness
of such systems. However, it cannot compensate nonlinear
distortions at high frequencies. This is because the 2nd-
order nonlinear IIR filter does not include the nonlinearity
of the self-inductance of loudspeaker systems. In this paper,
we propose a 3rd-order nonlinear IIR filter to compensate
nonlinear distortions at high frequencies. This filter includes
the nonlinearity of the self-inductance of loudspeaker systems.

II. THIRD-ORDER NONLINEAR IIR FILTER

The 3rd-order nonlinear IIR filter is based on Mirror filter
[6]. Mirror filter employs nonlinear parameters that depend

on the displacement of the diaphragm and cause the nonlin-
earity of loudspeaker systems. Mirror filter can compensate
the nonlinearity of the force factor of the voice coil and
magnetic circuit, the mechanical stiffness of the surround and
spider, and the self-inductance of the voice coil. It is realized
using the 2nd-order nonlinear IIR filter [5] derived from the
nonlinear differential equation without the nonlinearity of self-
inductance. Since the self-inductance governs a loudspeaker’s
behavior at high frequencies, the 2nd-order nonlinear IIR filter
cannot reduce the nonlinear distortions at high frequencies.
On the other hand, since the 3rd-order nonlinear IIR filter is
derived from the nonlinear differential equation that includes
the nonlinearity of self-inductance, it can reduce nonlinear
distortions at high frequencies.

When the displacement of the diaphragm of a loudspeaker
system is small, the vibration system of the loudspeaker system
can be approximated as a single vibration system around the
lowest resonance frequency. The motion equation is given
by a 2nd-order linear differential equation with the linear
parameters of the loudspeaker system as follows:

Bl0i(t) = m0ẍ + K0x + Rmẋ, (1)

A0u(t) = Rei(t) + Bl0ẋ + L0
di

dt
, (2)

where u(t) is the input voltage, i(t) is the current, Bl0
is the force factor, A0 is the gain of the analogue part,
Re is the electrical resistance of the voice coil, m0 is the
mechanical mass, K0 is the mechanical stiffness, Rm is the
mechanical resistance, and L0 is the self-inductance. In this
case, the displacement of the diaphragm, x(t), does not exhibit
nonlinearity. From eqs. (1) and (2), the differential equation
eq. (3) is derived as
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where τ is the time constant. From eq. (3), the linear displace-
ment is obtained as

x(t) = L−1 {Hx(s)} ∗ x(t), (3)
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Then, from Eq. (4), the linear displacement as the discrete
time is derived as

x(n) = Z−1 {Hx(z)} ∗ x(n), (5)
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fs = 1/Ts is the sampling frequency. In this case, the
force factor, stiffness, and self-inductance of the voice coil
become nonlinear parameters and cause nonlinear distortions
in loudspeaker systems. The nonlinear parameters can be ap-
proximated using the following quadratic and cubic functions
[1]:

Bl(x) = Bl0b(x) = Bl0(1 + b1x + b2x
2), (7)

K(x) = K0k(x) = K0(1 + k1x + k2x
2), (8)

L(x) = L0l(x) = L0(1 + l1x + l2x
2 + l3x

3), (9)

where b(x), k(x) and l(x) represent the nonlinearities of
the force factor, stiffness and self-inductance, respectively;
these are all dimensionless. The differential equations eqs. (1)
and (2) are rewritten as

Bl(x)i(t) = m0ẍ+K(x)x+Rmẋ − 1
2
iL(t)2

dL(x)
dx

, (10)

A0u(t) = Rei(t)+Bl(x)ẋ+
dL(x)iL(t)

dt
, (11)

Bl(x)iL(t) = m0ẍ+K(x)x+Rmẋ, (12)
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Fig. 1. Block diagram of the 3rd-order nonlinear IIR filter.

where iL(t) is the compensation current for self-inductance.
From eqs. (10) and (11), the following equation is derived.
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0k(x)ẋ + ω2

0

dk(x)
dt

x

}

− 1
2m0

{
A0

ReG0b(x)

}2

(
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(13)

The nonlinear motion of loudspeaker systems is represented
by eqs. (10) ∼ (12). In these equations, the displacement x
shows a nonlinear behavior. On the other hand, the displace-
ment x shows a linear behavior in eqs. (1) and (2). If the
displacement x of eqs. (10) ∼ (12) shows a linear behavior,
these equations can be treated as equations that show a linear
behavior. Therefore, the 3rd-order nonlinear IIR filter can be
derived by substituting the linear displacement eq. (3) into
the nonlinear differential equation eq. (13). Figure 1 shows
the block diagram of the 3rd-order nonlinear IIR filter derived
according to the above procedure. The coefficients in Fig. 1
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Fig. 2. Block diagram of the 2nd-order nonlinear IIR filter.

are given by
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where “Δ { }” is the difference value. This filter generates a
compensation signal in two steps. First, the linear displacement
x(n) is calculated. Then, the coefficients depending on the
displacement x(n) are calculated. These coefficients include
the effects of the linear displacement, velocity, acceleration
and derivation of acceleration. If the self-inductance of the
loudspeaker system is ignored, the block diagram shown in
Fig. 1 is reduced to that shown in Fig. 2, which represents the
2nd-order nonlinear IIR filter, that is, the proposed nonlinear
IIR filter includes the conventional nonlinear IIR filter.

III. EXPERIMENTAL RESULTS

We conducted experiments on compensating the nonlinear
distortion of a loudspeaker system. The specifications of the
loudspeaker system are shown in Table I. The 2nd- and
3rd-order nonlinear IIR filters need the linear and nonlinear
parameters of the loudspeaker system. These parameters were
estimated by the parameter estimation method for a closed-box

TABLE I
SPECIFICATIONS OF A LOUDSPEAKER SYSTEM.

Diameter 6.6 cm
Rated power 5 W
Electrical resistance 7.78 Ω
Enclosure volume 0.7 l
Enclosure type Closed-box

TABLE II
INITIAL LINEAR PARAMETERS DETERMINED FROM IMPEDANCE

CHARACTERISTICS.

ω0 1892 rad/s
Q0 2.31
Qm 4.37
Re 7.78 Ω
Rm 0.32 Ns/m
m0 0.74 ×10−3 kg
K0 2663 N/m
Bl0 1.50 Wb/m
L0 0.18 mH

loudspeaker system using Volterra kernels [8]. This method is
based on the calculation of the compensation amount of non-
linear distortions of the nonlinear IIR filter. The initial linear
parameters were determined from impedance characteristics,
as shown in Table II. The nonlinear parameters were estimated
as

Bl(x) = Bl0(1 + 21x − 50800x2), (14)
K(x) = K0(1 + 61x + 49900x2), (15)
L(x) = L0(1 − 231x− 6200x2 + 55500x3). (16)

The 2nd- and 3rd-order nonlinear IIR filters are realized
using the above parameters, and the effectiveness of compen-
sating the nonlinear distortion of the loudspeaker system is
compared between these filters. The measurement conditions
are shown in Table III. The sound pressure characteristics of
nonlinear distortions are shown in Fig. 3, and the average non-
linear distortion compensation amounts are shown in Table IV.
As observed in Fig. 3 and Table IV, the 3rd-order nonlinear
IIR filter can reduce the intermodulation distortions by about
3.2 dB at high frequencies and is superior to the 2nd-order
nonlinear IIR filter. However, the harmonic distortion is not
reduced at high frequencies. This is because the harmonic
distortion is smaller than the intermodulation distortions. On
the other hand, the 3rd-order nonlinear IIR filter can also
reduce nonlinear distortions at low frequencies and is superior
to the 2nd-order nonlinear IIR filter. Hence, the 3rd-order
nonlinear IIR filter is effective for compensating nonlinear
distortions of the loudspeaker system.

IV. CONCLUSIONS

In this paper, we proposed a 3rd-order nonlinear IIR filter,
and compared its compensation ability for nonlinear distor-
tions of a loudspeaker system with that of the 2nd-order
nonlinear IIR filter. Experimental results indicated that the



TABLE III
MEASUREMENT CONDITIONS FOR COMPENSATING NONLINEAR

DISTORTIONS.

Input signal Swept sinusoidal wave
Sampling frequency fs 32000 Hz
Fixed frequency m1 350 Hz
Swept frequency m2 100 - 5000 Hz
Average 15
Input voltage 3.5 V
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(a) 2m2 characteristic.
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(b) m1 + m2 characteristic.
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(c) m2 − m1 characteristic.
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Fig. 3. Comparison of the compensation abilities of nonlinear distortions
between the 2nd- and 3rd-order nonlinear IIR filters.

TABLE IV
COMPARISON OF AVERAGE NONLINEAR DISTORTION COMPENSATION

AMOUNTS BETWEEN THE 2ND- AND 3RD-ORDER NONLINEAR IIR FILTERS.

2nd-order 3rd-order
2m2 characteristic
100Hz ∼ 700Hz 6.0 dB 6.8 dB
700Hz ∼ 5kHz 0.8 dB 2.0 dB
m1 + m2 characteristic
100Hz ∼ 700Hz 10.8 dB 6.3 dB
700Hz ∼ 5kHz 3.2 dB 4.2 dB
m2 − m1 characteristic
100Hz ∼ 700Hz 4.7 dB 9.7 dB
700Hz ∼ 5kHz 1.8 dB 7.1 dB

3rd-order nonlinear IIR filter can reduce the intermodulation
distortion more effectively than the 2nd-order nonlinear IIR
filter. Hence, we conclude that the 3rd-order nonlinear IIR
filter is effective for compensating nonlinear distortions of
loudspeaker systems. In the future, we should improve the
parameter estimation method to better compensate such non-
linear distortions.
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