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Abstract—Mirror is possibly the most common optical device One theory to explain such a poor social interaction is the
in our everyday life. Rendering a virtual mirror using a joint jndifference of human faces. Recent fMRI studies have shown
camera-display system has a wide range of applications from |4, activity in the brains of autistic children compared hwit
cosmetics to medicine. Existing works focus primarily on shple . . .
modification of the mirror images of body parts and provide typically-developed peers when viewing pictures of human
no or limited range of viewpoint dependent rendering. In this faces [7]. The same study, however, shows that these childre
paper, we propose a framework for rendering mirror images maintain high level of brain activity when viewing pictures
from a virtual mirror based on 3D point clouds and color of themselves. While a full neurological explanation off sel
texture captured from a network of structured-light RGB-D  acqqnition is still under investigation, such affinity telfs
cameras. We validate our models by comparing the results wlit . o . - L .

a real mirror. Commodity structured-light cameras often have 'Mage€s can be capitalized in helping autistic chlld_ren torle
missing and erroneous depth data which directly affect the from watching themselves, rather than others which they are
quality of the rendering. We address this problem via a novel likely to lose interest quickly. In fact, therapists haveeds
probabilistic model that accurately separates foregroundobjects  edited self video to help children with autism modeling new
from background scene before correcting the erroneous dept  pepayiors, The therapist will record hours of video of the
data. We experimentally demonstrate that our depth correcion . . .
algorithm outperforms other state-of-the-art techniques Ch'lq' select fipproprlate footage f’i”‘?' splice them togetther
depict the child seeming accomplishing tasks that are byon
|. INTRODUCTION his/her immediate capability. Such therapy is called ViSetf

We are all familiar with the use of a mirror in daily life. Modeling or VSM and its effectiveness has been clinically
There are many situations in which it is highly convenient flemonstrated [8]. VSM involves significant amount of manual
the mirror can depict virtual scenes alongside with the anirreffort and cannot be used beyond teaching incremental im-
image to elicit a desired visual feedback to the user. Inmgiprovements over existing skills. A "programmable” mirtixe
that we can try on new clothes or shoes without making a trifisplay can provide the flexibility in creating visual comie
to the department stores. Same goes for hairstyling, céssnetand the instant feedback to the patients that go far beyand th
and plastic surgery. The marriage between a mirror-likpldis rigid video editing tools available today.
and computer generated graphics presents the holy grail irSimulating a mirror, however, is not simple. The naive setup
such applications, and prototype systems have already beéraving a video camera on top of a monitor and showing
developed for these purposes [1, 2, 3]. the output of the camera on the monitor is clearly insufficien

The connection between manipulated mirror images and euthe viewpoint is fixed for a camera while the mirror image
cognitive functions, however, goes far beyond mere adsthetdepends on the position of the viewer. Thus, the challenge
Perhaps the most well-known example is the use of the "mirrof simulating the mirror is to render different content o th
box” in helping patients suffering from chronic neurolagjic display depending on the viewer's perspective. To simudate
disorders such as phantom pain, hemiparesis from strokle, #arge mirror surface that can cope with wide displacemest of
other complex regional pain syndrome [4]. A mirror box iviewer, a camera-display system must be able to capture- the 3
a simple top-open box with an opening on the side throudghworld, track the moving viewpoint, render new view based
which the patient can put her arm inside. There is a mirron the viewpoint, and possibly add new visual content that
in the middle facing the inserted arm and the mirror imagee compatible with the scene geometry. In addition, it must
creates an illusion of the presence of the opposite arm. Ithie able to accomplish all these tasks in real-time otherwise
this illusion that creates a visual feedback to the brairt thid loses the instant visual feedback required to provide the
alleviates the phantom pain caused by the amputated arealism of a mirror.

While this form of mirror visual feedback is still not fully In this paper, we propose a camera-display system that sim-
understood, it has already helped countless number ofrpstieulates a mirror using a network of commodity RGB-D cameras
and has significant implication in our understanding of thie capturing 3D point clouds and color texture information.

elasticity of adult human brain in rewiring itself [5]. Our system uses the depth information to track the viewer,

Equally mysterious is the special affinity towards self imtraces the light ray from each 3D point to the point of reflacti
ages among children on the autistic spectrum. Autism affectn the virtual mirror, and determines the proper positiod an
1 out of 110 children and it is one of the fastest growing deolor values when the reflected ray hits the display surface.
velopment disorders in the United States [6]. Autisticdigh This model allows viewer-dependent rendering and supports
have significant difficulty in socially interacting with aths. arbitrary positioning or even movement of the virtual mirro



Also this model fits naturally to a scalable client-and-serv  One closely related subject of virtual mirror is view-
architecture which is essential in providing the requiredl+ dependent texture mapping (VDTM) [13, 14, 15]. Though our
time performance. While the depth data provides importasystem shares many similar designs as in VDTM, it differs
geometrical information of the scene, commodity RGB-Erom the traditional VDTM in the following aspects. Firshet
cameras typically suffer from significant noise and missingeometry of the object in VDTM systems is usually known
values problems [20]. As the quality of the depth data diyectand represented as a pre-computed 3D mesh. In our system, we
impacts the rendering, we propose a depth data denoisimye a dynamic scene so the geometry needs to be estimated
algorithm that models the noise process different between-the-fly from the depth cameras. The incomplete desoripti
foreground and background, and applies different strageigi  of the 3D world and the lack of object segmentation make
removing erroneous data and inpainting missing valuesh&o tgenerating a complete 3D mesh representation computétiona
best of our knowledge, our proposed system is the first \irtug impossible. Second, texture information in VDTM systems
mirror system that fuses multiple color and depth camerasane usually recorded as planar image and image warping is
rendering realistic mirror image. All existing systemsyreh a popular tool to map these texture into the 3D shapes. On
a single camera or stereo camera pair in tracking viewpointe other hand, the network of image and depth camera pair
and rendering new views. Our system is capable of providingour system is able to obtain texture information at difer
a far larger viewing surface and supporting a wider range wiewing angles for every 3D point collected in the systemisTh
viewing position due to its capability in estimating the 30provides a more realistic 2D rendering of the scenes. Kinall
coordinate for each pixel in the captured frame rather théime viewpoint of our virtual mirror system is part of the 3D
merely getting the color intensity value on a 2D image asweorld captured and rendered by our system. Physical laws
normal camera does. allow us to ignore certain aspects of rendering — for example

The rest of the paper is organized as follows: Sectiome cannot see the mirror when we are facing away from the
Il reviews existing works in mirror simulation. Section Ilimirror. No such restriction exists for VDTM.
describes our proposed mirror model and provides details ofA key component of our system is the use of commodity
implementation including a scalable client-server amgttilre structured-light depth cameras such as Microsoft Kineet de
to optimize the performance. Our depth denoising algorithwices. Depth images obtained by such devices have distorted
is described in Section IV. Experimental validation and-peand missing depth values. Some of the missing depth values
formance measurement of our system can be found in Sectame caused by the disparity between the infrared (IR) light
V. Concluding remarks and discussion in future work are jprojector and the IR cameras. Others can be caused by
Section VI. absorption, poor reflection or even shadow reflection of the
structured-light patterns. The depth noise problem is@afhg
pronounced near depth discontinuities. A number of algoit

In the past, several research groups have developed virtsidiave been developed to denoise depth image using super-
mirror prototypes. Though they differ in some aspects, mogsolution [19, 21] and image in-painting [22]. A common
of them implement simple appearance modification with taeme among these work is to rely on information obtained
limited viewpoint [9, 10, 11]. Darrell et al. described atu&l from the companion color images to predict missing depth
mirror interface that reacted to people by applying diffgre information. This strategy does not always work as coloresdg
graphical effect on their faces [9]. Similarly, in [10], theand depth edges do not necessarily coincide with otherdh [1
authors proposed a virtual facial modification program bsrus Garro et al. presented an interpolation scheme for deptérsup
driven 3D-aware 2D warping. However both of them did naksolution. A high resolution RGB camera is used to guide
consider the view point’s influence on rendering virtualnmir the up-sampling process on the depth image. To interpolate
Franois and Kang designed a handheld mirror simulatidne missing depth pixel, the scheme uses neighboring depth
device [12]. Although they considered the viewpoint changgixels mapped into the same color segment as the target pixel
during the mirror image transformation, their system usedTdis method relies strongly on the extrinsic alignment testw
overly simplistic model by assuming the 3D world as a plartee color and depth image. However, noisy depth values along
parallel to the mirror/imaging. object boundaries may map into a wrong color segment and

Virtual mirror has also been used in some very speciffiropagate its effect to other pixels in the segment. In [21],
applications. In [3], a real time system is proposed for thee low resolution depth image was iteratively refined through
real-time visualization of customized sports shoes. @imilthe use of a high resolution color image. Bilateral filter was
systems have been developed to generate virtual mirroremagpplied to a cost function based on depth probabilities. A
for fashion [1, 2]. Since the target objects in these systemm dinal high resolution image was produced by a winner-takes-
already known, they usually have a pre-computed model fraafi approach on the cost function. These approaches work
either existing 3D model or collection of large training alat well for the super-resolution problem where missing depth
Therefore, the on-line computation can focus on rendetieg tpixels are uniformly distributed. Depth images obtained by
correct texture on the generated image. In addition, the viestructured-light sensors often have large contiguousoregi
point change is usually neglected in these systems due todfsmissing depth measurements which cannot be handled by
particular commercial intention. such approaches. In [22], Wang et al. proposed a stere@scopi

II. RELATED WORK



in-painting algorithm to jointly complete missing textused we can obtain the corresponding 3D point by applying an
depth by using two pairs of RGB and depth cameras. Regidnserse camera projection operation. Furthermore, foheac
occluded by foreground were completed by minimizing aRGB and depth camera pair, pixel-wise alignment can be
energy function. The system was cumbersome as an additioacthieved between the RGB and depth image according to their
pair of color and depth cameras were needed. extrinsic parameters including the rotation and the titist.
Thus, for each pixel on the color image, we can compute the

tuple {X,Y, Z, R,G, B} where R, GG, B are the three color
To simulate the mirror experience, our model consists ghannels.

I1l. VIRTUAL MIRROR MODELING AND IMPLEMENTATION

three components: As there are multiple such camera pairs on the network,
1) Structure of the 3D scene. we need to unify the 3D point clouds generated by each of
2) 3D location of the viewpoint or more precisely, thehem. We first choose one color camera as the world coordinate
optical center of the eye. system. We apply the same calibration procedure betwesn thi

3) 3D location and pose of the mirror. color camera with all the other color cameras and obtain

The basic work-flow of our system is illustrated in Figur&€orresponding extrinsic parameters &s; and Ty;, where
1. The system first collects and enhances the geometry dng 2,3,... is the index of each depth-color camera pairs.
color data for individual cameras. It then records the sceA®@Plying the transformation on all the point clouds except
information as a 3D point cloud and estimates the viewpoitite one from the first camera, we obtain:

positionV. Next, it traverses each poist in the cloud to find X! X;
the corresponding reflection poimt; on the mirror, which Y/ | =Ru-| Y |+ (—RuTw)
determines its reflection ray to hit the view poiit Once ZZ( 7

the reflection point is obtained, it computes the intersecti _
point P, between the display surfadé; and Rl—>V on the Where (X;,Y;, Z;)" represents a 3D scene point computed
display. A Z-buffer is used to determine i, is not occluded from thei*" color camera(X/,Y/, Z;)" represents the con-

and indeed visible to the viewer. If so, the local coordisat¢/€rted coordinate in the global camera’s coordinate system
of P; on the display[P;]s = (x;,y;) are calculated and the

corresponding pixel valud(z;,y;) is determined based on ) ) i o
the color information stored a$; and the viewpoint/. We To provide viewpoint dependent viewing, the system needs

defer the denoising process to Section IV. In the followinfp track the viewer's eyes’ position. As our display only
subsections, we describe the rest of our proposed systenf§Rders a monocular view, we track the head position rather
details and the speedup strategy used in conjunction witdHhan the actual locations of the two eyes. We approximate the

B. Viewpoint Tracking

client-server architecture. head as a sphere and treat the center as our target viewpoint.
While there are many high-performance sophisticated ingck
. [Pils =X, Y) algorithms in the literature, we take advantage of a singler
V A nature of the system and develop a very simple depth-based

Point Cloud tracking algorithm. We assume that the user is much closer to
the depth camera than the rest of the 3D scene points. As such,
the histogram of depth values has a sharp peak of small values
corresponding to the viewer that can be easily separated fro
the rest using a single threshold. These small depth values
are then back-projected to the corresponding 2-D camera
spatial coordinates. The actual depth values are not used
anymore and we only keep the 2-D binary shape of the viewer.
Morphological opening and closing are applied to fill in simal
holes and to smooth the outline of the silhouette. Starting
Mirror ! from the topmost point of the silhouette, our algorithmdels
/ the outline in both directions and calculates the curvasire
each boundary point. The characteristic omega shape ofch hea
Fig. 1. Virtual Mirror Modeling induces a curvature curve that has a sharp dip from positive
to negative at the two inflexion points. Detection of these tw
] . inflexion points define the extent of the head curve which are
A. Point Cloud Generation then used to fit a circle. The estimated center of the circle on
The 3D point cloud and the color texture information arthe camera plane is temporally smoothed with a Kalman filter.
obtained through a network of multiple fully-calibrated BG The actual 3D coordinates of the viewpoint is then estimated
D cameras. As the image captured by the depth caméoebe the 3D point that minimizes the sum of distances to each
has the depth value available for each pixel. Based on tbkthe line formed between each camera’s optical center and
intrinsic parameters of the camera and the measured depiie, center of the corresponding head circle.

Display Hd-:



C. Virtual Mirror Rendering either be from the same 3D scene point but originated from

After obtaining the 3D point cloud and the viewpoint, thélifferent cameras, or they can be different scene points tha
next step is to render the mirror image from an arbitrarily@ll on the same 3D ray’S”. For the first case, their depth
positioned virtual plane mirror onto the display surfacer F Values would be close to each other. For the second class,
each 3D scene point, the rendering step is equivalent to fifagir depth values would be far apart and the one with the
identifying the reflection point on the mirror and then th&losest to the mirror would occlude the rest. This suggests a
display point on the display surface. The identification e t simple prqcedure of first clustering all the scene points tha
reflection and display points can be viewed as two consezutgharé similar depth values and then selecting the group that
procedures of virtual camera projection. As illustrated if$ Closest to the mirror. To compute the final color among all
Figure 2, the reflection point can be viewed as the projecti®ints in the winning cluster, we use the schementiner
of the scene point onto a virtual camera, denoted as “Virt§es @l to select the one that best aligns with the viewpoint
Camera 1” in the figure, with the image plane at the mirrdPl-
and the optical center at the mirror image of the viewpoint Scalable client-server architecture

V. The display point is the projection of the reflection point ) o )
onto another virtual camera, denoted as “Virtual Cameran2” j We adopt a Server-Client distributed system to deal with

the figure, with the image plane at the display plane and tiger rendering space and high computation complexitghEa
optical center a’. client is responsible for one RGB-D camera. It also contains
Thus, the rendering problem boils down to estimating tifill the calibration information and the user's viewpoinrfr
camera projection matrix for each of the two virtual cameral€vious instance. Each client first computes the 3D point
The approaches to estimate the camera matrix for both camériqud n the WOHd coordinate system qnd an initial estimate
are identical and we use the display surface camera as%r{h€ viewpoint. Based on the viewpoint from the previous
example. The focal lengtlf is simply the distance betweeninstance, the client will render the mirror image, possibly
V and the display surface. The image centef,c,) on incomplete, based on its own point cloud data. As such, the
. y Ly . . . . .
the display plane is the perpendicular projectigh of V 3D point cloud processing, the viewpoint estimate and the
on the display plane relative to the top-left corr@r. As mirror image rendering are all done at the client level. The
for the extrinsics, the rotation matriR can be inferred by

mirror image and the viewpoint estimate are then sent to the
the orientation of the display plane. For example, the plaggMVer- The server then combines all the mirror images \Wih t
normal is computed a® = G1Gs x G1G5.

R is determined clustering algorithm to fill in any area that may be occluded
according to the angle subtended Byand theZ axis in the from one camera but visible at the others. The viewpoint

world coordinate system. The translati#hcan be computed estimate is also refined by taking a statistical average lof al
directly based on the distance betwdémnd the origin of the estimates and broadcast back to all the clients for the ramgle

world coordinate system. of the next frame.
IV. DEPTHDATA DENOISING

Virtual Camera 1 Virtual Camera 2
Mirror PIan . Noise present in the depth image can significantly impair
Gr Display Plane ' the quality of the rendered mirror image. Erroneous depth
D can move background scene to foreground or vice versa.
__________ Missing depth values and occlusion can lead to “holes” in
vo /B e - the rendered image. To handle these problems, we propose
e a novel depth data denoising algorithm based on foreground-
. - background separation. By separating pixels into foreggou
Gs and background, the generated image can be completed in
a guided manner. Missing depth pixels are interpolated or
N , inpainted by neighboring depth pixels from the same group

S’ - Reflection Point Point Cloud . . . .

S” - Display Point to prevent smearing of object boundaries. In addition, the
foreground-background separation admits a low-complexit
and better-quality rendering of the mirror image — foregmbu

Fig. 2. Modified camera projection models for display reier pixels can be first extracted and projected onto the display
image while the remaining regions are filled by pre-captured

Once all the above parameters are computed, the cormeckgrounds, thereby avoiding the rendering of the entire
sponding image on the display can be rendered based onfilagne and filling background holes caused by the change of
display points, denoted bg”. For each pixel on the display viewpoint.
surface, there might be zero to multiple correspondinglaisp  The foreground-Background separation is performed in two
points. If there is only one display point, that pixel willsasne stages: offline data collection and online segmentatiomirgu
the color value associated with the corresponding 3D scethe offline stage, we collect the static background for trajn
point S. If there are more than one display points, they ceand pre-storage. Then, for each incoming frame, our online
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produces a noisy measuremefit. Due to the missing depth
problem,Z; may not be directly observable. We thus introduce
an observable indicator random variablé which is 1 if

the depth value is observed and O otherwise. Combining
these two random variables results in the observable depth
valueI; = M Z;. Using this probabilistic model, foreground-
background labeling can be formulated as a MAP problem:

Spatial Relation

Measurements

X5 £ arg may,, <Z log ¥(zs, z¢) + Zlog ¢($S)>

s, t s
3

where,s and ¢ are the neighbor nodes i@&. Our choice of
parametrization allows)(z,,z;) and ¢(zs) to be computed
exactly. While the complexity of the exact solution to the RIA
problem is exponential in the image size, approximate swiut
using loopy belief propagation can be easily obtained [17].

After assigning each pixel with either a foreground or back-
algorithm labels each pixel as either foreground or badkgdo ground label, we need to identify erroneous depth measure-
via a probabilistic framework that incorporates backguriments and complete missing depth values. The erroneous dept
and measurement modeling as well as available observati¥ales are essentially outliers that are significantlyedéht
in its neighborhood. In the following subsections, we diggcr from other depth values in the neighborhood. However, as
the structure of the probabilistic frame and the specifizati Most measurement errors occur around object boundariss, it

Fig. 3. Foreground-Background Depth Measurement Model

of the model parameters. imperative not to mistake true depth discontinuities asngro
_ depth values. The layer labels allow us to separate pixals th
A. Modeling of labels and RGB-D data are likely to have come from objects at completely different

We describe the relationships among the foralepths. To determine if a depth pixel is an outlier, we rdigust
ground/background labels and the observations as a gedphéstimate the depth distribution in the neighborhood arahed
model shown in Figure 3. Let7 be the support of the pixel via a RANSAC-like procedure. First, we only consider
2D color and depth images. At each pixel locatiore G, depth values in the neighborhood that share the same label as
X, denotes the latent binary random variable indicatiripe target pixel. Then, multiple small sets of random sample
whether that pixel belongs to the background layer (-1) @ixels are drawn and a Gaussian distribution is estimated fo
the foreground layer (1). Spatially, it is connected to theach set. If only a small fraction of the neighborhood can
four closest neighbors, generically referred &s. All the be fit within two standard deviations from the mean of a
foreground/background labels over the entire image thua fosample distribution, this distribution is likely to comadutlier
a Markov Random Field (MRF) and the spatial relationshigamples and is thus discarded. Among those that survive the
between adjacent labels is governed by an edge potentiustness test, the one with the smallest variance is uskd a
(X, X¢). Each foreground/background lah¥l also has its the target depth pixel is declared an outlier if it is beyowd t
evidence potential function(X,) based on the measuremenstandard deviations from the mean. The outlier depth pixéel w
Bayesian Network (BN) shown in the lower half of Figurgoin the rest of the missing depth pixels and will be compigti
3. As all the measurements are made at the same pixel, tlsing a joint color-depth bilateral filtering scheme simila

subscripts is omitted andp(X) is defined as follows: that in [23]. The only difference is that we only consider the
contributions from neighboring depth pixels that have times
P(X) = //P(X,D, Zay e, M, 1g) de dz layer label as the center pixel.
= P(X)-P(l|X)- P(M|X)- P(Ia|M, X) (1)
where B. Model Parametrization
P(1y|M,X) = / P(D|X)/P(Zd|D)P(Id|Zd,M) dz de. We now describe the parametrization of the probabilistic
e z 2y Mmodel. For the spatial MRF, the edge potenti@lX, X;) is

¢ and > represent the realizations of variablés and Z,. defined based on the similarity in color and depth between the

Note that Equation (1) is defined as a marginal rather thAfighboring pixels:

a conditional as the normalization factor does not affect ou

MAP estimation described below, represents the observed O(X,, X,) 2 1 X, X, 1 aE, (I(s), L(t))
color values.D represents the true but unobserved depth 2 2

values.D is corrupted by an additive Gaussian noise which —(1—a)Eq(La(s), L4(t))] 4)



The color similarity function®, (I.(s), I.(t)) is based on the pixels as foreground pixels for those with missing depth-mea

cosine angle between the color channels: surements, but stay roughly the same for those with validhdep
L(s)TL.(t) measurements. As such, we detM = 0|X = —1) = 0.15

E.(I.(s),I.(t) = max{ c - : nf} (5) andP(M = 0|X = 1) = 0.05. The actual depth measurement
I Le(s) 1l 1 Le(E) |l Iy = MZ, implies that P(I; = ig|Zq = 2,M = m) =

wheren; is the noise floor used to prevent zero potential. THni, (2), the dirac delta function with the only non-zero value
depth similarity function is just the absolute difference: ~ atz = mig. Substituting this into (2) results in the following
s Lt simplification:

Eq(Ix(s), I4(t)) = max{l - ”(%;d()', nf} (6)
whereD,,,... is the dynamic range of the depth measurement. = / P(D=e|X =2)P(Zy =miqg|D =e) de
a € [0,1] is an important parameter controlling the relative e _
weights assigned to color and depth: if the depth measurismen = P(Za=mig|X =) ©)

are reliable, most of the weight should be assigned to degifyen x = +, 7, and D are multivariate with the following
values as they are more reliable for foreground/backgrouggiripution:

labeling; if the depth measurements are unreliable, theylsh ) 5 o
not be used at all in computing the edge potential. As argued i de} Xeu ~ N ([“dﬂr] 7 [Ud,z;' %o Ug,zD (10)
Section 1, the uncertainty in the depth measurement depend D Hd,x 94,z Od,x

on many factors. As erroneous depth measurements 0Cgy(,q
predominantly near object boundaries, we apply an edgﬁme'
detector on the depth map and use the spatial distdrice

the closest depth edge as a reliability measaris. defined as V. EXPERIMENTAL RESULTS
the logistic function of9:

P(Id:id|M:m,X:$)

ZaX = ~ N(pdz 05, + 0p) and (9) can be
rically evaluated.

In this section, we first show the simulation results to evalu

(7) ate our virtual mirror model. Then, we compare the quality of

rendered images generated by our proposed depth denoising
7 is a distance threshold beyond which the depth value dsheme and other denoising schemes in the literature Ifinal
relatively noise free. This simple model is easy to comput@e present some performance measurement of a preliminary
though a more sophisticated one incorporating surface aormmplementation of a complete system.
texture, and color can be used in a similar fashion.

For the measurement BN, we assurRéX) is uniform A. Rendering accuracy

and model the background color distributiét{/.[X = —1)  |n order to validate the accuracy of our mirror model, we
as a MOG distribution trained by a video sequence of th®mpare the rendereth78 x 786 mirror image I; on the
static background using the Codebook technique [18]. Tgsplay and a real mirror imagk taken by a digital camera
foreground color distribution”(Z.|X = 1) is assumed to be |goking at a real mirror aligned with the display. The carisra
uniform over the entire range. The background depth distfi the same position as the asserted viewpoint that the mirro
bution P(D|X = —1) is modeled as a single Gaussian distrisystem uses for rendering.
bution N (4,—1, 05 _;) estimated from the static background " 1o compare the virtual mirror image with the real mirror
sequence. The foreground depth distributiBQD|X = 1) image, we align the two images by estimating the homography
is also modeled as a single Gaussitfitiia,1,07 ;). As the petween them. Here we use the four corners of the real mirror
foreground is closer to the camera (smaller depth values) throm the picture to match the four corners of virtual mirror
the backgroundy, ; is set to be the m_idpoint between 0 anGimage represented ag; = (0 0)7, p» = (0 1024 x Z_?)T’
th(ﬂT background meap, 1 .and 04,1 1S half of pg 1. Thg_ p3 = (0 768 x Z_?)T andps = (1024 x 22 768 x Z_f)T_ w1,
noisy erth measureme#t; is modeled based on an addqul1 andws, ho denote the size of the display and real mirror
Gaussian model: respectively. With these four pairs of corresponding irit
Ze2D+ N, with N ~N(0,02) andN L D. (8) ?s sufficient to comp_ute _homography matrik and the aligned
images are shown in Figure 4.
The noise standard deviatiory reflects the uncertainty in  To measure the rendering accuracy, 100 corner points are
the depth measurement. Similar to our earlier approach rimanually selected ofy and I, for analysis. To ensure that the
determining the depth weight for the edge potential, we usgact pixel locations of the corners are used, we compute the
o9 = Cf(0) where f(0) is the logistic function defined in (7) Normalized Cross Correlation(NCC) over a3 x 3 neighbor-
and(C is a constant scaling parameter. hood around each corner point and refine the corner position
As described in Section 1, missing depth values occto that with the maximum local NCC value. All the matching
mostly in the background region due to the disparity betwegairs of corner points are shown in Figure 5. The position
the IR projector and IR camera. Our empirical experimentsfferences between the matching pair are indeed quitelsmal
show that there are about three times as many backgrounthe mean is.4865 pixel with standard deviatiof.8156.

(8] é f (%) W|th f(@) é m



(a) Real Mirror Image (b) Homography Transformation on the 4 corners (c) Generated Virtual Image
of the mirror

Fig. 4. Compare our virtual mirror with a real mirror

right arm due to the similarity in color between the foregrdu
shirt and the background box. The contour of the fingers @ als
poorly rendered because of the erroneous depth valuestin tha
region. The differences among these two schemes and ours
are even more dramatic when we render mirror-like virtual
image. Figures 6(g), 6(h), and 6(i) depict the rendered viefv
our scheme, the background replacement and the color-based
depth in-painting respectively. Our scheme clearly preduc
the best rendering with all the newly revealed background
behind the person filled in by the background model. While
the background replacement scheme can also do that, the
erroneous depth values leave residual details around tperéin
and the hair. The color-based depth in-painting is unable to
Figures 6(a) and 6(b) show a sample of RGB and degiH in any revealed background. Also, the wrongly assigned
images captured by a Kinect. A significant portion of thgepth values move some of the background pixels with the
depth measurements around the foreground person is missfageground along the right side of the head, while some pixel
The missing region straddles both foreground and backgrounf the fingers are stuck at the background.
though the majority of the missing pixels are within th% Vi
background. There are also erroneous depth values, most
notably around the fingers and the hair. Figure 6(c) shows\We have a preliminary prototype mirror system with two
the layer mask obtained by our algorithm. The contour of tHghect implemented using C++ and OpenCV library. Each
foreground object is perfectly recovered. This mask isdpettKinect capturess40 x 430 resolution video for scene points
than those obtained through background subtraction oereitgeneration and the local client renders the virtual imagé wi
the depth image where the contour is too noisy, or the col@solution1024 x 768, which is the same size as the final
image where the blue shirt on the person is mistaken for tifBage on the server. The server and client machines are as
blue box background. Guided by this segmentation mask, tfdlows:
corrected and completed depth image by our method is shown Server : Intel Xeon E5335 processor with 4-core CPUs
in Figure 6(d). at 2.0 GHz and 4.0Gb of RAM.
For comparison, we first investigate if background modeling « Client : Intel Core(TM) E8400 Duo CPU at 3.00 GHz
alone is sufficient to correct the depth values. Figure 6(e) and 8.0Gb of RAM
shows the result of filing in any missing depth value byo special software optimization or hardware acceleraigon
the mean of the trained background distribution at thatlpixeurrently employed. Without the depth denoising algorithm
The assumption that all missing depth values come from tbar system can render roughly three frames per second. Due
background results in wrong depth values in part of the haig the significant complexity of the iterative loopy belief
the fingers and the body. The second scheme that we compgsspagation, the system needs roughly 4 seconds to render
is a simplified version of [19] in which missing depth valuesne frame when the depth denoising algorithm is applied.
are interpolated by surrounding depth pixels with similaloc
via a bilateral filter. The result is shown in Figure 6(f). VI. CONCLUSIONS
Despite a smoother and better defined foreground contasir, th In this paper, we have presented a framework for rendering
approach enlarges the foreground shape especially arbendvirtual mirror images by fusing multiple RGB-D cameras. The

Fig. 5. Matching Points on Both Images

B. Depth Improvement Evaluation

rtual Mirror System Experiment
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Fig. 6. (a) raw RGB frame; (b) raw depth image; (c) layered knéd), (e) and (g): completed background by our propose@rseh background replacement
and color-based depth in-painting respectively; (g), fnd &): virtual view by the same three schemes.
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