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Abstract—We propose a novel algorithm to generate a virtual-
view video from a video-plus-depth sequence. The proposed
method enforces the spatial and temporal consistency in the
disocclusion regions by formulating the problem as an energy
minimization problem in a Markov random field (MRF) frame-
work. In the system level, we first recover the depth images
and the motion vector maps after the image warping with the
preprocessed depth map. Then we formulate the energy function
for the MRF with additional shift variables for each node. To
reduce the high computational complexity of applying BP to this
problem, we present a multi-level BPs by using BP with smaller
numbers of label candidates for each level. Finally, the Poisson
image reconstruction is applied to improve the color consistency
along the boundary of the disocclusion region in the synthesized
image. Experimental results demonstrate the performance of the
proposed method on several publicly available datasets.

I. INTRODUCTION

The revolution from 2D display to 3D display may be as
significant as the revolution from monochrome to color display
in the television history. several TV manufacturing companies
have successively developed their advanced 3D display tech-
nologies that allow people to experience realistic 3D scenes
without wearing 3D glasses. People can watch the 3D contents
from different viewpoints by changing the viewing directions.
Many companies have invested a considerable amount of
resources in the related technology as the 3D industry has
been foreseen to develop very rapidly in recent years.

Humans sense depth information due to parallax in the real
world. Modern 3D display combines distinct image contents at
different viewing directions to produce 3D effect. One practi-
cal way to create virtual views is from multiview images. This
requires large bandwidth for multiview video transmission. An
alternative is to generate virtual views from the image and
corresponding depth map at a single view. This arises another
problem that the regions covered by the foreground objects in
the original view may be disoccluded when virtual views are
generated. Thus, filling the disocclusions regions properly is
very critical to achieve high-quality view synthesis results.

In this paper, we focus on the problem to generate the
virtual videos of different viewpoints from a given video and
associated depth maps at a viewpoint so that the viewers
can realistically sense the depths. A spatio-temporal global
optimization approach is proposed to synthesize the virtual
views from a single video-plus-depth video sequence. The
global energy minimization is formulated as the depth-based

image completion problem for the video sequence to recover
the disocclusion regions which are generated by the 3D image
warping of different viewing directions. The disocclusion
regions are recoverd from patches of the images by consid-
ering multiple important factors, such as depth maps, image
structure and texture information. Then, the Belief Propagation
(BP) [1] is applied to solve the energy minimization problem.
Since belief propagation introduces high computational com-
plexity which is proportional to the square of the total number
of label candidates, we develop a multi-level optimization
strategy with two BPs running with much smaller numbers
of candidates to reduce the large number of label candidates.
Affinity Propagation clustering (AP-clustering) [2] is used to
cluster all the candidate patches in the image. Moreover, shift
information is added in the Affinity Propagation clustering and
the shift variables are considered into the energy function to
increase the flexibility for the label candidates.

In the system framework, depth maps are pre-processed by a
trilateral filter that jointly considers image intensity, depth and
temporal consistency, followed by a bilateral filter that takes
both depth information and spatial consistency into consider-
ation. This not only reduces the noises but also enhances the
coherence of the depth map in spatial and temporal domain.
Finally, the Poisson image editing [3] is applied to maintain
the color consistency in the disocclusion regions.

The main contribution of this paper can be summarized
as follows. First, we propose a spatio-temporal global opti-
mization approach that formulates an energy function con-
sidering depth map, image structure, texture information and
patch shift. Second, we apply a multi-level BP by using
AP-clustering in conjunction with patch shift variables to
overcome the problem of the large number of label candidates
in the optimization problem.

II. RELATED WORKS

More and more 3D display applications can be found in
the high-tech products, including 3D LCD/LED displays, 3D
laptops, 3D cameras, mobile devices and home video/games,
etc. The suitable file formats to support these modern 3D
devices have become one of the most important issues.

The video-plus-depth format is commonly used in the 3DTV
community. It consists of the color intensity and the associated
per-pixel depth map at one view. Based on this format, the
DIBR (Depth-Image-Based Rendering) system [4] produced



virtual views based on the three steps: preprocessing of depth
image, image warping and hole filling. However, the major
problem in DIBR is how to fill the holes caused by the
disocclusion regions in which the occluded pixels in the source
view may become visible in the virtual views.

Under the video-plus-depth format, some research works
focused on the preprocessing of the depth image [5] to
reduce the disocclusion regions. Others developed hole filling
methods based on image inpainting techniques [6] to fill in the
disocclusion regions. For preprocessing of the depth image,
the common approach is to apply the smoothness filters, (e.g.
Gaussian filter and average filter) to the depth image. After
image warping with the smoothed depth image, the disocclu-
sion regions may be split into several small holes. Then the
color interpolation can be used to fill in the small hole regions.
Zhang et al. [5] extended the idea of the depth preprocessing
for the hole filling from the symmetric smoothing filter to
the asymmetric smoothing in order to reduce the geometric
distortion. For image inpainting, Oh et al. [6] proposed a hole
filling method by using depth-based inpainting. This method
is designed by combining the depth-based hole filling and the
image inpainting technique.

Because hole filling is the major problem in depth-image-
based rendering. Image inpainting is a technique widely uti-
lized to recover the disocclusion regions. The objective is to
fill the unknown regions in a plausible way. Recent exemplar-
based approaches are commonly used in image inpainting.
In [7], a fast algorithm was presented to propagate texture
and structure in a small patch. The success of structure
propagation was dependent on the order in which the filling
proceeds. The confidence value in the synthesized pixel values
was propagated in a manner similar to the propagation of
information in inpainting.

Contrary to the greedy methods, some approaches formulate
the image completion as discrete global optimization problems
[8] [9] [10]. In [8], image completion was automatically solved
using an efficient BP algorithm. However, it did not consider
structure information and thus the results may contain structure
inconsistency. In [9], the image was completed with manually
added structure information. Huang et al. [10] improved the
hole filling method in [8] by adding the structure information
into the global optimization formulation and solved the opti-
mization problem with a two-step BP. In their method, only
a single image was considered for the completion. Then, Liu
et al. extended the method to the video completion [11] by
adding the motion information to keep spatial and temporal
coherence.

III. PROPOSED DISOCCLUSION REGION RECOVERING
METHOD

Given the video frames and their corresponding depth maps,
we aim to fill in the disocclusion regions by searching suitable
patches from the video. Thus, the disocclusion region recov-
ering problem can be reagrded as an exemplar-based labeling
problem. In this section, we will show how this problem can
be formulated considering spatial and temporal consistency of

video frames in a Markov Random Field (MRF) framework.
In addition, a multi-level BP with AP-clustering approach is
proposed to solve the global optimization problem efficiently.

A. Problem Formulation

We first define the regions in a video frame. Let Φ be the
source region and Ω represent the disocclusion region of a
video frame I . Then, we have Φ+Ω = I . Similarly, in a video
sequence, denote Φt and Ωt by the source and disocclusion
region of a video frame in time t.

To fill the disocclusion regions, each frame I is uniformly
sampled to obtain sampled pixels. Let pixel position set
V = {{vti}N

t

i=1}Tt=1 contain all the pixel positions sampled
from the disocclusion region. The patch set B = {{bti}N

t

i=1}Tt=1

is the set of patches and each bti is a patch centered at the
position vi in frame t. Note that patch bti is likely to contain
pixels in the source region even though the patch center vti is
in the disocclusion region. The goal of view synthesis is to
fill in the disocclusion region by selecting patches from a set
of patch candidates to the locations centered at the position
in V . Define E as the set of edges connecting neighboring
pixels, an undirected graph g = {V,E} can be constructed
for the MRF framework. Four neighbors are used within a
video frame to constrain the spatial consistency whereas the
four nearest neighboring pixels of the corresponding sampled
pixel in the next frame (decided by motion estimation) are
used for the temporal constraint.

B. Global Energy Minimization by MRF

Let X = {{xti}N
t

i=1}Tt=1 be the set of labels for V . For
the set of patch candidates, let M = {ml}Ll=1 be the set
of labels of all the patch candidates and pl be the patch
candidate. Our goal is to find the best label set X for V that
minimizes the energy function under the spatial and temporal
constraints, where xti ∈ M . When xti = ml, it means the
the label for the pixel position vi in video frame time t
is ml. In other words, patch pl is selected to fill in the
region centered at vi. In our method, we consider the patch
candidates using shift variable (∆x,∆y) in the labeling
problem (which will be discussed later in Section III-D). In
short, by introducing (∆x,∆y), patches are selected in a local
region of (x, y) with a small amount of shift to reduce errors
from spatial sampling for patch candidates. Since each patch
has its own shift amount, let ∆X = {{∆xti}N

t

i=1}Tt=1 and
∆Y = {{∆yti}N

t

i=1}Tt=1 be the set of shift variables along x-
and y-directions for V . Then, the global optimization problem
can be formulated as follows:

E(X,∆X,∆Y ) = Es(X,∆X,∆Y ) + ηEt(X,∆X,∆Y ),
(1)

where the spatial term Es(.) and the temporal term Et(.)
enforce the spatial and temporal constraint in this formulation,
and η is a constant used to balance these two energy term.



Fig. 1. Illustration of overlapping parts when calculating the spatial and
temporal terms in the proposed MRF formulation. R1 shows the overlapping
region of the patch centered at vti and Φt. R2 covers the overlapping region
from vti and its neighboring patch centered at vtj . R3, R4 in video frame
It+1 are similar to R1, R2, respectively.

1) The Spatial Consistency: The spatial term Es(.) mea-
sures the consistency from color, depth and structure infor-
mation. It is formed by combining the data term and the
smoothness term as follows:

Es(X,∆X,∆Y ) =
∑
vt
i

Edata
s (xti,∆x

t
i,∆y

t
i)+∑

(vt
i ,v

t
j)∈es

Esmo
s (xti,∆x

t
i,∆y

t
i , x

t
j ,∆x

t
j ,∆y

t
j),

(2)

where the data term Edata
s (.) is the cost for labeling the pixel

vti as xti with shift variable ∆xti,∆y
t
i , the smoothness term

Esmo
s (.) is the consistency cost for labeling the neighboring

patch pair as xti, x
t
j , and es is the set of a 4-neighborhood

system. As shown in Figure 1, when a patch pl is selected
to fill in the location centered at vti , the overlapping region
R1 in the selected patch should be as similar as that in the
patch bti. On the other hand, the overlapping region from the
patch candidate for position vti and the patch candidate for
its neighboring position vtj (R2 in this example) should be
consistent as well.

Denote p(∆xt
i,∆yt

i)

xt
i

to be the candidate patches for labeling
pixel vti adopting the shift variables. The spatial consistency is
considered both in the color image and in the depth map. We
use the pre-processed depth image which will be discussed
later in Section IV-A. With the depth information, denote
q

(∆xt
i,∆yt

i)

xt
i

to be the candidate patches extracted from depth

map. Similarly, let D = {{dti}N
t

i=1}Tt=1 be the set of patches,
for each dti is a patch centered at the position vi in frame t of
the depth map. The data cost for labeling xti is defined as:

Edata
s (xti,∆x

t
i,∆y

t
i) = Dcolor(p

(∆xt
i,∆yt

i)

xt
i

, bti)

+Ddepth(q
(∆xt

i,∆yt
i)

xt
i

, dti),
(3)

where Dcolor(.) measures the color difference between the
overlapping region of candidate patch p(∆xt

i,∆yt
i)

xt
i

and patch bti
in the color image. The difference can be obtained by the sum
of the squared differences (SSD) or other metrics. In the case
of using SSD, the function Dcolor(.) with shift variables can
be defined as:

Dcolor(p
(∆xt

i,∆yt
i)

xt
i

, bti) =∑
(x,y)∈W

|pxt
i
(x+ ∆x, y + ∆y)− bti(x, y)|, (4)

where W is a patch window. Similarly, Ddepth(.) calcu-
lates the depth difference from those regions from the depth
map. If bti is completely inside the disocclusion region,
Edata

s (xti,∆x
t
i,∆y

t
i)=0.

Human perception is sensitive to the discontinuity in the
high contrast areas in the image, such as object boundary
and strong texture. We measure the image continuity with
the coherence between a pair of neighboring patches by
incorporating the impact of texture and structure information
in the smoothness term as follows:

Esmo
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t
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t
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t
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t
i , x

t
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t
j ,∆y

t
j)

(5)

where the texture term Etex
s (.) is used to constrain the texture

consistency between the selected patches for the position
vti and its neighbor vtj . The structure term Estr

s (.) enforces
the consistency for structure propagation. α and β are two
constants used to balance the two terms Etex

s (.) and Estr
s (.).

In our method, the color image and the depth map are also
considered in Etex

s (.) which is defined by:

Etex
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t
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t
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t
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t
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)

(6)

where the term Dcolor(.) and Ddepth(.) are the SSD of the
overlapping region of color and depth patches, respectively.
The structure term is computed by:
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(7)

where Dgradx
(.) and Dgrady

(.) are the gradients differences
between the overlapping region of the patches p(∆xt

i,∆yt
i)

xt
i

and

p
(∆xt

j ,∆yt
j)

xt
j

along the x- and y-directions, respectively. The
gradient of a patch is defined as the maximum gradient of
the pixels in the patch to represent the structure information.

2) The Temporal Consistency: The temporal term con-
strains that two corresponding patches in neighboring frames
should have consistent color and depth information. Define
the temporal corresponding point of pixel vti in frame t as
v̂t+1
i in frame t + 1. The patch centered of v̂t+1

i is defined
as b̂t+1

i . The temporal neighboring pixels of vti are defined by



the four sampled pixels nearest to v̂t+1
i . We denoted them as

(vti , v̂
t+1
j ) ∈ et. In our method, the temporal correspondence

can be found via motion estimation. Details for finding the
temporal correspondence will be discussed in Section III-C.

Similar to the spatial term, when a patch is selected to fill
in the location centered at vti , the overlapping region in the
source area R3 of the patch candidate should be similar to
that in the temporal corresponding patch b̂t+1

i in frame t+ 1.
In addition, the overlapping region R4 should be consistent
with its neighbors. Thus, the definition of the temporal term
is expressed as the sum of two parts:

Et(X,∆X,∆Y ) =
∑
vt
i
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t (xti,∆x

t
i,∆y

t
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t
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j ,∆yt+1
j ),

(8)

where Edata
t (.) represents the temporal cost of region consis-

tency between patch candidate and its temporal corresponding
patch, Esmo

t (.) measures the cost between patch candidate
and its temporal neighboring patches in frame t + 1, and et
represents the set of temporal neighbors. Similar to Edata

s (.)
and Esmo

s (.), Edata
t (.) and Esmo

t (.) considering the temporal
consistency both in color and depth image can be defined as:
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(9)
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(10)

C. Constrained Optical Flow

In our energy function, the temporal constraint is applied
to two corresponding patches in sequential frames. The corre-
spondence can be found via the constrained optical flow.

Typically, optical flow describes apparent motion of objects,
surfaces, and edges between images. The original optical flow
formulation proposed by Horn and Schunck [12] minimizes
the energy function of the difference of intensity values with
a global smoothness constraint.

Later, Hsieh et al. [13] proposed to include optical flow con-
straints at some selected points and solve a constrained optical
flow estimation problem. This constrained optimization prob-
lem is solved very efficiently with an Incomplete Cholesky
Preconditioned Conjugate Gradient (ICPCG) algorithm [14].
We estimate the optical flow by the above method.

If dense motion is estimated, the correspondences for all
patches in a video can be constructed. After image warping,
the motion values of each pixel will also be warped to the new
location. The disocclusion regions will not have the motion
information. In order to obtain a completed motion map, we

Fig. 2. An example for candidate patch selection and two-level BP.

recover the motion map by using the same method as that
of recovering the depth images, discussed in Section IV-A.
In practical, the depth images and the motion maps can be
recovered simultaneously.

D. Patch Selection and Shift Variables

The process of candidate patches selection in our method
is described as follows: The regions for candidate patches
are determined first. The minimal and maximal x- and y-
coordinates of pixels in the disocclusion region are used to
decide the candidate region. Since the patches for filling
the disocclusion region are considered from the background
area, the foreground region is excluded from the candidate
region. The region is then extended by z pixels. We uniformly
sample every r pixel in the candidate region. Patches centered
from these sampled pixels are extracted. If there are multiple
disocclusion regions, patches are extracted from the union of
the candidate regions, as depicted in Figure 2. These sampled
patches are used as the candidate patches in the MRF opti-
mization framework. Note that the sampling is employed to
reduce the total number of labels. Otherwise, the optimization
problem becomes too large to solve in practice.

Since the patches are selected from the sampled pixels, this
may decrease the accuracy for selecting the correct patch for
the hole region. We introduce the shift variables (∆x,∆y)
associated with each selected patch. This makes the selection
of the correct patch in the local neighborhood around sampled
pixel (x, y). By setting ∆x = s and ∆y = s, it searches all the
patches centered at pixels in the s×s local window centered at
pixel (x, y) when solving the proposed MRF energy function.

Although we used sampled pixels to extract patches, the
total number of candidate patches, i.e. labels, is still too large
in the MRF model for practical use. In the next section, we
will introduce a multi-level BP algorithm to overcome this
problem.



E. Multi-Level Belief Propagation

In our method, a multi-level BP optimization with Affinity
propagation clustering method is proposed to reduce the com-
putation for solving the optimization of MRF. The main idea
is to perform BP in multiple levels, in which the the size of
label candidates are much smaller than that of the original label
candidates. Take two-level BP for example, BP is performed
twice with patch set P1 and P2, respectively. P1 and P2 are
much smaller than the original number of patch candidates P
when BP is performed only once.

Affinity Propagation clustering (AP-clustering) [2] is first
applied to cluster all the patches in P into C1 clusters. Denote
the center of each cluster c11, c

1
2, . . . , c

1
p1 . Thus we have the new

label set M1 = {m1,m2, . . . ,mp1}. Take the patches from
C1 cluster centers as the patch candidates and minimize the
energy function using the standard BP with the label set M1

to find the best label configuration X1 = {x1
1, x

1
2, . . . , x

1
N},

where x1
i ∈M1, 1 ≤ i ≤ N .

Then we perform BP again in the second level. Suppose
that after the first-level BP, the best label candidates for node
v1 is m2. In the second round BP, the new label candidates
for node v1 are all elements belonging to the cluster with
center c12. Using associated label candidate sets for nodes of
different clusters, the second-level BP is used to find the best
label configuration to refine the patch filling result, as depicted
in Figure 2.

There are two kinds of messages to be updated during
each iteration of AP-clustering, namely responsibility and
availability. Each of them accounts for a different kind of
competition. Briefly speaking, responsibility updated lets all
candidate exemplars compete for ownership of a data point
while availability update collects evidence from data points
reflecting the competence of each candidate exemplar.

We define the following negative real-valued similarity
measure between any two patches, taking into account color
difference and the shift information of each patch:

s(i, k) = d(pti, p
t
k), (11)

s̄(i, k) = − min
∆x,∆y

s(p
(∆x,∆y,t)
i , ptk), (12)

where d is Euclidean distance which measure the color dif-
ference of two patches pti and ptk. And we add the shift
information into this equation to find the minimized similarity
of each shift. After some iterations, we can obtain the clusters
of the label candidates.

Note that such a multi-level BP scheme may lead to a
solution different from that obtained with the standard BP.
However, the most important benefit of this scheme is that it
significantly reduce the computational cost. This scheme can
also be used to speed up the MRF optimization procedure for
other MRF-based applications with a large number of labels.

Fig. 3. Flow chart of system framework for the proposed spatio-temporally
consistent view synthesis.

IV. SYSTEM FRAMEWORK OF SPATIO-TEMPORALLY
CONSISTENT VIEW SYNTHESIS

The system framework of the proposed spatio-temporally
consistent view synthesis contains several steps. The flow
diagram is illustrated in Figure 3. Given the color video
frames and their corresponding depth maps, the first three steps
include preprocessing, motion estimation and image warping.
The main focus of this work is the step of recovering the
disocclusion regions in the color frames by the proposed MRF
formulation. The other steps, including recovering the depth,
are briefly discussed in the following subsections.

A. Preprocessing of Depth Images

In order to reduce the noise disturbance as well as to
preserve the accuracy in the depth image, we apply a trilateral
filter in the depth preprocessing procedure. In [15], a trilateral
filter is extended from the bilateral filter [16]. Except for
spatial filtering, it employs additional temporal information
and color distance into the filter. Thus, it not only reduces
the noise but also preserves the edge structure. Moreover, it
enhances the temporal coherence. The adaptive filter weight
wT (u,v,t)(∆u,∆v,∆t) for pixel (u, v) at time t in the trilateral
filter is determined by the spatial and temporal displacement
(∆u,∆v,∆t) in the local window, as well as the correspond-
ing color dissimilarity.

B. Image Warping

Image warping is usually required in depth-based view
synthesis. In this problem, image warping is to map the pixel
position to the corresponding location in the desired view
based on associated depth map. In autostereoscopic display,
image warping is generally degenerated to one-dimensional
displacement along the horizontal scanline based on the as-
sumption that the human eyes are in parallel to the screen at
the same horizontal line when watching the display. Thus, we



simplify the description of image warping to one-dimensional
displacement along the horizontal line in this work.

We warp the images and the associated depth maps to
the position of the desired view in accordance with the user
provided parameter setting. Figure 4 illustrated the warping
results (c)(d) of the original color image and its depth map
(a)(b) without depth preprocessing. (e)(f) shows the warping
results when the depth images are preprocessed. Users should
set the desired view and the relation between input disparities
and the desired disparity in terms of pixel unit. A higher
input disparity means it is closer to viewers and a lower
input disparity indicates it is farther away from viewers.
In our warping method, we assume the desired disparity is
proportional to the input disparity. The linear relation can be
obtained by two different points. Thus, the relation between
the physical location u′ and the origin location u for each
pixel in horizontal direction can be described by the following
equation:

u′ = u+ round(v(d0 + (D(u, v)− g0) · d1 − d0

g1 − g0
)), (13)

where v is the relative position of the desired view, (d0, d1)
is the desired disparity range in terms of pixel unit on the
display, and (g0, g1) is the input disparity range.

C. Preprocessing of Disocclusion Region

After the image warping based on the depth information,
it contains internal empty regions in the warped images due
to the depth discontinuities. These regions can be classified
into two types, image cracks and disocclusion regions. Image
cracks are generally caused by noises or digital numerical
precision, whereas disocclusion regions come from the sharp
depth discontinuity. As depicted In Figure 4 (e)(f), there are
some image cracks in the left-half of the images. The red
parts along two people in the right-half of the images shows
the disocclusion regions. The procedure of disocclusion region
preprocessing is mainly aimed at removing the image cracks.
Here, the mean filter is applied to fill the cracks. Figure 4
(g)(h) depict the results after crack interpolation.

We can observe some mixed pixels appeared in the disoc-
cusion regions around the background boundary. Usually, they
may cause the color inconsistency during view synthesis. To
remove the errors, we extended the holes boundaries by using
image dilation in these regions.

D. Recovering Depth Images

After the preprocessing, we will recover the depth images
first since the disocclusion regions of the depth images are
easier to estimate than those of the color images. Most
disocclusion regions are close to the background boundary.
In our method, the disocclusion regions should be filled with
the background regions.

Histograms are used to accumulate the depth values of
pixels in the disocclusion regions. According to the histogram,
we consider two conditions. In the first condition, there are
only two peaks in the histogram. It means there are two main

(a) (b)

(c) (d)

(e) (f)

(g) (h)
Fig. 4. (a) An original color frame and the associated depth map in (b). (c)(d)
The warped color frame and the depth map without depth preprocessing (e)(f)
The warped color frame and depth map with depth preprocessing (g)(h) The
color and depth map after crack interpolation.

depth values in this disocclusion region. The higher intensity
of depth value represents the foreground object and the lower
one indicates the background depth value. Thus, we will fill
the disocclusion region with the depth value of the low peak
(background depth value). In the other situation, when there
are more than two peaks in the histogram, multiple depth
values are contained in the disocclusion region. We recover
this disocclusion region considering the user-specified view
direction. According to Section IV-B, users set the desired
view and the view direction. We fill the disocclusion region
of the depth image with its left side region or right side region
based on the view direction.

E. Poisson Image Reconstruction

After recovering the disocclusion regions by the MRF opti-
mization, the result may still contain the color inconsistency.
We thereby reconstruct the image from the gradient fields by
solving the Poisson equation. Poisson image reconstruction [3]



(a) (b)

(c) (d)
Fig. 5. The view synthesis results after hole filling in (a)&(c). (b)&(d) show
the results after Poison reconstruction.

(a) (b) (c)
Fig. 6. (a) Warped color image. The synthesized results (b) without and (c)
with shift variables (∆x,∆y) in the energy function.

was proposed to reconstruct the image to ensure the compli-
ance of source and destination boundaries. For discrete images,
the problem can be discretized naturally using the discrete
pixel grid. Since the shape of boundary in the view synthesis
problem can be arbitrary, we form the image reconstruction
problem as solving a sparse, symmetric and positive-definite
system. The Gauss-Seidel iterative method is applied to solve
the linear system.

V. EXPERIMENTAL RESULTS

In our experiments, we show several view synthesis results
based on the proposed method. We used the following two
publicly available video-plus-depth datasets in our experi-
ments. The first is the Statue dataset. It is composed of
a color video and an associated depth video provided from
Zhang et al. [17]. It is a challenging video sequence since it
was taken by a moving camera. It contains the sharp boundary
of the statue as well as the smooth depth transition from
the grassplot. The image size is 960 × 540. The second
dataset is the Lovebird1 dataset. It is composed of color
videos at eight different views and depth videos at three
different views, which are provided by ETRI (Electronics
and Telecommunications Research Institute) , MPEG-Korea
Forum. The image size for each frame is 512 × 384. All of
our experiments are conducted on a desktop PC with Intel
Core2Duo 2.0 GHz CPU. The parameters used in our system

(a)

(b)

(c)

Fig. 7. The view synthesis results from Samsung by (a) Silva, (b) VSRS
and (c) the proposed method.

include: η = 0.7, α = 0.3, β = 0.25 in the proposed MRF
formulation. Shift variable δx and δy are set to 2. Level is set
2 in the multi-level BP. Patches are sampled every 5 pixels and
the patch size is set to 9. We synthesized the color and depth
images at a different view according to the user setting. In
this case, we set (d0, d1) to (0, -15), (g0, g1) to (0, 255) and
the desired view direction is -1. In our implementation, the
two-level BP is used to speed up the MRF optimization. We
utilized libDAI [18] to solve this global optimization problem.

Figure 5 demonstrates the results after Poisson image recon-
struction. It can be observed that the color inconsistency at the
occlusion boundary before the Poisson image reconstruction
in Figure 5 (a) and (c). Figure 5 (b) and (d) show the
correction of the color inconsistency after applying the Poisson
reconstruction. Figure 6 shows the synthesized results with
and without shift variables (∆x,∆y). We can see the edge
structure of the result with shift variables in Figure 6 (c) are
better preserved than (b).

We compared our method with the DIBR-based method
proposed by Silva et al. [19] and the MPEG View Synthesis
Reference Software (VSRS) [20] for three video sequences



(a)

(b)

(c)

Fig. 8. The view synthesis results from Tree by (a) Silva, (b) VSRS and (c)
the proposed method.

Samsung, Tree and Temple. In the Figure 7(a), we can
notice obvious ghosting effect compared to the results of
the proposed method. In the Figure 7(b), VSRS shows more
artifacts around the object boundary of the man’s face and
arm than those of the proposed method. From the results of
Figure 8, the disocclusion regions are kind of blurred which are
recovered by Silva. Similarly, the proposed method provides
more details in textured regions than those of VSRS.

VI. CONCLUSIONS

We proposed a novel view synthesis algorithm to gen-
erate spatio-temporally consistent videos from video-plus-
depth information. The motion information is exploited for
temporal term in the global exemplar-based optimization in
an MRF framework. Based on the motion field, the images
are recovered in a global exemplar-based scheme by minimiz-
ing an MRF energy function. The proposed energy function
enforces both spatial and temporal consistency constraints in
the recovery process. In addition, a two-level BP with AP
clustering is proposed to solve the MRF minimization problem
to reduce the computational complexity caused by the large
number of the label candidates. Last, the Poisson image editing

is applied to refine the reconstruction of disocclusion regions.
Experimental results are shown to demonstrate the satisfactory
view synthesis results from video-plus-depth data.

For the future work, the transformation on the label candi-
dates can be formulated in the proposed MRF model. Thus, it
can deal with not only translation motion with shift variables
but also rotation and scaling. This will increase the variability
for the label candidates (patches) and make the image synthe-
sis results more visually plausible.
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