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Abstract—The design process for time-invariant acoustic beam-
formers often assumes that the microphones have an omnidi-
rectional directivity pattern, a flat frequency response in the
range of interest, and a 2D environment in which wavefronts
propagate as a function of azimuth angle only. In this paper we
investigate those cases in which one or more of these assumptions
do not hold, considering a Minimum Variance Distortionless
Response (MVDR)-based solution that is optimized using mea-
sured directivity patterns as a function of azimuth, elevation
and frequency. Robustness to modelling error is controlled by
a regularization parameter that produces a suboptimal but
more robust solution. A comparative study is made with the 4-
element cardioid microphone array employed in Microsoft Kinect
for Windows, whose beamformer weights are calculated with
directivity patterns using (a) 2D cardioid models, (b) 3D cardioid
models and (c) 3D measurements. Speech recognition and PESQ
results are used as evaluation criteria with a noisy speech corpus,
revealing empirically optimal regularization parameters for each
case and up to a 70% relative improvement in word error rate
comparing (a) and (c).

I. INTRODUCTION

A microphone array is a device that spatially samples a
soundfield within a finite aperture. A common application
of the observed signals is a spatial filter called a beam-
former [1] that exploits spatial diversity by combining the
observations to enhance a desired signal, exceeding the per-
formance that can be achieved using a single microphone.
Beamformer design is subject to design constraints imposed
by the limitations of the measurement apparatus and the nature
of the desired/undesired signals. Adaptive (data-dependent)
beamformers continuously optimize their design by estimating
the ambient noise conditions [1]; in contrast, time-invariant
beamformers use a priori assumptions about the operating
environment. Superdirective beamforming [1] is an approach
to time-invariant beamforming that is desirable due to its
ability to achieve high directivity with small apertures [2]. The
Minimum Variance Distortionless Response (MVDR) beam-
former can be designed for both adaptive and time-invariant
cases by estimating the expected noise cross-power density
to minimize the output noise power [3], [4]. Several variants
exist to address problems caused by sensor self-noise and
sensor mismatch, for which white noise gain constraints [1],
optimization with steering vector uncertainty sets [5], and
optimization with the gain and phase error distributions [6]
have been shown to successfully reduce such effects.

The design process for acoustic beamformers often assumes
that the microphones are omnidirectional with a flat frequency

response. In some real-world scenarios, such assumptions
are not valid due to physical factors such as directional
microphone responses and the acoustics of the mounting
hardware. This increases the dimensionality of the design
problem as the microphone response becomes a function of
elevation and frequency in addition to azimuth. Beamformer
design for arbitrary 2D directivity patterns and frequency
responses was considered in [7], also accounting for ambient
and instrumental noise spectra to yield a more realistic design.
In this paper we provide additional insight into a generalized
3D solution proposed in [8] and investigate the performance
by comparing designs based upon measured 3D directivity
patterns and standard microphone models. This imposes no
additional computational overhead at runtime as the design
modifies the steering weights only. The incorporation of a
regularization parameter improves robustness by preventing
overfitting to the training data, providing a tradeoff between
the optimal solution and the worse performing but more robust
delay-and-sum beamformer.

The remainder of this paper is organized as follows. The
beamformer problem is formulated in Section II and a solution
is proposed based upon the MVDR criterion. In Section III,
beamformers are designed for a 4-channel microphone array
and speech recognition error rates are presented as a function
of regularization parameter for designs based upon 2D micro-
phone models, 3D microphone models and 3D measurements.
Concluding remarks are given in Section IV.

II. OPTIMAL BEAMFORMING

A. Problem Formulation

Let there be an array of microphones positions pm, m =
1, 2, . . . ,M , where pm is a cartesian triplet (xm, ym, zm) in
meters. The 3D directivity pattern for an impinging wave from
direction Ω = (θ, φ) to microphone m is Um(f,Ω), where f
denotes frequency (Hz), and θ = [−π/2, π/2] and φ = [0, 2π)
are elevation and azimuth angles respectively. The midpoint of
the array is the origin of the coordinate system. Let S0(f) be
a farfield source located at angle Ω0 in the frequency domain.
The response of the array is

X(f) = D0(f)S0(f) + N(f), (1)

where X(f) = [X1(f) X2(f) . . . XM (f)]T is an observation
vector, N(f) = [N1(f) N2(f) . . . NM (f)]T is a noise vector
and D0(f) = [D1(f) D2(f) . . . DM (f)]T is a capture vector



whose elements are

Dm(f) = e−j2πfτm(Ω0)Um(f,Ω0). (2)

The term τm is the delay of the incoming wavefront at the mth
sensor relative to the array centre. Similarly, the capture vector
G(f,Ω) = [G1(f,Ω) G2(f,Ω) . . . GM (f,Ω)]T is defined for
a general incidence angle Ω,

Gm(f,Ω) = e−j2πfτm(Ω)Um(f,Ω). (3)

Given observations X(f), the output of a generalized filter-
and-sum beamformer is [9],

Y (f) = WT
0 (f)X(f), (4)

where WT
0 (f) is an M × 1 vector of complex weights

computed to steer the beam in look direction Ω0. The resulting
directivity pattern is a weighted sum of the capture vector
elements at angle Ω,

B(f,Ω) = WT
0 (f)G(f,Ω), (5)

which, in the special case Ω = Ω0,

B(f,Ω0) = WT
0 (f)D0(f). (6)

The aim is to design weights WT
0 (f) to form a beamformer

subject to certain design criteria.

B. Calculation of Steering Weights

The design approach we employ is based upon the fre-
quency domain minimum variance distortionless response
(MVDR) beamformer [4]. We assume free-field propagation
and that all sources lie in the farfield. Under ideal no-noise
conditions, the beamformer output should equal the source
signal such that Y (f) = S(f). In noisy conditions we aim to
minimize the expected noise variance. Combining (1) and (4)
we obtain a new expression for the beamformer output,

Y (f) = WT
0 (f)D0(f)S0(f)+WT

0 (f)N(f) = S(f)+YN (f),
(7)

where YN (f) is a noise term whose expected energy is [4]:

Q = E[|YN (f)|2] = WH
0 (f)ΦNN (f)W0(f), (8)

where (·)H denotes the conjugate transpose and Φ is the noise
cross-power spectral matrix:

ΦNN (f) = N(f)NH(f) =


Φ11 Φ12 . . . Φ1M

Φ21 Φ22 . . . Φ2M

...
...

. . .
...

ΦM1 ΦM2 . . . ΦMM

 .

(9)
The frequency dependence of Φij(f) has been dropped
for simplicity. Given known capture vectors Gi(f,Ω) and
Gj(f,Ω), the elements of this matrix can be estimated assum-
ing a spatially homogeneous and isotropic noise field by [10]

Φij(f) = N0(f)
Nij(f)√
Ḡi(f)Ḡj(f)

, (10)

where N0(f) is the ambient noise spectrum and

Nij(f) =

∫
Ω

Gi(f,Ω)G∗j (f,Ω)dΩ (11)

Ḡi(f) =

∫
Ω

|Gi(f,Ω)|2dΩ (12)

Ḡj(f) =

∫
Ω

|Gj(f,Ω)|2dΩ. (13)

In a 2D scenario, the integrals are evaluated over azimuth
angles in the interval [0, 2π]. In 3D, they are evaluated over
all angles in S2. This constrained minimization problem can be
solved providing N0(f), Gm(f,Ω) and pm are known, usually
by imposing models or using measured data. Such a design
is however sensitive to instrumental noise, particularly in the
lower end of the frequency spectrum [11]. Without appropriate
modification of the design criteria, the ambient noise that
is suppressed can be replaced by the amplified instrumental
noise. An additional term is therefore added to ΦNN (f) to
improve robustness [2]:

ΦN ′N ′(f) = ΦNN (f) + ΦII(f), (14)

where ΦII(f) = κ|NI(f)|2I regularizes ΦN ′N ′(f) by ac-
counting for uncorrelated instrumental noise with spectrum
NI(f), κ is a regularization parameter and I is the M ×M
identity matrix. In practice this lowers the directivity index
but increases total noise suppression. The design procedure is
summarized as a constrained optimization problem:

Ŵ0(f) = arg min
W0(f)

WH
0 (f)ΦN ′N ′(f)W0(f)

subject to WT
0 (f)D0(f) = 1. (15)

The linear constraint WT
0 (f)D0(f) = 1 ensures a distortion-

less response in the steering direction. A closed form solution
is given in the form [4]

Ŵ0(f) =
DH

0 (f)Φ−1
N ′N ′(f)

DH
0 (f)Φ−1

N ′N ′(f)D0(f)
, (16)

which, in the extreme case where ΦII(f)� ΦNN (f), equates
to a delay-and-sum beamformer (DSB)

Ŵ0(f) =
1

MD0(f)
. (17)

The implementation of this algorithm assumes an isotropic
noise field making ΦNN (f) straightforward to estimate. These
weights may be used to initialize an adaptive beamformer
that continually updates the noise correlation matrix ΦNN (f)
to adapt to the current environment. Here we consider the
initialization only.

III. EXPERIMENTATION

A. Experimental Setup

The microphone array employed in Microsoft Kinect for
Windows was used as an experimental test case. It consists
of four cardioid microphones mounted on the underside of a
plastic enclosure in a nonuniform linear configuration that is
acoustically designed to maximize the microphone directivity
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Fig. 1. PESQ scores as a function of regularization parameter κ.
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Fig. 2. Word error rate as a function of regularization parameter κ.
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Fig. 3. Sentence error rate as a function of regularization parameter κ.

PESQ WER (%) SER (%)
Best Mic 2.13 18.47 31.67
2D Model 2.62 9.67 15.00
3D Model 2.64 9.79 15.00
3D Meas. 2.66 4.92 9.17

TABLE I
BEAMFORMER PERFORMANCE METRICS.

indices within the speech spectrum (200 Hz–7.2 kHz). Ten
Microsoft Kinect for Windows arrays were obtained, one of
which was used to train the beamformer design; the remainder
were used as a test set that incoporates manufacturing varia-
tions in the microphone capsules.

The training device was placed in an anechoic chamber
and aligned to face along the positive x-axis. An array of
measurement loudspeakers was moved on a circular trajectory
to obtain a supervised estimate of the free-field microphone
directivity patterns on an 11.25◦ equiangle grid. The transfer
function of the measurement loudspeaker was measured and
equalized to reduce its influence upon the measurements. The
design problem (15) was then solved for three scenarios: (a)
2D cardioid model (azimuth only), (b) 3D cardioid model
(azimuth and elevation) and (c) 3D measured model. The
solutions W0 were calculated for regularization parameters
κ in the range 0 ≤ κ ≤ 1 in steps of 0.1. A practical
modification was made to the distortionless constraint in (15)
so that WT

0 (f ′)D0(f ′) = 1 for 200 ≤ f ′ ≤ 7500 and 0
elsewhere. In all cases, the ambient noise spectrum N0(f)
was assumed to be isotropic. The instrument noise spectrum
NI(f) was measured with a microphone of the type used in
the Kinect array. The ambient noise N0(f) noise spectrum was
estimated from a corpus of noise recordings compiled in living
room environments representative of Kinect’s target locations.
Further details on the 2D implementation can be found in [9].

A speech test corpus was created consisting of 2 males, 2
females, and 2 children speaking 6 short sentences. The sen-
tences were produced in a real noisy living room environment
of approximately 2.8×5.6 m using a mouth simulator placed at
10 locations relative to the microphone array: 4 at range 1 m,
2 at 2 m, 2 at 3 m, and 2 at 4 m. Each sentence was produced
at 65 dB SPL at 1 m to simulate typical talking levels. The
best-performing single microphone was used as an additional
reference.

The processed speech quality was estimated using ITU-T
P.862 (PESQ) [12]. Automatic speech recognition (ASR) was
performed using the Microsoft Speech Platform v.11.01 using
the trained acoustic model from the Kinect Development Kit
(KDK)2, with which word error rate (WER) and sentence error
rate (SER) were calculated. The results were averaged over all
devices.

B. Discussion

Figs. 1–3 show the PESQ score, WER and SER as a
function of regularization parameter κ. They reveal that reg-

1http://www.microsoft.com/download/en/details.aspx?id=27225
2http://www.microsoft.com/en-us/kinectforwindows/develop/
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Fig. 4. Measured beamformer directivity pattern viewed down the z-axis at
1 kHz using weights derived from 2D microphone models, κ = 0.5.

ularization improves the performance of all three solutions
by avoiding over-fitting to the training data. The optimal
3D measured performance for all three metrics is near the
relatively low value of κ ' 0.1; in contrast, the PESQ score
in the 2D and 3D model solutions is maximized at κ ' 0.2 but
WER and SER benefit from much higher values. The variance
of the PESQ results is however very small therefore WER/SER
are of greater interest. The requirement for higher κ for the
2D/3D model solutions suggests that these designs are less
suited to the test corpus than the solution based upon 3D
measurements.

The average results for the test corpus are shown in Table I
using the empirical optimum regularization parameters for
WER in Fig. 2. The improvement in PESQ of about 0.5 points
over a single microphone is largely invariant to the type of
beamformer. Word and sentence error rates are similar for
both 2D and 3D models, however there is a significant relative
reduction in WER of approximately 50% (10% absolute)
comparing the 3D measured to the 3D model and 70% (13%
absolute) compared with the best microphone. The measured
beamformer directivity patterns using weights derived from
the 2D microphone model and the 3D measured microphones
are shown looking down the z-axis at 1 kHz in Figs. 4 and 5
respectively, the latter displaying a narrower main lobe.

IV. CONCLUSIONS

A generalized solution for the MVDR beamforer has been
investigated that exploits measured microphone directivity
patterns as a function of azimuth, elevation and frequency.
The use of measured directivity patterns allows more realistic
design for those cases where the true directivity pattern
deviates from standard microphone models. It incorporates
a regularization parameter that provides robustness to mis-
match between training and test data caused by manufacturing
variations between devices. Experimental results with the 4-
element Microsoft Kinect for Windows array reveals that
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Fig. 5. Measured beamformer directivity pattern viewed down the z-axis at
1 kHz using weights derived from 3D measured data, κ = 0.1.

significant performance gains can be achieved by designing the
beamformer weights using measured data, reducing relative
ASR word error rates on the test corpus by over 70% and
improving directivity indices by 6 dB compared with the best
single microphone. The best 3D measured data design results
are achieved using a lower regularization parameter than the
2D model, showing that design with measurements from a
single training device are applicable to a much broader test
corpus.
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