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Abstract— This paper overviews a series of recent approaches
to front-end processing, acoustic modeling, language modeling,
and back-end search and system combination which have made
contributions for large vocabulary continuous speech recogni-
tion (LVCSR) systems. These approaches include the feature
transformations, speaker-adaptive features, and discriminative
features in front-end processing, the feature-space and model-
space discriminative training, deep neural networks, and speaker
adaptation in acoustic modeling, the backoff smoothing, large-
span modeling, and model regularization in language modeling,
and the system combination, cross-adaptation, and boosting
in search and system combination. Some future directions for
LVCSR research are also addressed.

I. INTRODUCTION

Over the past decade, several advances have been made

to the design of modern LVCSR systems to the point where

their application has broadened from early speaker-dependent

dictation systems to speaker-independent automatic broadcast

news transcription and indexing, lectures and meetings tran-

scription, conversational telephone speech transcription, open-

domain voice search, medical and legal speech recognition

and call center applications to name a few. The commercial

success of these systems is an impressive testimony to how

far research in LVCSR has come and the aim of this paper

is to describe some of the technological underpinnings of

modern systems. It must be said however that, despite the

commercial success and widespread adoption, the problem

of large vocabulary speech recognition is far from being

solved: background noise, channel distortions, foreign accents,

casual and disfluent speech or unexpected topic change can

cause automated systems to make egregious recognition errors.

This is because current LVCSR systems are not robust to

mismatched training and test conditions and cannot handle

context as well as human listeners despite being trained on

thousands of hours of speech and billions of words of text.

Technological improvements have been made in four com-

ponents of an LVCSR system: front-end processing, acoustic
modeling, language modeling, hypothesis search and system
combination. A comprehensive survey of early LVCSR sys-

tems was presented in [35]. The state of the art in LVCSR

has shifted considerably since then through the advent of

powerful speaker adaptation, discriminative training and lan-

guage modeling techniques. This paper reports some advanced

developments which are a substantial step toward making a

number of high-utility applications possible [28].
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Fig. 1. Overview of front-end processing methods.

II. FRONT-END PROCESSING

A. Feature Extraction and Transformation
We first address some new front-end processing methods for

LVCSR as summarized in Figure 1. The role of the front-end

processing module is to extract a sequence of acoustic feature

vectors from the speech waveform. Nowadays, this is done by

computing a short-term fast Fourier transform (FFT) of the

speech signal within a 25 msec time window 100 times per

second. The energies of the neighboring frequencies within

each frame are binned together via a mel-scale filterbank.

Next, the log mel-spectra are decorrelated via a discrete

cosine transform resulting in a 13-dimensional vector of mel

frequency cepstral coefficients (MFCC). Lately, MFCCs have

been replaced with a more noise-robust representation based

on perceptual linear prediction (PLP) coefficients [14].

Feature extraction has benefited from the advent of two

important techniques. The first is the use of utterance-based

cepstral mean subtraction (CMS) and speaker-based cepstral

variance normalization (CVN). The second idea has to do with

incorporating temporal context across cepstral frames based on

the delta and delta-delta coefficients [9]. This method has been

replaced in modern LVCSR systems by a linear projection

matrix which maps the vector obtained by concatenating con-

secutive frames to a lower-dimensional space. The projection

is designed such as to maximally separate the phonetic classes

in the transformed space and remove the equal class covariance

constraint such as heteroscedastic linear discriminant analysis

(HLDA) [17]. The LDA feature space is “rotated” by means

of a semi-tied covariance transform (STC) [10] which aims

to minimize the loss in likelihood between full and diagonal

covariance Gaussians.

B. Speaker-Adaptive Features

The variation of the acoustic features has two components:

an intra-speaker component due to the different phonetic

classes being uttered and an inter-speaker component due
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Fig. 2. Overview of front-end pipeline processing steps.

to the different vocal characteristics of the various speakers.

Speaker normalization techniques operating in the feature do-

main aim at producing a canonical feature space by eliminating

the inter-speaker variability. Examples of such techniques are:

(i) warping the frequency axis to match the vocal tract length

of a reference speaker as in vocal tract length normalization

(VTLN) [34], and (ii) affinely transforming the features to

maximize the likelihood under the current model as in feature-

space maximum likelihood linear regression (fMLLR) [10].

C. Discriminative Features
Another powerful tool in the modeling arsenal of mod-

ern LVCSR systems is feature-space discriminative training.

Feature-space minimum phone error (fMPE) [21] is a trans-

formation that provides time-dependent offsets to the regular

feature vectors. The offsets are obtained by a linear projection

from a high-dimensional space of Gaussian posteriors. The

projection is trained such as to enhance the discrimination be-

tween correct and incorrect word sequences. Another promis-

ing tack for discriminative feature extraction is the use of a

neural network (NN) parameterization of the speech signal.

The approach consists in estimating phone posteriors using

a multi-layer perceptron and in modeling the outputs of the

network with Gaussian mixture models (GMMs). A refinement

to this technique was presented in [13] where bottleneck

features are introduced for improving LVCSR and are derived

from a 5-layer NN with a constriction in the middle (hidden

layer with few units). Figure 2 illustrates the typical front-end

pipeline of a modern LVCSR system.

III. ACOUSTIC MODELING

Hidden Markov models (HMMs) are a popular formalism

for representation of temporal or spatial sequence data. As-

sume that a set of D-dimensional continuous-valued speech

feature vectors X = {xt}Tt=1 is collected for estimation of

HMM parameters Λ = {ωik, μik,Σik} consisting of mixture

weights ωik, mean vectors μik and covariance matrices Σik

for state i and GMM component k. Conventional HMMs are

generative models trained according to the maximum likeli-

hood (ML) criterion through maximizing the joint likelihood

function p (X |Λ). Figure 3 displays an overview of state-of-

the-art acoustic modeling techniques for LVCSR including

discriminative training and speaker adaptation.

A. Discriminative Training
ML estimation guarantees the “optimality” in distribution

for a generative model. However, for LVCSR, the “optimality”

in classification accuracy is desired. Discriminative estimation

is more effective than ML estimation. We aim to find the best

discriminative acoustic model to achieve the lowest word error
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Fig. 3. Overview of acoustic modeling techniques.

rates (WERs) on unseen test data. A useful solution is to esti-

mate the discriminative model by minimizing the classification

error rate (MCE) which is a smooth approximation to the

word or sentence error rate [16]. Alternatively, discriminative

acoustic models can be trained according to the maximum

mutual information (MMI) criterion which is expressed as

the mutual information between the observation data X and

the sequence of reference words W r or equivalently as the

difference between a numerator function F num (Λ) correspond-

ing to the reference word sequence W r and a denominator

function F den (Λ) for all possible word sequences {W} which

is approximated by the sum to only the word sequences that

occur in a word lattice of alternative sentence hypotheses.

The MMI estimation of HMM parameters Λ is typically

performed through an extended Baum-Welch algorithm by

maximizing the “weak-sense” auxiliary function where an

additional smoothing function is introduced to guarantee that

the auxiliary function increases after parameter updates [20].

MMI training can be interpreted as a maximization of the log

posterior probability log pΛ (W r|X) of the correct word se-

quence W r [20] which is also known as conditional maximum

likelihood (CML) estimation.

In another approach, discriminative training based on the

criterion of minimum phone error (MPE) [20] aims to mini-

mize the weighted phone error rate or equivalently maximize

the weighted phone accuracy where the weighting function

A (W,W r) is determined by the number of correct phones in

W (given reference word sequence W r). In addition to model-

space discriminative training, the same objective function,

either MPE or MMI, can be optimized to perform feature-
space discriminative training [21]. More concretely, feature-

space MPE (fMPE) or feature-space MMI (fMMI) training is

performed by transforming acoustic features xt to x̂t = {x̂td}
for each frame t by x̂t = xt + Mht where M = {mdj}
is a transformation matrix and ht = {htj} is a high dimen-

sional feature vector which is formed by Gaussian posteriors

given the current frame and is calculated from a GMM. The

transformation matrix M is estimated by maximizing the same

criterion as in MPE or MMI by using a gradient descent algo-

rithm. On several LVCSR tasks, fMPE training outperformed

MPE training. The system performance was further improved

by combining fMPE training with MPE training of the model

parameters (also denoted by fMPE+MPE) [21].

In yet another approach inspired by large margin classifica-

tion techniques, a boosted MMI (BMMI) objective function

was constructed by introducing a boosting factor which is



controlled by a scaling parameter and a phone accuracy

measure A (W,W r) between hypothesized and reference word

sequences {W,W r}. The underlying idea of BMMI training

is to artificially increase the likelihood of more confusable

sentences that have more errors so that the training algorithm

focuses more on them. Feature-space and model-space BMMI

training (denoted by fBMMI+BMMI) has been shown to be

superior to fMPE+MPE for several LVCSR tasks [22].

Moreover, the deep neural network acoustic model was

known as discriminative model and was recently popular for

LVCSR with significant improvement over discriminatively-

trained HMMs with state-dependent GMMs [7][30]. The

moniker “deep” comes from using more than one hidden layer,

typically three to five. The deep belief network (DBN) models

the context-dependent output distributions directly and uses

a greedy, layer-wise pretraining of the weights with either a

supervised or unsupervised criterion [7]. This pretraining step

prevents the supervised training of the network from being

trapped in a poor local optimum.

B. Speaker Adaptation

LVCSR systems are further improved by compensating the

acoustic mismatch between training and test environments via

speaker adaptation by using speaker-specific data during train-

ing as well as at test time. In addition to speaker normalized

feature extraction using VTLN, maximum likelihood linear

regression (MLLR) [18] was developed for speaker adaptation

by transforming the clusters of HMM mean vectors {μik}
using cluster-dependent regression matrices M = {Mc} by

μ̂ik = Mcξik where ξik =
[
μT
ik 1

]T
is an extended (D + 1)-

dimensional vector and Mc is a D× (D + 1) matrix. The ML

estimation of regression matrices M is formulated as closed-

form solution according to an expectation-maximization (EM)

algorithm [18].

Alternatively, feature space MLLR (fMLLR) [10] was pro-

posed for speaker adaptation where the acoustic features {xt}
are transformed to {x̂t} by using a regression matrix Mf

via x̂t = Mfξt where ξt =
[
xT
t 1

]T
is an extended feature

vector. The ML estimate of the regression matrix Mf is

calculated by an iterative row-by-row optimization procedure.

In recent LVCSR systems, acoustic models are speaker adap-

tively trained in a canonical feature space given by VTLN-

warped and fMLLR-transformed features. At test time, speaker

adaptation consists in VTLN, fMLLR and MLLR. This recipe

for feature-space and model-space speaker adaptation has led

to significant gains in LVCSR performance.

Speaker adaptation can be upgraded by extending generative

linear transformations to discriminative linear transforma-
tions. MMI-based discriminative adaptation [12] was proposed

to estimate the regression matrix M by maximizing the

mutual information IΛ (X,W r;M) given adaptation data X
and reference transcription W r. This objective function was

expressed as the conditional likelihood log pΛ (W r|X,M).
The CML linear regression adaptation [12] obtained good

performance for LVCSR. By modifying the objective function

from MMI to MPE, the phone accuracy A (W,W r) of the

adaptation data is incorporated into the “weak-sense” auxiliary

function. MPE-based speaker adaptation outperformed MMI-

based speaker adaptation on several LVCSR tasks [33].
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IV. LANGUAGE MODELING

A statistical language model (LM) pΓ(W ) with n-gram

parameters Γ represents the prior probability of a word string

W = {w1, · · · , wT } � wT
1 which is calculated by multi-

plying the probabilities of a predicted word wi conditioned

on the preceding n − 1 words wi−1
i−n+1. The prior probability

pΓ(W ) is combined with the acoustic likelihood function

pΛ(X|W ) given HMM parameters Λ to find the most likely

word sequence Ŵ according to the Bayes decision rule

Ŵ = argmaxW pΛ (X|W ) pΓ (W ). Although n-grams are

effective at exploiting local lexical regularities, they suffer

from the inadequacies of training data, long-distance informa-
tion and model generalization, which constrain the prediction

capability. Figure 4 summarizes some new language modeling

methods which have been dominant for LVCSR.

A. Insufficient Training Data
Chen [4] surveyed a series of smoothing techniques of

n-gram language model which are used to tackle the issue

of inadequate training data. These techniques basically cope

with zero probability estimates for n-grams not observed in

the training corpus. Among these techniques, a variant of

Kneser-Ney (KN) smoothing outperformed all other algo-

rithms for LVCSR. The interpolated KN (IKN) smoothing

was formed by utilizing absolute discounting, modified counts

for n-gram probabilities, and interpolation with lower-order n-

gram probabilities [4]. The discount parameter depends on the

length of context wi−1
i−n+1. A modified KN (MKN) language

model [4] was proposed by extending IKN language model

via allowing different discount parameters for n-grams with

different counts. MKN language model outperformed IKN

language model in [4].

KN language model (KNLM) was further generalized to

a hierarchical Pitman-Yor language model (HPYLM) [32]

where a nonparametric prior based on a Pitman-Yor (PY)

process was introduced to interpret language model smoothing

from a Bayesian perspective. Interpolating with lower-order

n-grams is equivalent to performing hierarchical Bayesian

framework by recursively combining the (n − 1)th-order PY

process priors over the nth-order predictive distributions until

the unigram model is reached. PY process is a generalization

of a Dirichlet process with an additional discount parameter

for language model smoothing. This process produces the

power-law distributions which are well-suited to model word

frequencies in natural language [32]. Gibbs sampling can



be applied for model inference based on Chinese restaurant

metaphor. HPYLM is a Bayesian generalization of KNLM

with an additional strength parameter. In [15], HPYLM had

improved performance over KNLM for LVCSR based on

several large-scale training datasets.

B. Large-Span Modeling
To compensate the inadequate handling of long-distance

information in n-gram models, the latent semantic analysis

(LSA) was explored for construction of large-span language

models. The semantic information was represented in low

dimensional vector space consisting of latent topics shared for

words and documents [1]. LSA language model was calculated

by cosine similarity measure between a predicted word wi

and its history context wi−1
i−n+1 in the common semantic

space. Integrating LSA language models with standard n-gram

models has led to good LVCSR performance [1]. However,

LSA cannot be generalized for unseen test data.

To tackle the generalization issue, Blei [2] presented the

latent Dirichlet allocation (LDA) where Dirichlet priors were

introduced to represent topic mixtures for seen and unseen

documents. A history-based LDA language model was devel-

oped to calculate the n-gram probability [6]. The sequence

of history words wi−1
i−n+1 is first transformed to topic space or

class space via a linear function. This transformation is used to

find class-dependent hyperparameters of Dirichlet priors which

draw the classes for a predicted word wi. A class mixture

model is established by integrating C class distributions as-

sociated with word wi. The resulting Dirichlet class language

model (DCLM) parameters are estimated by maximizing the

marginal likelihood of n-gram events over classes and class

mixtures through the variational Bayes EM algorithm. DCLM

was extended to a cache DCLM by combining the class

information outside n-gram context wi
i−n+1.

The maximum entropy (ME) approach is also proposed to

integrate the sources of low-order n-gram, high-order n-gram,

long-distance information and syntactic/semantic knowledge

in an ME language model (MELM) [5]. MELM is expressed

as a log linear model. Assuming that there are F features

{fk (·)} induced by the words preceding word wi in the

corresponding sentence W r,i, ME principle is used to estimate

the parameters {λk} with maximum entropy, randomness or

smoothness while all feature functions are constrained. This

ME technique acts as a model smoothing method over different

backoff models.

C. Model Regularization

ME model is known as an exponential n-gram model.

Chen [3] addressed the issue of model regularization and

investigated a variety of exponential language models to find

an empirical relationship between training set cross-entropy

Htrain and test set cross-entropy Htest as Htest ≈ Htrain +
(γ/Nn)

∑F
k=1 |λ̃k| where Nn is the number of n-gram events,

λ̃ = {λ̃k} are regularized ME parameters and γ is a constant

independent of data and model. This relationship was used

to motivate a heuristic for improving LVCSR performance of

test data by penalizing large-sized language model with large

λ̃k values. The heuristic was to identify groups of features

with similar λ̃k values and add new features that were the

sums of the original features in individual groups. The size of

the exponential language model
∑F

k=1 |λ̃k| was surprisingly

reduced and the prediction performance was improved [3]. The

heuristic was further applied to shrink exponential language

model and build a middle-sized class-based language model,

called model “M”, which was both smaller than the baseline

classed-based model and had a lower training set cross-

entropy. Model generalization was improved. Model “M” has

been successfully applied in IBM systems that were fielded in

LVCSR evaluations with good performance [3].
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Fig. 5. Overview of hypothesis search and system combination methods.

V. HYPOTHESIS SEARCH AND SYSTEM

COMBINATION
A. Hypothesis Search

Figure 5 shows several new methods which have signif-

icant impact on LVCSR decoding and system combination.

A survey of early LVCSR decoders can be found in [35].

Since then, advances in decoding algorithms coupled with the

availability of increased computing power has made accurate,

real-time LVCSR possible. Chief among these advances is

the use of weighted finite-state transducers (WFSTs) which

allow to efficiently encode all the various knowledge sources

present in a speech recognition system (language model,

pronunciation dictionary, context decision trees and HMM

topologies). The network resulting from the composition of

these WFSTs, after minimization, can be directly used in a

time-synchronous Viterbi decoder [19]. One such example of

a WFST decoder [25] operates on static graphs obtained by

successively expanding the words in an n-gram model in terms

of their pronunciation variants, the phonetic sequences of these

variants and the context dependent acoustic realizations of the

phones. This can be done even for large cross-word phonetic

contexts such as pentaphones (or quinphones). In order to use

the full language model, a static decoder needs to first generate

lattices with a smaller LM then rescore them with the full LM,

which requires additional computations during the search.

B. System Combination

Modern LVCSR systems employ multiple decoding and

rescoring passes with several speaker adaptation passes in-

between. System performance can be improved through cross-
adaptation where the output of one system is used to adapt the

acoustic models of another system. Another form of system

combination pioneered by ROVER [8] consists in aligning the

word hypotheses from the different systems and in outputting

the words which have the most votes within each bin. In



yet another approach, the lattices from multiple systems are

intersected using WFST operations [19].

The acoustic models which are combined usually differ

in one or more design parameters such as input features,

acoustic modeling paradigm, phonetic context, discriminative

training criterion. A lot of human intervention is required in

choosing which systems are good for combination. Ideally,

one would want an automatic procedure for training accurate

systems or models which make complementary recognition

errors. One such approach is a classifier combination technique

called bagging and consists in training an ensemble of acoustic

models by randomizing the questions in the context decision

trees [31]. Another approach is to iteratively train a sequence

of acoustic models on re-weighted training samples where

the weights of incorrectly decoded frames is progressively

increased. This is an adaptation of the classifier combination

technique called boosting and has been shown to be superior

to bagging for LVCSR [29]. In what follows, we present some

new methods and point out possible directions for LVCSR.

VI. SOME NEW DIRECTIONS

A. Structural State Models
In general, speech feature vectors xt are modeled by context

dependent GMMs conditioned on HMM states and are as-

sumed to be conditionally independent from one another. Each

state has its own model parameters and there is no sharing

across states. Povey [23] presented the subspace Gaussian

mixture models (SGMMs) to allow all phonetic states to

share a common GMM structure but with means and mixture

weights varying in a subspace of the entire parameter space.

The state observation distribution of feature vector xt at state

i is expressed by a mixture of sub-state distributions each with

a mixture of GMMs

pSGMM (xt|Λi) =

Ni∑
j=1

cij

[
K∑

k=1

ωijkN (xt;μijk,Σk)

]
. (1)

Each GMM consists of state and sub-state dependent mixture

weights ωijk = exp
(
wT

k vij

)
/
∑K

k′=1 exp
(
wT

k′vij

)
, mean

vectors μijk = Φkvij and canonical covariance matrices Σk.

There are K canonical states with parameters {Φk,wk,Σk}
and Ni sub-states for state i with each sub-state having its own

mixture weight cij and subspace vector vij . SGMM param-

eters ΛSGMM = {Λij = {cij ,vij} ,Λk = {Φk,wk,Σk}} are

estimated according to ML criterion. Compared to HMMs, a

much more compact representation is obtained by SGMMs

due to the canonical parameters Λk globally shared across the

different states i and sub-states j.

SGMMs were further generalized to canonical state models

(CSMs) [11] where the context-dependent transform param-

eters Λij and the canonical state model parameters Λk are

involved in the state likelihood calculation. The context-

dependent state parameters are a transformed version of one

or more canonical state parameters which represents the sub-

state parameters of a Markov state. The state likelihood of xt

given a context-dependent state i is similar to (1) except that

the mixture weights, mean vectors and covariance matrices

of the GMM are replaced by general transformation functions

ωijk = Fω (k, θij), μijk = Fμ (k, θij) and Σijk = FΣ (k, θij),
respectively, where θij denotes the set of transform parameters,

cij is seen as the transform prior and Λij = {cij , θij}. This

CSM is a general model and can be realized to the mixtures

of MLLR transforms, mixtures of fMLLR transforms and

SGMMs which differ in Fω (·), Fμ (·) and FΣ (·) that are

applied to map the canonical state k to the context-dependent

state i [11]. SGMMs and CSMs have been successfully applied

to several LVCSR tasks [23][11].

B. Basis Representation
LVCSR systems are usually constructed by collecting large

amounts of training data and estimating a large number of

model parameters to achieve desirable recognition accuracy

on test data. A large set of context-dependent Gaussian com-

ponents is trained. However, GMMs may not be an accurate

representation of high dimensional acoustic features. Alterna-

tively, acoustic feature vectors can be viewed as lying in a

vector space spanned by a set of basis vectors. Such a basis

representation has been popular in the fields of machine learn-

ing and signal processing. This direction is now increasingly

important for acoustic feature representation [24].

Bayesian sensing HMMs (BS-HMMs) [27] were developed

by incorporating Markov chains into the basis representation

of continuous speech. The underlying aspect of BS-HMMs is

to measure an observed feature vector xt based on a compact

set of state-dependent dictionary Φi = [ϕi1, · · · , ϕiN ]. The

reconstruction error between measurement xt and its repre-

sentation Φiwt, where wt = [wt1, · · · , wtN ]
T

, is assumed to

be Gaussian distributed with zero mean and a state-dependent

precision matrix Ri. Bayesian sensing is to yield “distribution

estimates” of the speech feature vectors due to the variations

of sensing weights wt. A Gaussian prior with zero mean

and state-dependent diagonal covariance matrix is introduced

to characterize the weight vector, i.e. N (
wt; 0, diag

{
α−1
in

})
.

This prior is prone to be sparse [27]. The automatic relevance

determination (ARD) parameters {αin} are likely to be large

to draw zero values for wt. Only relevant basis vectors are

selected to represent sequence data. BS-HMM parameters

are formed by ΛBSHMM = {Φi, Ai, Ri} where their implicit

solutions were derived by EM algorithm according to the ML

type II criterion [27]. The state likelihood, marginalized over

sensing weights, was illustrated as a new Gaussian distribution

with a factor analyzed covariance matrix [26]. In the latest

DARPA GALE Arabic broadcast news transcription evalua-

tion, BS-HMMs trained on 1800 hours of data outperformed

state-of-the-art HMMs even after feature-space and model-

space discriminative training [26].

C. Model Regularization

ML acoustic models and language models in LVCSR sys-

tems may suffer from an over-training problem where the

estimated models are too complex to generalize for future

data. This leads to a limited prediction capability on unknown



test sentences. Also, the real-world continuous speech is

collected from heterogeneous environments with mismatched

training and test conditions and various variations due to noise,

channel, gender, speaker, accent, co-articulation, speaking rate,

emotion, etc. The issues of overtraining and heterogeneous

data warrant more investigation. In addition, training data may

be incorrectly labeled or even without labels. The selected

model structure may not be appropriate for the collected data

or the assumed models may be different from the true ones.

Estimation errors may exist in the model construction due

to sparse data, approximate inference or slow convergence.

Overall, future LVCSR should tackle model regularization

and compensate for the uncertainties in the construction of

component models. Model-space and feature-space speaker

adaptation provides a solution to regularize the trained model

for test conditions. The language model based on model

“M” [3] and the acoustic model based on BS-HMMs [27]

are two new trends towards high-performance LVCSR as far

as model regularization is concerned. Nevertheless, there are

other LVCSR components which have not been thoroughly

investigated from the perspective of model regularization.

VII. CONCLUSIONS

We have surveyed a series of approaches to front-end

processing, acoustic modeling, language modeling and back-

end search and system combination which have made big con-

tributions for LVCSR in the past decade or so. We presented

flexible acoustic models based on structural state models

and robust basis representation. With the aim of modeling

unknown variations in the data and model parameters, we

pointed out possible future directions towards structural learn-

ing and model regularization for the different components of

an LVCSR system.
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