
Virtual Mirror By Fusing Multiple RGB-D Cameras
Ju Shen, Sen-ching S. Cheung and Jian Zhao

Center for Visualization and Virtual Environments, University of Kentucky, United States, KY 40506
E-mail: {jushen.tom, sen-ching.cheung}@uky.edu,{Jian.Zhao}@microsoft.com

Abstract—Mirror is possibly the most common optical device
in our everyday life. Rendering a virtual mirror using a join t
camera-display system has a wide range of applications from
cosmetics to medicine. Existing works focus primarily on simple
modification of the mirror images of body parts and provide
no or limited range of viewpoint dependent rendering. In this
paper, we propose a framework for rendering mirror images
from a virtual mirror based on 3D point clouds and color
texture captured from a network of structured-light RGB-D
cameras. We validate our models by comparing the results with
a real mirror. Commodity structured-light cameras often have
missing and erroneous depth data which directly affect the
quality of the rendering. We address this problem via a novel
probabilistic model that accurately separates foregroundobjects
from background scene before correcting the erroneous depth
data. We experimentally demonstrate that our depth correction
algorithm outperforms other state-of-the-art techniques.

I. I NTRODUCTION

We are all familiar with the use of a mirror in daily life.
There are many situations in which it is highly convenient if
the mirror can depict virtual scenes alongside with the mirror
image to elicit a desired visual feedback to the user. Imagine
that we can try on new clothes or shoes without making a trip
to the department stores. Same goes for hairstyling, cosmetics,
and plastic surgery. The marriage between a mirror-like display
and computer generated graphics presents the holy grail in
such applications, and prototype systems have already been
developed for these purposes [1, 2, 3].

The connection between manipulated mirror images and our
cognitive functions, however, goes far beyond mere aesthetics.
Perhaps the most well-known example is the use of the ”mirror
box” in helping patients suffering from chronic neurological
disorders such as phantom pain, hemiparesis from stroke, and
other complex regional pain syndrome [4]. A mirror box is
a simple top-open box with an opening on the side through
which the patient can put her arm inside. There is a mirror
in the middle facing the inserted arm and the mirror image
creates an illusion of the presence of the opposite arm. It is
this illusion that creates a visual feedback to the brain that
alleviates the phantom pain caused by the amputated arm.
While this form of mirror visual feedback is still not fully
understood, it has already helped countless number of patients
and has significant implication in our understanding of the
elasticity of adult human brain in rewiring itself [5].

Equally mysterious is the special affinity towards self im-
ages among children on the autistic spectrum. Autism affects
1 out of 110 children and it is one of the fastest growing de-
velopment disorders in the United States [6]. Autistic children
have significant difficulty in socially interacting with others.

One theory to explain such a poor social interaction is the
indifference of human faces. Recent fMRI studies have shown
low activity in the brains of autistic children compared with
typically-developed peers when viewing pictures of human
faces [7]. The same study, however, shows that these children
maintain high level of brain activity when viewing pictures
of themselves. While a full neurological explanation of self
recognition is still under investigation, such affinity to self
images can be capitalized in helping autistic children to learn
from watching themselves, rather than others which they are
likely to lose interest quickly. In fact, therapists have used
edited self video to help children with autism modeling new
behaviors. The therapist will record hours of video of the
child, select appropriate footage and splice them togetherto
depict the child seeming accomplishing tasks that are beyond
his/her immediate capability. Such therapy is called VideoSelf
Modeling or VSM and its effectiveness has been clinically
demonstrated [8]. VSM involves significant amount of manual
effort and cannot be used beyond teaching incremental im-
provements over existing skills. A ”programmable” mirror-like
display can provide the flexibility in creating visual contents
and the instant feedback to the patients that go far beyond the
rigid video editing tools available today.

Simulating a mirror, however, is not simple. The naive setup
of having a video camera on top of a monitor and showing
the output of the camera on the monitor is clearly insufficient
– the viewpoint is fixed for a camera while the mirror image
depends on the position of the viewer. Thus, the challenge
of simulating the mirror is to render different content on the
display depending on the viewer’s perspective. To simulatea
large mirror surface that can cope with wide displacement ofa
viewer, a camera-display system must be able to capture the 3-
D world, track the moving viewpoint, render new view based
on the viewpoint, and possibly add new visual content that
are compatible with the scene geometry. In addition, it must
be able to accomplish all these tasks in real-time otherwise
it loses the instant visual feedback required to provide the
realism of a mirror.

In this paper, we propose a camera-display system that sim-
ulates a mirror using a network of commodity RGB-D cameras
in capturing 3D point clouds and color texture information.
Our system uses the depth information to track the viewer,
traces the light ray from each 3D point to the point of reflection
on the virtual mirror, and determines the proper position and
color values when the reflected ray hits the display surface.
This model allows viewer-dependent rendering and supports
arbitrary positioning or even movement of the virtual mirror.



Also this model fits naturally to a scalable client-and-server
architecture which is essential in providing the required real-
time performance. While the depth data provides important
geometrical information of the scene, commodity RGB-D
cameras typically suffer from significant noise and missing
values problems [20]. As the quality of the depth data directly
impacts the rendering, we propose a depth data denoising
algorithm that models the noise process different between
foreground and background, and applies different strategies in
removing erroneous data and inpainting missing values. To the
best of our knowledge, our proposed system is the first virtual
mirror system that fuses multiple color and depth cameras in
rendering realistic mirror image. All existing systems rely on
a single camera or stereo camera pair in tracking viewpoints
and rendering new views. Our system is capable of providing
a far larger viewing surface and supporting a wider range of
viewing position due to its capability in estimating the 3D
coordinate for each pixel in the captured frame rather than
merely getting the color intensity value on a 2D image as a
normal camera does.

The rest of the paper is organized as follows: Section
II reviews existing works in mirror simulation. Section III
describes our proposed mirror model and provides details of
implementation including a scalable client-server architecture
to optimize the performance. Our depth denoising algorithm
is described in Section IV. Experimental validation and per-
formance measurement of our system can be found in Section
V. Concluding remarks and discussion in future work are in
Section VI.

II. RELATED WORK

In the past, several research groups have developed virtual
mirror prototypes. Though they differ in some aspects, most
of them implement simple appearance modification with a
limited viewpoint [9, 10, 11]. Darrell et al. described a virtual
mirror interface that reacted to people by applying different
graphical effect on their faces [9]. Similarly, in [10], the
authors proposed a virtual facial modification program by user-
driven 3D-aware 2D warping. However both of them did not
consider the view point’s influence on rendering virtual mirror.
Franois and Kang designed a handheld mirror simulation
device [12]. Although they considered the viewpoint change
during the mirror image transformation, their system used a
overly simplistic model by assuming the 3D world as a plane
parallel to the mirror/imaging.

Virtual mirror has also been used in some very specific
applications. In [3], a real time system is proposed for the
real-time visualization of customized sports shoes. Similar
systems have been developed to generate virtual mirror image
for fashion [1, 2]. Since the target objects in these system are
already known, they usually have a pre-computed model from
either existing 3D model or collection of large training data.
Therefore, the on-line computation can focus on rendering the
correct texture on the generated image. In addition, the view
point change is usually neglected in these systems due to its
particular commercial intention.

One closely related subject of virtual mirror is view-
dependent texture mapping (VDTM) [13, 14, 15]. Though our
system shares many similar designs as in VDTM, it differs
from the traditional VDTM in the following aspects. First, the
geometry of the object in VDTM systems is usually known
and represented as a pre-computed 3D mesh. In our system, we
have a dynamic scene so the geometry needs to be estimated
on-the-fly from the depth cameras. The incomplete description
of the 3D world and the lack of object segmentation make
generating a complete 3D mesh representation computational-
ly impossible. Second, texture information in VDTM systems
are usually recorded as planar image and image warping is
a popular tool to map these texture into the 3D shapes. On
the other hand, the network of image and depth camera pair
in our system is able to obtain texture information at different
viewing angles for every 3D point collected in the system. This
provides a more realistic 2D rendering of the scenes. Finally,
the viewpoint of our virtual mirror system is part of the 3D
world captured and rendered by our system. Physical laws
allow us to ignore certain aspects of rendering – for example,
we cannot see the mirror when we are facing away from the
mirror. No such restriction exists for VDTM.

A key component of our system is the use of commodity
structured-light depth cameras such as Microsoft Kinect de-
vices. Depth images obtained by such devices have distorted
and missing depth values. Some of the missing depth values
are caused by the disparity between the infrared (IR) light
projector and the IR cameras. Others can be caused by
absorption, poor reflection or even shadow reflection of the
structured-light patterns. The depth noise problem is especially
pronounced near depth discontinuities. A number of algorithm-
s have been developed to denoise depth image using super-
resolution [19, 21] and image in-painting [22]. A common
theme among these work is to rely on information obtained
from the companion color images to predict missing depth
information. This strategy does not always work as color edges
and depth edges do not necessarily coincide with other. In [19],
Garro et al. presented an interpolation scheme for depth super-
resolution. A high resolution RGB camera is used to guide
the up-sampling process on the depth image. To interpolate
the missing depth pixel, the scheme uses neighboring depth
pixels mapped into the same color segment as the target pixel.
This method relies strongly on the extrinsic alignment between
the color and depth image. However, noisy depth values along
object boundaries may map into a wrong color segment and
propagate its effect to other pixels in the segment. In [21],
a low resolution depth image was iteratively refined through
the use of a high resolution color image. Bilateral filter was
applied to a cost function based on depth probabilities. A
final high resolution image was produced by a winner-takes-
all approach on the cost function. These approaches work
well for the super-resolution problem where missing depth
pixels are uniformly distributed. Depth images obtained by
structured-light sensors often have large contiguous regions
of missing depth measurements which cannot be handled by
such approaches. In [22], Wang et al. proposed a stereoscopic



in-painting algorithm to jointly complete missing textureand
depth by using two pairs of RGB and depth cameras. Regions
occluded by foreground were completed by minimizing an
energy function. The system was cumbersome as an additional
pair of color and depth cameras were needed.

III. V IRTUAL M IRROR MODELING AND IMPLEMENTATION

To simulate the mirror experience, our model consists of
three components:

1) Structure of the 3D scene.
2) 3D location of the viewpoint or more precisely, the

optical center of the eye.
3) 3D location and pose of the mirror.

The basic work-flow of our system is illustrated in Figure
1. The system first collects and enhances the geometry and
color data for individual cameras. It then records the scene
information as a 3D point cloud and estimates the viewpoint
positionV . Next, it traverses each pointSi in the cloud to find
the corresponding reflection pointRi on the mirror, which
determines its reflection ray to hit the view pointV . Once
the reflection point is obtained, it computes the intersection
point Pi between the display surfaceΠd and

−−→
RiV on the

display. A Z-buffer is used to determine ifPi is not occluded
and indeed visible to the viewer. If so, the local coordinates
of Pi on the display[Pi]d = (xi, yi) are calculated and the
corresponding pixel valueI(xi, yi) is determined based on
the color information stored atSi and the viewpointV . We
defer the denoising process to Section IV. In the following
subsections, we describe the rest of our proposed system in
details and the speedup strategy used in conjunction with a
client-server architecture.

Fig. 1. Virtual Mirror Modeling

A. Point Cloud Generation

The 3D point cloud and the color texture information are
obtained through a network of multiple fully-calibrated RGB-
D cameras. As the image captured by the depth camera
has the depth value available for each pixel. Based on the
intrinsic parameters of the camera and the measured depth,

we can obtain the corresponding 3D point by applying an
inverse camera projection operation. Furthermore, for each
RGB and depth camera pair, pixel-wise alignment can be
achieved between the RGB and depth image according to their
extrinsic parameters including the rotation and the translation.
Thus, for each pixel on the color image, we can compute the
tuple {X,Y, Z,R,G,B} whereR, G, B are the three color
channels.

As there are multiple such camera pairs on the network,
we need to unify the 3D point clouds generated by each of
them. We first choose one color camera as the world coordinate
system. We apply the same calibration procedure between this
color camera with all the other color cameras and obtain
corresponding extrinsic parameters asR1i and T1i, where
i = 2, 3, ... is the index of each depth-color camera pairs.
Applying the transformation on all the point clouds except
the one from the first camera, we obtain:
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where (Xi, Yi, Zi)
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from the ith color camera.(X ′
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′
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′

i)
T represents the con-

verted coordinate in the global camera’s coordinate system.

B. Viewpoint Tracking

To provide viewpoint dependent viewing, the system needs
to track the viewer’s eyes’ position. As our display only
renders a monocular view, we track the head position rather
than the actual locations of the two eyes. We approximate the
head as a sphere and treat the center as our target viewpoint.
While there are many high-performance sophisticated tracking
algorithms in the literature, we take advantage of a single-user
nature of the system and develop a very simple depth-based
tracking algorithm. We assume that the user is much closer to
the depth camera than the rest of the 3D scene points. As such,
the histogram of depth values has a sharp peak of small values
corresponding to the viewer that can be easily separated from
the rest using a single threshold. These small depth values
are then back-projected to the corresponding 2-D camera
spatial coordinates. The actual depth values are not used
anymore and we only keep the 2-D binary shape of the viewer.
Morphological opening and closing are applied to fill in small
holes and to smooth the outline of the silhouette. Starting
from the topmost point of the silhouette, our algorithm follows
the outline in both directions and calculates the curvatureat
each boundary point. The characteristic omega shape of a head
induces a curvature curve that has a sharp dip from positive
to negative at the two inflexion points. Detection of these two
inflexion points define the extent of the head curve which are
then used to fit a circle. The estimated center of the circle on
the camera plane is temporally smoothed with a Kalman filter.
The actual 3D coordinates of the viewpoint is then estimated
to be the 3D point that minimizes the sum of distances to each
of the line formed between each camera’s optical center and
the center of the corresponding head circle.



C. Virtual Mirror Rendering

After obtaining the 3D point cloud and the viewpoint, the
next step is to render the mirror image from an arbitrarily-
positioned virtual plane mirror onto the display surface. For
each 3D scene point, the rendering step is equivalent to first
identifying the reflection point on the mirror and then the
display point on the display surface. The identification of the
reflection and display points can be viewed as two consecutive
procedures of virtual camera projection. As illustrated in
Figure 2, the reflection point can be viewed as the projection
of the scene point onto a virtual camera, denoted as “Virtual
Camera 1” in the figure, with the image plane at the mirror
and the optical center at the mirror imageV ′ of the viewpoint
V . The display point is the projection of the reflection point
onto another virtual camera, denoted as “Virtual Camera 2” in
the figure, with the image plane at the display plane and the
optical center atV .

Thus, the rendering problem boils down to estimating the
camera projection matrix for each of the two virtual cameras.
The approaches to estimate the camera matrix for both cameras
are identical and we use the display surface camera as an
example. The focal lengthf is simply the distance between
V and the display surface. The image center(cx, cy) on
the display plane is the perpendicular projectionVp of V
on the display plane relative to the top-left cornerG1. As
for the extrinsics, the rotation matrixR can be inferred by
the orientation of the display plane. For example, the plane
normal is computed as−→n =

−−−→
G1G2 ×

−−−→
G1G2. R is determined

according to the angle subtended by−→n and theZ axis in the
world coordinate system. The translationT can be computed
directly based on the distance betweenV and the origin of the
world coordinate system.

Fig. 2. Modified camera projection models for display rendering

Once all the above parameters are computed, the corre-
sponding image on the display can be rendered based on the
display points, denoted byS′′. For each pixel on the display
surface, there might be zero to multiple corresponding display
points. If there is only one display point, that pixel will assume
the color value associated with the corresponding 3D scene
point S. If there are more than one display points, they can

either be from the same 3D scene point but originated from
different cameras, or they can be different scene points that
fall on the same 3D rayV S′′. For the first case, their depth
values would be close to each other. For the second class,
their depth values would be far apart and the one with the
closest to the mirror would occlude the rest. This suggests a
simple procedure of first clustering all the scene points that
share similar depth values and then selecting the group that
is closest to the mirror. To compute the final color among all
points in the winning cluster, we use the scheme ofwinner
takes all to select the one that best aligns with the viewpoint
[9].

D. Scalable client-server architecture

We adopt a Server-Client distributed system to deal with
larger rendering space and high computation complexity. Each
client is responsible for one RGB-D camera. It also contains
all the calibration information and the user’s viewpoint from
previous instance. Each client first computes the 3D point
cloud in the world coordinate system and an initial estimate
of the viewpoint. Based on the viewpoint from the previous
instance, the client will render the mirror image, possibly
incomplete, based on its own point cloud data. As such, the
3D point cloud processing, the viewpoint estimate and the
mirror image rendering are all done at the client level. The
mirror image and the viewpoint estimate are then sent to the
server. The server then combines all the mirror images with the
clustering algorithm to fill in any area that may be occluded
from one camera but visible at the others. The viewpoint
estimate is also refined by taking a statistical average of all
estimates and broadcast back to all the clients for the rendering
of the next frame.

IV. D EPTH DATA DENOISING

Noise present in the depth image can significantly impair
the quality of the rendered mirror image. Erroneous depth
can move background scene to foreground or vice versa.
Missing depth values and occlusion can lead to “holes” in
the rendered image. To handle these problems, we propose
a novel depth data denoising algorithm based on foreground-
background separation. By separating pixels into foreground
and background, the generated image can be completed in
a guided manner. Missing depth pixels are interpolated or
inpainted by neighboring depth pixels from the same group
to prevent smearing of object boundaries. In addition, the
foreground-background separation admits a low-complexity
and better-quality rendering of the mirror image – foreground
pixels can be first extracted and projected onto the display
image while the remaining regions are filled by pre-captured
backgrounds, thereby avoiding the rendering of the entire
frame and filling background holes caused by the change of
viewpoint.

The foreground-Background separation is performed in two
stages: offline data collection and online segmentation. During
the offline stage, we collect the static background for training
and pre-storage. Then, for each incoming frame, our online



Fig. 3. Foreground-Background Depth Measurement Model

algorithm labels each pixel as either foreground or background
via a probabilistic framework that incorporates background
and measurement modeling as well as available observations
in its neighborhood. In the following subsections, we describe
the structure of the probabilistic frame and the specification
of the model parameters.

A. Modeling of labels and RGB-D data

We describe the relationships among the fore-
ground/background labels and the observations as a graphical
model shown in Figure 3. LetG be the support of the
2D color and depth images. At each pixel locations ∈ G,
Xs denotes the latent binary random variable indicating
whether that pixel belongs to the background layer (-1) or
the foreground layer (1). Spatially, it is connected to the
four closest neighbors, generically referred asXt. All the
foreground/background labels over the entire image thus form
a Markov Random Field (MRF) and the spatial relationship
between adjacent labels is governed by an edge potential
ψ(Xs, Xt). Each foreground/background labelX also has its
evidence potential functionφ(Xs) based on the measurement
Bayesian Network (BN) shown in the lower half of Figure
3. As all the measurements are made at the same pixel, the
subscripts is omitted andφ(X) is defined as follows:

φ(X) ,

∫

z

∫

e

P (X,D,Zd, Ic,M, Id) de dz

= P (X) · P (Ic|X) · P (M |X) · P (Id|M,X) (1)

where

P (Id|M,X) =

∫

e

P (D|X)

∫

z

P (Zd|D)P (Id|Zd,M) dz de.

(2)
e and z represent the realizations of variablesD and Zd.
Note that Equation (1) is defined as a marginal rather than
a conditional as the normalization factor does not affect our
MAP estimation described below.Ic represents the observed
color values.D represents the true but unobserved depth
values.D is corrupted by an additive Gaussian noise which

produces a noisy measurementZd. Due to the missing depth
problem,Zd may not be directly observable. We thus introduce
an observable indicator random variableM which is 1 if
the depth value is observed and 0 otherwise. Combining
these two random variables results in the observable depth
valueId =MZd. Using this probabilistic model, foreground-
background labeling can be formulated as a MAP problem:

X
map
G , arg maxxG

(

∑

s, t

logψ(xs, xt) +
∑

s

logφ(xs)

)

(3)
where,s and t are the neighbor nodes inG. Our choice of
parametrization allowsψ(xs, xt) and φ(xs) to be computed
exactly. While the complexity of the exact solution to the MAP
problem is exponential in the image size, approximate solution
using loopy belief propagation can be easily obtained [17].

After assigning each pixel with either a foreground or back-
ground label, we need to identify erroneous depth measure-
ments and complete missing depth values. The erroneous depth
values are essentially outliers that are significantly different
from other depth values in the neighborhood. However, as
most measurement errors occur around object boundaries, itis
imperative not to mistake true depth discontinuities as wrong
depth values. The layer labels allow us to separate pixels that
are likely to have come from objects at completely different
depths. To determine if a depth pixel is an outlier, we robustly
estimate the depth distribution in the neighborhood aroundthe
pixel via a RANSAC-like procedure. First, we only consider
depth values in the neighborhood that share the same label as
the target pixel. Then, multiple small sets of random sample
pixels are drawn and a Gaussian distribution is estimated for
each set. If only a small fraction of the neighborhood can
be fit within two standard deviations from the mean of a
sample distribution, this distribution is likely to contain outlier
samples and is thus discarded. Among those that survive the
robustness test, the one with the smallest variance is used and
the target depth pixel is declared an outlier if it is beyond two
standard deviations from the mean. The outlier depth pixel will
join the rest of the missing depth pixels and will be completing
using a joint color-depth bilateral filtering scheme similar to
that in [23]. The only difference is that we only consider the
contributions from neighboring depth pixels that have the same
layer label as the center pixel.

B. Model Parametrization

We now describe the parametrization of the probabilistic
model. For the spatial MRF, the edge potentialψ(Xs, Xt) is
defined based on the similarity in color and depth between the
neighboring pixels:

ψ(Xs, Xt) ,
1

2
−XsXt

[

1

2
− αEc (Ic(s), Ic(t))

−(1− α)Ed (Id(s), Id(t))] (4)



The color similarity functionEc (Ic(s), Ic(t)) is based on the
cosine angle between the color channels:

Ec (Ic(s), Ic(t)) = max

{

Ic(s)
T Ic(t)

‖ Ic(s) ‖ · ‖ Ic(t) ‖
, nf

}

(5)

wherenf is the noise floor used to prevent zero potential. The
depth similarity function is just the absolute difference:

Ed (Id(s), Id(t)) = max

{

1−
| Id(s)− Id(t) |

Dmax

, nf

}

(6)

whereDmax is the dynamic range of the depth measurement.
α ∈ [0, 1] is an important parameter controlling the relative
weights assigned to color and depth: if the depth measurements
are reliable, most of the weight should be assigned to depth
values as they are more reliable for foreground/background
labeling; if the depth measurements are unreliable, they should
not be used at all in computing the edge potential. As argued in
Section 1, the uncertainty in the depth measurement depends
on many factors. As erroneous depth measurements occur
predominantly near object boundaries, we apply an edge
detector on the depth map and use the spatial distanceθ to
the closest depth edge as a reliability measure.α is defined as
the logistic function ofθ:

α , f
(

θs+θt
2

)

with f(θ) , 1

1+e−(τ−θ) (7)

τ is a distance threshold beyond which the depth value is
relatively noise free. This simple model is easy to compute,
though a more sophisticated one incorporating surface normal,
texture, and color can be used in a similar fashion.

For the measurement BN, we assumeP (X) is uniform
and model the background color distributionP (Ic|X = −1)
as a MOG distribution trained by a video sequence of the
static background using the Codebook technique [18]. The
foreground color distributionP (Ic|X = 1) is assumed to be
uniform over the entire range. The background depth distri-
butionP (D|X = −1) is modeled as a single Gaussian distri-
butionN (µd,−1, σ

2
d,−1) estimated from the static background

sequence. The foreground depth distributionP (D|X = 1)
is also modeled as a single GaussianN (µd,1, σ

2
d,1). As the

foreground is closer to the camera (smaller depth values) than
the background,µd,1 is set to be the midpoint between 0 and
the background meanµd,−1 and σd,1 is half of µd,1. The
noisy depth measurementZd is modeled based on an additive
Gaussian model:

Zd , D +N, with N ∼ N (0, σ2
θ) andN ⊥ D. (8)

The noise standard deviationσθ reflects the uncertainty in
the depth measurement. Similar to our earlier approach in
determining the depth weight for the edge potential, we use
σθ , Cf(θ) wheref(θ) is the logistic function defined in (7)
andC is a constant scaling parameter.

As described in Section 1, missing depth values occur
mostly in the background region due to the disparity between
the IR projector and IR camera. Our empirical experiments
show that there are about three times as many background

pixels as foreground pixels for those with missing depth mea-
surements, but stay roughly the same for those with valid depth
measurements. As such, we setP (M = 0|X = −1) = 0.15
andP (M = 0|X = 1) = 0.05. The actual depth measurement
Id = MZd implies thatP (Id = id|Zd = z,M = m) =
δmid(z), the dirac delta function with the only non-zero value
at z = mid. Substituting this into (2) results in the following
simplification:

P (Id = id|M = m,X = x)

=

∫

e

P (D = e|X = x)P (Zd = mid|D = e) de

= P (Zd = mid|X = x) (9)

GivenX = x, Zd andD are multivariate with the following
distribution:
[

Zd

D

]∣

∣

∣

∣

X = x ∼ N

([

µd,x

µd,x

]

,

[

σ2
d,x + σ2

θ σ2
d,x

σ2
d,x σ2

d,x

])

(10)

Thus, Zd|X = x ∼ N (µd,x, σ
2
d,x + σ2

θ) and (9) can be
numerically evaluated.

V. EXPERIMENTAL RESULTS

In this section, we first show the simulation results to evalu-
ate our virtual mirror model. Then, we compare the quality of
rendered images generated by our proposed depth denoising
scheme and other denoising schemes in the literature. Finally,
we present some performance measurement of a preliminary
implementation of a complete system.

A. Rendering accuracy

In order to validate the accuracy of our mirror model, we
compare the rendered1078 × 786 mirror image I1 on the
display and a real mirror imageI2 taken by a digital camera
looking at a real mirror aligned with the display. The camerais
in the same position as the asserted viewpoint that the mirror
system uses for rendering.

To compare the virtual mirror image with the real mirror
image, we align the two images by estimating the homography
between them. Here we use the four corners of the real mirror
from the picture to match the four corners of virtual mirror
image represented as:p1 = (0 0)T , p2 = (0 1024 × w2

w1
)T ,

p3 = (0 768× h2

h1
)T and p4 = (1024 × w2

w1
768 × h2

h1
)T . w1,

h1 andw2, h2 denote the size of the display and real mirror
respectively. With these four pairs of corresponding points, it
is sufficient to compute homography matrixH and the aligned
images are shown in Figure 4.

To measure the rendering accuracy, 100 corner points are
manually selected onI1 andI2 for analysis. To ensure that the
exact pixel locations of the corners are used, we compute the
Normalized Cross Correlation(NCC) over a3 × 3 neighbor-
hood around each corner point and refine the corner position
to that with the maximum local NCC value. All the matching
pairs of corner points are shown in Figure 5. The position
differences between the matching pair are indeed quite small
– the mean is1.4865 pixel with standard deviation0.8156.



(a) Real Mirror Image (b) Homography Transformation on the 4 corners
of the mirror

(c) Generated Virtual Image

Fig. 4. Compare our virtual mirror with a real mirror

Fig. 5. Matching Points on Both Images

B. Depth Improvement Evaluation

Figures 6(a) and 6(b) show a sample of RGB and depth
images captured by a Kinect. A significant portion of the
depth measurements around the foreground person is missing.
The missing region straddles both foreground and background,
though the majority of the missing pixels are within the
background. There are also erroneous depth values, most
notably around the fingers and the hair. Figure 6(c) shows
the layer mask obtained by our algorithm. The contour of the
foreground object is perfectly recovered. This mask is better
than those obtained through background subtraction on either
the depth image where the contour is too noisy, or the color
image where the blue shirt on the person is mistaken for the
blue box background. Guided by this segmentation mask, the
corrected and completed depth image by our method is shown
in Figure 6(d).

For comparison, we first investigate if background modeling
alone is sufficient to correct the depth values. Figure 6(e)
shows the result of filling in any missing depth value by
the mean of the trained background distribution at that pixel.
The assumption that all missing depth values come from the
background results in wrong depth values in part of the hair,
the fingers and the body. The second scheme that we compare
is a simplified version of [19] in which missing depth values
are interpolated by surrounding depth pixels with similar color
via a bilateral filter. The result is shown in Figure 6(f).
Despite a smoother and better defined foreground contour, this
approach enlarges the foreground shape especially around the

right arm due to the similarity in color between the foreground
shirt and the background box. The contour of the fingers is also
poorly rendered because of the erroneous depth values in that
region. The differences among these two schemes and ours
are even more dramatic when we render mirror-like virtual
image. Figures 6(g), 6(h), and 6(i) depict the rendered views of
our scheme, the background replacement and the color-based
depth in-painting respectively. Our scheme clearly produces
the best rendering with all the newly revealed background
behind the person filled in by the background model. While
the background replacement scheme can also do that, the
erroneous depth values leave residual details around the fingers
and the hair. The color-based depth in-painting is unable to
fill in any revealed background. Also, the wrongly assigned
depth values move some of the background pixels with the
foreground along the right side of the head, while some pixels
of the fingers are stuck at the background.

C. Virtual Mirror System Experiment

We have a preliminary prototype mirror system with two
Kinect implemented using C++ and OpenCV library. Each
Kinect captures640 × 480 resolution video for scene points
generation and the local client renders the virtual image with
resolution1024 × 768, which is the same size as the final
image on the server. The server and client machines are as
follows:

• Server : Intel Xeon E5335 processor with 4-core CPUs
at 2.0 GHz and 4.0Gb of RAM.

• Client : Intel Core(TM) E8400 Duo CPU at 3.00 GHz
and 8.0Gb of RAM

No special software optimization or hardware accelerationis
currently employed. Without the depth denoising algorithm,
our system can render roughly three frames per second. Due
to the significant complexity of the iterative loopy belief
propagation, the system needs roughly 4 seconds to render
one frame when the depth denoising algorithm is applied.

VI. CONCLUSIONS

In this paper, we have presented a framework for rendering
virtual mirror images by fusing multiple RGB-D cameras. The



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6. (a) raw RGB frame; (b) raw depth image; (c) layered mask; (d), (e) and (g): completed background by our proposed scheme, background replacement
and color-based depth in-painting respectively; (g), (h) and (i): virtual view by the same three schemes.

initial depth data has been thoroughly enhanced using a depth
denoising algorithm. Our depth denoising algorithm takes
advantage of a novel probabilistic background/foregroundsep-
aration to eliminate outliers and complete missing values.
Once the depth data are cleansed, we have shown that they can
be used to estimate the viewpoint and can be locally aligned
to create a 3D point cloud to render a viewer-dependent
mirror image. The server then aggregates all the partially
rendered mirror images to compute the final result. Our current
implementation does not meet the real-time requirement of a
virtual mirror system. However, it is anticipated that muchof
the rendering pipeline can be significantly accelerated with
the use of GPUs. The ultimate bottleneck will likely reside
in the iterative belief propagation step. We observe that the
MRF results do not change significantly from frame to frame.
This suggests that significant speedup could be achieved by
replacing the multiple-round belief propagation algorithm with
a local update procedure.
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