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Abstract—Scale-Invariant Feature Transform (SIFT) has lately
attracted attention in computer vision as a robust keypoint
detection algorithm which is invariant for scale, rotation and
illumination change. However, its computational complexity is
too high to apply practical real-time applications. This paper
proposes a low complexity keypoint extraction algorithm based
on SIFT descriptor and utilization of the database, and its real-
time hardware implementation for Full-HD resolution video. The
proposed algorithm computes SIFT descriptor on the keypoint
obtained by corner detection and selects a scale from the
database. It is possible to parallelize the keypoint detection and
descriptor computation modules in the hardware. These modules
do not depend on each other in the proposed algorithm in
contrast with SIFT that computes a scale. The processing time
of descriptor computation in this hardware is independent of
the number of keypoints because its descriptor generation is
pipelining structure of pixel. Evaluation results show that the
proposed algorithm on software is 12 times faster than SIFT.
Moreover, the proposed hardware on FPGA is 427 times faster
than SIFT and 61 times faster than the proposed algorithm on
software. The proposed hardware performs keypoint extraction
and matching at 60 fps for Full-HD video.

I. INTRODUCTION

Recently, Scale-Invariant Feature Transform (SIFT) [1] has
attracted attention in computer vision because of its robustness
in keypoint detection. Since SIFT can describe scale, rotation
and illumination invariant features from images, matching
between distinct images is executed accurately. By fully uti-
lizing this characteristics, wide range of application is being
considered. For example, it is used for object recognition [2],
human or other object tracking [3], [4], recognizing panorama
[5], 3-D reconstruction [6].

However, due to its complicated structure, there is a problem
that conventional SIFT requires high computational complex-
ity. Especially, SIFT’s Difference of Gaussian (DoG) process
is high complexity because an input image is repeatedly
convolved with Gaussian filter. It is difficult to perform
in real-time on software by even Speeded-Up Robust Fea-
tures (SURF) [7] and approximated SIFT [8] which SIFT is
speeded-uped. There are several methods that improve the
matching performance, for example GLOH [9], PCA-SIFT
[10], CSIFT [11] and ASIFT [12], but many calculations are
added to SIFT in these methods. Moreover, many serial parts
which SIFT contains make it difficult to accomplish hardware-
implementation. It leads to hardware expansion without par-

allelizing and pipelining. Recently, parallelized hardwares of
SIFT [13], [14] have been proposed. However, their target is
VGA video and there is few real-time hardware for Full-HD
video up to the present.

This paper proposes low complexity keypoint extraction
algorithm based on SIFT descriptor and utilization of the
database on the software for VGA resolution video, and
its real-time hardware implementation for Full-HD resolution
video to accomplish real-time processing. First, the complex-
ity of SIFT is reduced because hardware implementation of
conventional SIFT requires a lot of hardware resources. The
detection method is replaced by the corner detection and SIFT
descriptor is generated in each keypoint. The utilization of
database make it deals with scale-change. Next, it parallelizes
the serial processing part such as computing histogram to
reduces clocks to take for computation and construct keypoint
pipeline architecture for matching processing to reduce hard-
ware resources largely. In this way, realistic scale hardware
with high performance is designed.

II. SIFT

SIFT is an algorithm which describes scale, rotation and
illumination invariant keypoints from images. The algorithm
is divided into following two key parts.

• Keypoint detection by the DoG
• SIFT descriptor computation

The keypoint detection is the process which decides key-
point’s position near characterized region. The SIFT descriptor
computation makes the histograms with information about
neighboring region. These are primary processes of a keypoint
extraction. 2nd section shows the details of processes and
problems.

A. Keypoint Detection by the DoG

SIFT detects scale invariant keypoints by the DoG function.
DoG function computes difference of images convolved by
Gaussian filters. An image, I(x, y), a variable-scale Gauss
function, G(x, y, σ), and a smoothed images, L(x, y, σ), de-
fine the DoG image, D(x, y, σ):

D(x, y, σ) = (G(x, y, kσ)−G(x, y, σ)) ∗ I(x, y)
= L(x, y, kσ)− L(x, y, σ), (1)



�� ��� �
�
�� �

�
��

…...

……

Fig. 1. The DoG detector.

where ∗ is the convolution operation. D(x, y, σ) is repeatedly
computed by a constant multiplicative factor k. Computational
complexity becomes higher and higher when σ increases. Fig.1
is schema of the DoG detector. Thus, this process is very
complex. After this, detections of extreme value and localiza-
tions of keypoints are performed. It also high computational
complexity because localizations use matrix calculation.

B. SIFT descriptor computation

In computation of SIFT descriptor, firstly, keypoint’s ori-
entation is obtained. The histogram is calculated by gradient
magnitude m(x, y) and orientation θ(x, y):

m(x, y) =
√
Lx(x, y) + Ly(x, y), (2)

θ(x, y) = tan−1Ly(x, y)

Lx(x, y)
. (3)

When its sum of magnitude is max, the orientation becomes
the keypoint’s one. After this, SIFT descriptor is computed.
The region is rotated by the keypoint’s orientation. The size
of region depends on scale obtained by the DoG detector. It is
divided into 4×4 and histogram is computed by 8 directions in
each region. Total 128 dimension vector, SIFT descriptor, is
generated. This process’s computational complexity changes
depending on keypoint’s scale.

III. SIFT-BASED LOW COMPLEXITY KEYPOINT
EXTRACTION

In section III, we show the method which reduces compu-
tational complexity of SIFT. This paper mainly proposes two
methods to accomplish the real-time processing.

• The approximation of Harris detector and using the
integral image

• Utilization of multi-scale images in the database
The flowchart which summarizes process of this algorithm is
shown in Fig.2. The DoG detector is the highest computational
complexity part in SIFT algorithm as shown in section II.
However, the keypoints obtained by DoG is positioned near
corners in an image. Therefor, we propose that the DoG is
replaced with corner detection. The computational complexity
is drastically reduced by this because corner detection is
relatively low complexity. The gaussian filter in Fig.2 is used
for the noise reduction. When SIFT descriptor is computed,
the size of described regions is a constant 15×15. This also
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Fig. 2. Flowchart of the proposed algorithm.
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Fig. 3. How to use an integral image.

simplifies SIFT, because the regions increase in size depending
on scale in the case of SIFT.

A. The approximation of Harris detector and using the inte-
gral image

Harris detector [15] is one of the corner detection methods.
Its positioning corner is very suitable. It uses filer which
computes 2nd-order difference of adjacent pixels. It need
to refer many adjacent pixels during detection from general
images with nose. According to the number of refereed pixels,
the process time becomes very long. Thus, an integral image
and box filter are utilized for speeding up.

First, an integral image is explained. The integral image,
Iintegral(x, y), is the sum of pixels from top left corner of
image to intended pixel (x,y):

Iintegral(x, y) =

i≤x∑
i=0

j≤y∑
j=0

I(i, j). (4)

For example, the case of Fig. 3 is considered. At this time,
sum of the rectangular region, S:

S = A−B − C +D. (5)

This method speed up the calculation of rectangular region’s
sum. Moreover, there is a merit that the process time does
not depend on the size of region. It has many merits during
software processing. However, in the case of hardware, it is
difficult to reserve memory because integral image use a lot
of memory. Thus, it does not use integral image.

Next, corner detection by box filter is shown. Harris’s
method computes Hessian matrix, H, which is composed of
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Fig. 4. Approximated Filter (Lxx, Lyy , Lxy).

elements are the 2nd-order difference of adjacent pixels:

H = G(σ)

[
Lxx Lxy

Lxy Lyy

]
. (6)

In general, their elements is weighed by Gaussian function,
G(σ). However, it is not suitable for an integral image because
weighing is detail. Thus, this filter is approximated and it
becomes easy to compute by integral image. Approximated
filter is shown in Fig. 4. Lxx, Lyy, Lxy is obtained by filter
process of integral image. After that, they are used to compute
function which decides corners. When the position is a corner,
it satisfies the equation,

det(H)− ωtra(H) > T, (7)

where ω is a parameter and T is a threshold. If the threshold
becomes larger, corners decreases and becomes better position
as corners. The threshold is determined experimentally to
obtain the appropriate number of keypoints.

B. Utilization of multi-scale images in the database

This proposed algorithm removed the DoG detector of SIFT.
In other words, it does not compute scale of each keypoint. It
is impossible to deal with scale changes as it is. Thus, next,
we propose the solution that prepares various size images in
the database and decides the scale during keypoint matching.
SIFT descriptor can deal with some scale-changes because it
is very robust for various image changes or transformations.
Considering this feature, we prepare three images of various
size at regular intervals. For example, images of three sizes
(1, 1.5, 0.5) is registered as objects of matching. Keypoints
are extracted from them and tag is added to keypoints. The
tag (=1, 1.5, 0.5) shows which size image the keypoint is
obtained from. In keypoint matching process, tag is checked
and counted if registered keypoint match with input image’s
kepoints. The tag with the most matches is considered as
nearly input image’s scale. Finally, input image matched
with the registered image of decided tag. Keypoint matching
process is speeded up by Approximated Nearest Neighbor
(ANN) [16] in comparison with Nearest Neighbor (NN). NN
is a computation of distance between two feature vectors. In
the case of NN, it searches all keypoints, but the process can
be avoided by approximation of ANN. Software processing
uses ANN, but it uses NN to simplify the hardware structure
in the case of hardware. Fig. 5 is schema of this process.

IV. HARDWARE IMPLEMENTATION OF PROPOSED
KEYPOINT EXTRACTION ALGORITHM

This section describe the hardware architecture using
pipelining and the method that parallelizes the complex pro-
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Fig. 5. Proposed matching process.

cesses in the proposed algorithm. If real-time keypoint extrac-
tion hardware for Full-HD is hardware-implemented simply,
hardware resources become too large to be loaded in realistic
scale FPGAs. This keypoint extraction algorithm has the
following problems to implement on FPGAs. The proposed
solutions are also shown.

1) Complexity calculations
⇒ (A) Pipelining by fetching pixel lines from block
RAM
⇒ (B) Approximation based on SAD, bit-shift and LUT

2) Increasing processing clock are accompanied by increas-
ing register
⇒ (C) Parallelization of the detection module and the
descriptor module

3) Serial processing of the histogram computation
⇒ (D) Parallelization of descriptor computation

4) Processing large amount of keypoins data
⇒ (E) Matching process by keypoint pipelining

These methods are shown in following section in more detail.
First, The entire structure and flow are shown.

The entire block diagram is expressed in Fig.6. The inputted
RGB data is entered into the keypoint extraction modules.
In the keypoint extraction module (Fig.7), 1 descriptor is
outputted for 1 RGB data. The RGB data is converted to
the gray scale data. It is accumulated in 5×5 and smoothed
by gaussian coefficients. Next, these are entered into line
buffer and vertical 15 pixel is kept. These are inputted to
the detection module and the descriptor module in parallel. In
the detection module, 15×15 pixel data is kept and weighted
by the filter in Fig.4. In the descriptor module, after the
orientation computation (9×9 region), the SIFT descriptor
(8 bit×128 D=1024 bit) is generated in 15×15 region. The
descriptor is generated in all pixels because the structure is
a pixel pipelining. If the pixel is detected as a keypoint (the
signal of is keypoint is 1), the position and descriptor data
are memorized in block RAM.
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Keypoint matching process is performed with 1 frame delay
in keypoint matching module (Fig.9). The descriptor data
in the block RAM are fetched and SAD is computed. It is
a distance of feature vector. The minimum data between 1
inputted keypoint and all database keypoints is kept and sent
to block RAM. In all clock, the address of block RAM is
computed. Finally, an output image is generated by using the
kepoint data and matching results.

A. Pipelining by fetching pixel lines from block RAM

To calculate SIFT descriptor in each pixel, it is necessary
to process 9×9 region for orientation and 15×15 region for
descriptor in 1 clock. It requires 9×9+15×15=306 calculators
if it is computed simultaneously. To reduce the hardware
resources , pipelining using 15 pixel lines is proposed. It deals
with problem 1). When the vertical 15 pixel is inputed, these
are calculated and m, θ are generated. After that, obtained
values are kept in 14 clocks by registers. Only 9+15=24
calculator is required by this pipelining. This architecture is
shown in the line buffer of Fig.7.

B. Approximation based on SAD, bit-shift and LUT

To this point, the proposed low complexity algorithm re-
mains relatively complex set of calculations. This consumes a
large amount of hardware resources. Approximated calculator
reduces the use of resources and enhances frequency of
circuits. This also deals with problem 1).

First, equation (2) incorporates a square root. To solve the
square root, many methods are proposed, such as extraction
of square root. However, these methods use iterations, which
may generate hardware delays because its number is unknown.
Thus, the magnitude of gradient is considered. It is replaced
by Sum of Absolute Difference (SAD) because the magnitude
is a weight of histogram computation. By this, magnitude of
gradient is redefine as

m(x, y) = |Lx(x, y)|+ |Ly(x, y)|. (8)

It is calculated more simply. The distance of two descriptors
is computed similarly during matching process.

Next, the direction of gradient in equation (3) is computed
approximately. It includes division and arctan. It occurs in
two steps. First, the division is approximated by bit shift.
Concretely, numerator is shifted by the value of denominator.
Second, the arctan is computed by the Look Up Table (LUT).
the value of arctan is decided by each result of the division.
The direction of magnitude is quantized in 32 directions.

These approximations do not cause large precision losses. It
is considered that these processes do not need high precision
calculation because they includes quantization.

C. Parallelization of detection module and descriptor module

SIFT has the dependency between keypoint detection and
computation of descriptor because a scale has to be computed
and it determines the descriptor region. However, the proposed
algorithm in section III does not compute a scale. Therefore,
it becomes possible to parallelize keypoint detection and
computation of descriptor. It reduces clocks to compute and
solve the problem 2). This structure is shown in Fig.7. 15 pixel
data is inputted from line memory. After that, detection and
description are computed simultaneously. After the results are
obtained, they are synchronized.

D. Parallelization of descriptor computation

The SIFT descriptor is computed by histogram computation.
In general, it is serial processing because a conflict between
registers occurs. It takes many clocks to generate descriptor.
Concretely, 225 clocks is required because it uses 15×15
region. To solve this, SIFT descriptor computation is paral-
lelized. SIFT descriptor divides the region into 4×4 grids. The
bins of histogram do not have a dependence on each other.
Thus, it is possible to parallelize distinct grid. The simulation
result shows that 9 pixels at regular intervals do not depend on
each other. It computes 15×15 keypoint region by placing 25
descriptor registers. After registers have values, they are added
together in each bins. It computes descriptor in 4 clocks with
finality. It deals with problem 3). Fig.8 is a schema that shows
this processing.

E. Matching process by keypoint pipelining

Each keypoint has the descriptor data (1024 bit) and the po-
sition data (22 bit). It is very long bit data. If plural keypoints
is processed simultaneously, a lot of hardware resources are
required. To deal with problem 4), 1 keypoint data is fetched
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from block RAM in 1 clock and entered into the matching
module of pipelining structure. The nearest neighbor search
is performed. The obtained keypoint pairs are memorized in
block RAM. The structure is shown in Fig.9.

V. EXPERIMENTAL RESULTS

The proposed algorithm is compared with SIFT with respect
to performance and speed. The development environment on
software is Visual Studio C++ 2008. CPU is Intel Core i5
CPU M 450 2.40GHz. Vertex-5 (XC5VLX330-1FF1760C) as
FPGA offered by Xilinx, Inc. is used for hardware evaluation.
The logic synthesis on FPGA is performed by ISE11.4.

First, both methods are examined with accuracy when the
object has a scale-changes. In this paper, matching accuracy
(ACC) is evaluated by

ACC =
TP

TP+FN
, (9)

where True Positives (TP) is the number of correct matches
and False Negatives (FN) is the number of incorrect matches.
The true vales of correct matches is decided by RANdom
SAmple Consensus (RANSAC) [17]. Matches which is sat-
isfied with the equation,

|xe − xr| < Error, (10)

are counted to compute TP. TP+FM is the number of all
matches. It is a constant Error=10 in this case. The experimen-
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tal result is Fig.10. This result shows the proposed algorithm
is almost same ACC with SIFT.

Next, the proposed hardware on the FPGA and the proposed
algorithm on software are compared with SIFT. TABLE I is
a result comparing processing time per frame between SIFT
and the proposals. The result comparing Proposal (SW/VGA)
with SIFT (SW/VGA) shows that the proposed algorithm is
about 12 times faster than SIFT on software. It performs 10 fps
keypoint extraction and matching for VGA video. The result
comparing Proposal (HW/Full-HD) with SIFT (SW/Full-HD),
Proposal (SW/Full-HD) shows that the proposed hardware on
FPGA is about 427 times faster than SIFT and about 61 times
faster than the proposed algorithm on software. The proposed
hardware performs at 60 fps keypoint extraction and matching
for Full-HD video. The number of keypoints is also shown,
but the processing time of keypoint extraction does not depend
on the number of keypoints due to pixel pipelining. On the
other the hand, keypoint matching depends on the number of
keypoints due to keypoint pipelining. We have verified that it
is possible to perform keypoint matching up to 1024 keypoints
on the FPGA.

The total FPGA resource utilization and maximum fre-
quency of the proposed hardware is shown in TABLE II. In
the table, the available resources of the used FPGA is also
described. The utilization shows that the proposed hardware
can be implemented in Virtex-5. Especially, the number of
DSP48Es is much low because the approximation and the use
of LUTs are very effective for hardware reduction.

Fig.11 is the software simulations of keypoint matching.
It deals with scale-changes in high accuracy. Fig.12 is a
demonstration of keypoint extraction hardware. In this case,
we uses Virtex-6 to draw output images. It matches input
image with right bottom parts which keypoints are registered
in advance. It is drawing lines that express matches between
an input image and a registered image.

VI. CONCLUSIONS

This paper proposed the low complexity keypoint extraction
algorithm for VGA and its hardware architecture for Full-
HD video. First, this paper reduces the computational com-



TABLE I
COMPARISON OF PROCESSING TIME (SW OR HW/VGA OR FULL-HD)

processing time [ms] number of keypoints
SIFT

VGA
1026 252

Proposal
SW

85 258
SIFT 6840 986

Proposal Full 982 950
Proposal HW -HD 16 1024

TABLE II
TOTAL FPGA RESOURCE UTILIZATION AND MAXIMUM FREQUENCY

FPGA Resource Used Available Utilization
Number of Slice Registers 55,407 207,360 26%

Number of Slice LUTs 108,322 207,360 52%
Number of occupied Slices 32,741 51,840 63%

Number of BlockRAM/FIFO 89 288 30%
Number of DSP48Es 3 192 1%
Maximum Frequency 168.464MHz

Fig. 11. The software simulation of keypoint matching.

Fig. 12. The demonstration of keypoint extraction hardware.

plexity of SIFT by the corner detection, SIFT descriptor and
utilizing the database. After that, this proposed algorithm is
implemented on FPGA. The proposed hardware uses pixel
pipelining, parallelization of detection and descriptor module,
parallelization of the descriptor computation to accomplish low
resources and high performances.

The software simulation shows that the proposed algorithm
is about 12 times faster than SIFT maintaining almost same
accuracy. The comparison of the proposed hardware, the
proposed software algorithm and the SIFT shows that the pro-
posed hardware is about 427 times faster than SIFT and about
61 times faster than the proposed algorithm on software. This

hardware performs 60 fps keypoint extraction and matching
for Full-HD video. Moreover, the processing time of keypoint
extraction does not depend on the number of keypoints. It
becomes possible to apply this keypoint extraction hardware
to real-time application which has been widely proposed.
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