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Abstract— This paper presents a new algorithm for detecting 
and analyzing the periodic motions in video sequences. Different 
from the previous methods which detect periodic motions from the 
entire frame, we propose a convex-hull-based process to 
automatically determine the regions of interest (ROI) of the 
motions and utilize an ROI-based similarity measure to detect the 
motion periods. Furthermore, we also propose an extrema-based 
method to select the optimal reference frame for further improving 
the periodic detection performance. Our proposed algorithm can 
not only effectively detect motion periods with both constant and 
variable period lengths, but also have obvious advantage when 
handling periodic motion with slight movements. Experimental 
results demonstrate the effectiveness of our proposed method. 

I. INTRODUCTION

Periodic motions happen frequently in our daily life. Some 
example periodic motions include waving hands, walking, 
dumbbell lifting, or ocean waves. Nowadays, detecting and 
analyzing these periodic motions is of great importance in many 
applications [1-4]. For example, extracting gait periods for gait 
recognition [4], counting the number of periods for automatic 
sport analysis [1], and detecting activities with irregular periods 
as abnormal activities [7].   

Basically, the motion period detection methods can be 
divided into two classes: the transfer-based methods and the 
waveform-based methods. 

The transfer-based methods first transfer the video signals 
into some transform domain and then perform period detection 
accordingly. For example, some frequency-domain-based 
methods transfer the video signal into the frequency domain and 
extract the largest peak other than the zero frequency as the 
estimated period length. Briassouli and Ahuja [6] project the 
pixel values of each video frame onto the x and y axes to get 
two signals over time and then utilize time-frequency analysis 
on these two signals for period estimation. However, since the 
transfer-based methods are based on the analysis in the 
transform domain, they can only deal with the motions with 
constant periods and will fail to handle motions with varying 
period lengths. Furthermore, transfer-based analysis normally 
requires large number of periods in order for estimating the 
accurate period length. Thus, they may have low accuracy when 
applied to the video sequence including few periods.      

The waveform-based methods first extract a 1-dimension 
waveform from the video sequence which reflects the motion’s 
periodic variation over time. Then the periods can be extracted 
by analyzing this waveform. Since the waveform-based 
methods are more flexible and have low requirements on the 
number of periods, they are more widely used for period 
detection. In this paper, we also focus on discussing this class of 
methods. Various waveform-based algorithms have been 
proposed. For example, Cutler and Davis [7] compute the self-
similarity waveform based on the absolute differences between 
frames and then create a 2-dimension lattice structure for 
matching the self-similarity waveform to find the period. 
However, this method is still limited due to its low capability in 
handling varying-length periodic motions. Wang et al. [4] 
extract the width of the object’s lower body as the waveform to 

extract gait periods. Although, this method can be effective in 
detecting the period of gaits, it is based on very specific 
assumptions such that it cannot be extended for detecting other 
motions.  

Furthermore, most of the existing waveform-based methods 
have the following two major limitations:  

(a) Many existing methods (also including the transfer-based 
methods) find the periods based on the entire object or the entire 
frame. However, in practice, many periodic motions are only 
reflected by parts of the objects (e.g., the hands in waving-hand 
motion). When including the entire object, the noisy movements 
of the other irrelevant parts may greatly affect the final results. 
These noisy effects will become extremely obvious for periodic 
motions with only slight movements. Although some algorithms 
[1, 2, 4] have tried to exclude the noisy movements by 
identifying or tracking the specific parts, most of them are quite 
ad-hoc which cannot be easily extendable. Therefore, a more 
general and automatic method is desired. 

(b)  Since the similarity between frames can well reflect the 
motion’s periodic variation over time, the similarity can be a 
good feature when extracting the 1-dimension waveforms. 
However, in order to calculate this similarity value, a reference 
frame is required (i.e., the similarity is calculated between the 
current frame and this reference frame). Most existing 
similarity-based methods simply select the first frame or 
manually select a frame as reference [1, 5]. This less-optimal 
reference selection may also greatly affect the final performance. 
Thus, it is also important to develop new methods to find the 
optimal reference frame.  

In this paper, we propose a new algorithm for periodic motion 
detection. The proposed algorithm has the following major 
contributions: 

(a) We propose a convex-hull-based (CHB) process to 
automatically determine the regions of interest (ROIs) of the 
motions. By this way, only the ROIs are considered for periodic 
detection while the noisy movements of the other irrelevant 
parts can be effectively excluded.  

(b) We propose an ROI-based similarity measure (ROI-SIM) 
to detect the motion periods. The ROI-based similarity measure 
incorporates the weighted sum of features over the extracted 
ROIs such that the relative importance of ROIs can be properly 
balanced. 

(c) We also propose an extrema-based (EB) method to select 
the optimal reference frame for further improving the periodic 
detection performance. 

The rest of the paper is organized as follows. In section II, the 
framework of the proposed algorithm is described. Section III 
describes the details of the algorithm, including the CHB 
process, the ROI-SIM, and the EB method. Section IV describes 
the two proposed metrics for evaluating the periodic motion 
detection performances. And Section V shows the experimental 
results. 

II. FRAMEWORK

The framework of our proposed algorithm is shown in Fig. 1. 
In Fig. 1, for the input video sequence, the object foregrounds 



are first extracted and aligned. Then the CHB process is used to 
determine the ROIs of the motion object. After that, features are 
extracted from the ROIs, and ROI-SIM is calculated between 
frame pairs based on the extracted features.  The ROI-SIMs for 
different frame pairs are used to construct a similarity plot and 
our EB method is utilized to select the optimal reference frame 
from this similarity plot. Finally, with the optimal reference 
frame, a similarity waveform can be created and the motion 
periods can be estimated from this waveform.  

In the following section, we will describe the steps in Fig. 1 
in detail. It should be noted that the grey blocks in Fig. 1 (i.e., 
“Convex-hull-based process for ROI extraction”, “ROI-SIM 
calculation between any two frames”, and “use EB method for 
selecting the optimal reference frame”) are the key 
contributions of our algorithm. Therefore, more attention will 
be put on these steps in the following section.  

Fig. 1 The framework of our proposed algorithm.

III. DETAILS OF THE PROPOSED ALGORITHM

A. Foreground Extraction and Alignment 
In order to determine proper ROIs about the periodic motion, 

foregrounds of the motion objects need to be first extracted. 
There can be various ways to extract the object foregrounds 
such as background subtraction or frame difference [1]. In this 
paper, we use a Kinect camera with the depth information to 
extract the foreground [8]. Furthermore, for motions with 
location change (such as walking), we also align the foreground 
from different frames (i.e., align the foregrounds to the same 
location in the frame) [3, 4, 8]. Some examples of the extracted 
foreground is shown in Fig. 2 (a). It should be noted that in our 
algorithm, only the foreground information is used for periodic 
detection while the more sophisticated functions such as human 
parts detection and tracking are not utilized. This makes our 
algorithm general and easily extendable to detecting various 
periodic motions such as ocean waves. 

B. CHB Process for ROI Extraction 
The CHB process includes two sub-steps: (a) calculate the 

motion regions, and (b) determine the ROIs by convex hull. 
They are described in the following, respectively. 

1) Calculating the Motion Regions 
Let Fi be the i-th foreground frame of the input sequence 

(Fi(x, y)=1 if (x, y) is a foreground pixel and Fi(x, y)=0 
otherwise). In order to calculate the motion regions, we first 
calculate the absolute difference between neighboring frame 
pairs Fi and Fi+1. After that, all the absolute differences are 
summed up to form a binary image, we call this image the 
binary change image (BCI) and it can be calculated by:   

otherwise0
0y,xFy,xFif1y,xBCI
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where N is the length of the sequence. Obviously, non-zero 
pixels in BCI represent the motion regions for the input 
sequences. Some examples of the input foreground frames and 
the resulting BCI is shown in Fig. 2. It should be noted that in 
order to further exclude the noise in the foreground frames, 
median filtering is applied on the BCI. 

                 
                  (a)                                                               (b)                             

Fig. 2 (a) Foreground frames of a periodic motion video (a person shrugging and 
holding out his hands). (b) The binary motion change image (BCI) of the video.

2) Determine the ROIs by Convex Hull 
From Fig. 2 (b), we can see that although many of the non-

moving areas have been excluded in BCI, there are still many 
noisy regions remaining. These regions may still greatly affect 
the final performance. Therefore, further filtering is required for 
extracting the accurate ROIs. In this paper, we propose to use a 
convex-hull-based method for extracting the ROIs. It is 
described in the following.  

We first divide the BCI into several connected regions. And 
then, the convex hull of each region is calculated (i.e., the 
smallest convex polygon containing the region, see Fig. (a)). 
Here, we use Ri to denote the i-th connected region, and Ci to
denote the convex hull of Ri.

Then, for each convex hull Ci, we calculate its solidity SDi,
i.e., the portion of non-zero pixels in the convex hull: 
SDi=A(Ri)/A(Ci), where A(Ri) is the number of pixels for Ri, and 
A(Ci) is the number of pixels in the convex hull.    

The solidity indicates whether the convex hull is “fully” filled 
with the connected region. If a region has low solidity value (i.e., 
below a threshold Ths), it means that the convex hull is not well 
suited for the connected region and further partition is needed. 
The partition of the convex hull and the connected region can be 
described as follows: 

(a) We project the zero-value pixels (i.e., BCI(x, y)=0) in the 
convex hull Cj onto x and y axes to form two histograms. And 
then find the peaks xm and ym on these two histograms. 

(b) Then the connected region Rj is separated into smaller 
connected regions by the two lines: x=xm and y=ym.

(c) Finally, the solidity of these smaller convex hulls are re-
calculated to decide whether to further partition. 

           (a)                       (b)                        (c)                    (d) 
Fig. 3 The example of determining regions of interest by convex hull. (a) 
Calculate the connected regions and their convex hulls. (b) Partition of R1 which 
has low solidity value by projecting pixels on x and y axes. (c) R1 is partitioned 
into 4 smaller regions and their convex hulls are re-calculated. (d) After filtering, 
the ROIs C1, C20, C21, C22 are determined. 

Fig. 3 (b) is an example to show the partition process of a 
connected region. This partition process continues until the 
solidities of all connected regions exceed Ths (Fig. 3 (c)). 

Now we regard all the regions in the convex hulls as 
candidate ROIs and try to filter out the noisy ones. The filtering 
is based on the following rules: 

(a) Since small convex hulls are more likely to contain noise 
and non-periodic parts which will influence the detection of the 
period, we apply a threshold to eliminate smaller convex hulls. 

(b)Furthermore, since noisy convex hulls have some common 
patterns, we also select some noisy convex hulls as the training 
data and pre-calculate their x and y axes histograms. And 
convex hulls whose histograms are similar to these training ones 
will also be excluded. 

After filtering the noisy convex hulls, the remaining convex 



hulls will be the determined ROIs (see Fig. 3 (d)). 

C. Feature Extraction for ROIs 
After ROIs are determined, we need to extract the features 

from these ROIs in each frame to capture the motion variations. 
Note that our proposed framework is general and it allows 
various feature extraction methods either on the original color 
frame or on the foreground frame. In this paper, for an input 
frame, we first calculate the SURF feature vectors for the 
interest points [10] in each ROI and then sum them up for 
representing this ROI [10]. Note that the locations and scales of 
the SURF interest points in each ROI are fixed for different 
frames in order to make the feature vectors to have the same 
length over different frames. We denote hi,j as the summed-up 
feature vector of the j-th ROI Ij in the frame Fi.     

D. ROI-based Similarity between Frame Pairs 
After extracting the features for each ROI in the current 

frame Fi, these features are weighted and concatenated in order 
as a long vector Hi:

1 2[ ( ) , ( ) ,..., ( ) ]MA I A I A Ii i,1 i,2 i,MH h h h            (2) 

where hi,j is the feather vector for ROI Ij in Fi, and A(Ij) is the 
weight equal to the number of non-zero pixels in Ij. After 
normalizing Hi, the resulting normalized Hi* will be the ROI-
based feature vector for representing the current frame Fi. The 
process is illustrated in Fig. 4. 

Then the ROI-based similarity (ROI-SIM) Si,j between any 
frame pairs Fi and Fj can be calculated by:  

*
j

*
iji, ,IHS HH                                         (3) 

where IH( ) is the operation to calculate the intersection area 
of the two vectors [11]. Normally, bigger Si,j indicates larger 
similarity between frame pairs.  

                                      (a)                                     (b) 
Fig. 4 Example of computing the ROI-based feature vector of a frame. (a) in 
each ROI, SURF features are calculated and summed up as the feature vectors 
for each ROI, (b) upper: weight the feature vectors for each ROI by the ROI’s 
size, down: the weighted feature vectors for different ROIs are concatenated and 
normalized as the final descriptor of the current frame. 

E. Constructing Similarity Plot 
With the ROI-SIM between any frame pairs, we can 

construct a similarity plot: M=[Si,j]N×N whereM is a N×N matrix 
and its i-th row j-th column element is the ROI-SIM between 
frame pairs Fi and Fj. Fig. 5 (a) shows one example similarity 
plot for the shrugging-shoulder motion in Fig. 2.  

In Fig. 5 (a), the bright regions show larger similarity. We 
find that there is a bright line on the main diagonal of the 
similarity plot. This is because the image is always similar to 
itself. Also note that for a motion with constant period, since 
every frame is similar to the frame after a constant time, the 
bright lines in the similarity plot should be straight and has a 
slope of 45o or 135o. However, since the motion in Fig. 2 has 
varying period length, it is obvious that the bright lines in Fig. 5 
(a) are not perfectly straight. 

F. Use the Extrema-based (EB) Method to Select the Optimal 
Reference Frame 

After achieving the similarity plot, we need to find a reference 
frame such that the similarity waveform can be achieved by 
calculating the ROI-SIM between each frame and this reference 
frame: Wk=[S1,k, S2,k, S3,k,… SN,k], where Wk is the resulting 
similarity waveform when the k-th frame Fk is selected as the 
reference frame. For periodic motions, the ideal waveform 
should show up-and-down shapes while peaks can be viewed as 
the starting point for each period (i.e., peak frames are the times 
when the object turns back to the posture as the reference one).  

However, as mentioned, the estimated period results are 
sensitive to the selection of reference frames. This is because: (a) 
The period lengths for many motions may be varying. (b) The 
similarity may create “fake” peaks (i.e., peaks not for the period 
starting points) for non-optimal reference frames. For example, 
in the arm-waving motion, if the frame where the arm is waved 
in the middle is selected as the reference frame, a fake peak will 
appear when the arm first turns back to the middle position. 
Therefore, it is also important to select the proper reference 
frame for creating less noisy waveforms. Thus, we also propose 
an extrema-based method to select the optimal reference frame.    

It is obvious that Wk actually corresponds to the k-th row in 
the similarity plot M. Therefore, the problem of selecting the 
optimal reference frame is the same as selecting a suitable row 
in the similarity plot to best reflect the periodic motion 
variations. Based on the observation that peaks for the true 
periods are less affected by the reference frame while “fake” 
peaks are sensitive to reference frames, our proposed EB 
method tries to find the reference frame Fr with the smallest 
number of significant peaks as the optimal reference frame: 

kWNPrgminaF
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where NP(Wk) is the total number of significant peaks in Wk. A 
frame Fi is a significant peak frame for Wk if:

2S
0q,L,...,1L,Lq|SmaxS

kk WWk,i

kq,-iki,              (5) 

where L is the neighborhood area around Fi. Wk and Wk are the 
mean and variance of the waveform Wk.

Fig. 5 shows an example to explain the effect of different 
reference frames, the significant peaks are marked out by red 
circles. If the reference frame is not properly selected (as in Fig. 
5 (b)), many fake peaks will be included. By using our EB 
method to select a suitable reference frame (as in Fig. 5 (c)), the 
fake peaks can be effectively avoided.   

Fig. 5 (a) The similarity plot of the periodic motion in Fig. 2. (b) Similarity 
waveform when the reference frame is F40 (correspond to the dashed line in (a)). 
(c) Similarity waveform for reference frame F54 (the dot-dash line in (a)). 

G. Estimate the period from the waveform 
After achieving the optimal reference frame, the 

corresponding similarity waveform can be calculated. Finally, 
the periods of the periodic motions can be detected by finding 
the significant peaks in (6). 

(a)

(b)

(c)

weighted feature 
vectors for each 
ROI

concatenation 
and

normalization 



IV. METRICS FOR EVALUATING PERIODIC MOTION DETECTION 

In this section, we propose two metrics for evaluating the 
periodic motion detection performances: the average period 
length difference eP and the average starting point deviation eT.
They are defined in (6) and described in detail in the following. 

For an input video sequence, after the reference frame is 
determined, we can manually achieve the ground-truth starting 
point frames for each period in this sequence as:  P={t1,t2,…,tK}. 
Also, we can get an estimated starting point set P’ from the 
periodic motion detection algorithms: P={t1’,t2’,…,tK’’}. Then, 
the two evaluation metrics can be calculated by: 
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. From (6), we can see that the 

average period length difference eP more reflects the total 
number of periods counted by the algorithm. When a period is 
missed or over-counted, eP will become large. On the other 
hand, the average starting point deviation eT more reflects the 
algorithm’s accuracy in determining the starting points of the 
periods. If the detected period starting points have larger 
distances to those of the ground truth, eT will become large.  

V. EXPERIMENTAL RESULTS

In this section, we show experimental results of our proposed 
algorithm. Due to the limited space, only parts of the results are 
shown in this paper. Fig. 7 (a) shows an example periodic 
motion where the person is moving his hand left and right, and 
Fig. 7 (b) shows the extracted binary motion change image 
(BCI) as well as the ROI. Fig. 6 compares the similarity 
waveforms of the action in Fig. 7 (a) for the following methods: 

(a) Use the sum of absolute difference (SAD) between frames 
for creating the similarity waveform [5]. And the reference 
frame is randomly selected as the first frame (SAD+RFrandom).

(b) Use the SAD as the similarity metric, but the reference 
frame is selected by (5) (SAD+RFopt).

(c) Do not extract ROIs. Directly extract SURF features [10] 
on the entire frame and calculate the similarity by (3) while the 
reference frame is selected by (4). (non-ROI+RFopt).

(d) Use our proposed ROI-SIM for waveform and (4) for 
reference frame selection (ROI-SIM+RFopt). 

From Fig. 6, we can see that if the reference frame is not 
properly selected, the resulting waveform will be extremely 
noisy with numerous fake peaks, as in (a). Comparatively, by 
selecting a proper reference frame, the periodic variations can 
be more obviously captured in (b)-(d). Further comparing (b)-(c) 
with (d), we can see that since the entire frame information is 
used for similarity calculation, the waveforms in (b) and (c) are 
still noisy, which will greatly affect their period detection 
performance (these noisy effects are extremely severe for some 
sequences). However, by using our proposed ROI-SIM, the 
waveforms are obviously smoother and the periodic variations 
are more precisely represented.  

Furthermore, Fig. 7 (c) compares the period detection results 
of the four methods: (a) SAD+RFopt [5] (note that we detect 
significant valley instead of peak for this method), (b) non-
ROI+RFopt, (c) the time-frequency-analysis method (TFAM) [7], 
and (d) ROI-SIM+RFopt. In Fig. 7 (c), the red dashed lines are 
the ground truth period starting points while the blue solid lines 
with different markers are the detected period starting points. 
From Fig. 7 (c), we can see that since the waveform of 
SAD+RFopt is quite noisy, there are many over-counted period 
points. Although these over-counting problem is reduced for the 
TFAM and non-ROI+RFopt methods, their detected period 
starting points have lower accuracy (i.e., the points have larger 

distance to the ground-truth points. Compared to these methods, 
the periods detected by our proposed ROI-SIM+RFopt algorithm 
not only have low over-counting rates, but are also close to the 
ground truth points. 

(a)                          (b)                            (c)                          (d) 
Fig. 6 The similarity waveforms for different methods: (a) SAD+RFrandom (b)  
SAD+RFopt  (c) non-ROI+RFopt  (d)  ROI-SIM+ RFopt 

(a)               (b)                                        (c) 
Fig. 7 Moving hand sequence: (a) Frame 24, 33 (b) The white part is the BCI 
and extracted ROI is within the green polygon. (c) The estimated period starting 
points for different methods and the red dotted lines are the ground truth.  

Finally, Table I compares the eT and eP metrics for different 
methods on two datasets: our created dataset and Weizmann 
dataset [9]. Note that our dataset was captured by Kinect [8] and 
it includes 50 different periodic motions with each sequence 
contains 200-300 frames. And the Weizmann dataset includes 9 
periodic motions performed by 9 different people [9]. From 
Table I, it is clear that some methods (such as SAD+RFopt) have 
high eT rate since they will easily miss or over-count periods. 
And some methods (such as TFAM and non-ROI+RFopt) have 
high eP rate since their detected period starting points have 
larger distance to the ground truth. Comparatively, our proposed 
algorithm (ROI-SIM+RFopt) has the lowest rates on both metrics.  

TABLE I PERFORMANCE OF DIFFERENT METHODS
Our dataset Weizmann dataset [9]

eT eP eT eP

SAD+RFopt 22.05% 5.88% 6.98% 6.51% 
non-ROI+RFopt 5.44% 9.71% 1.72% 3.74% 
TFAM 4.41% 12.50% 3.36% 8.51% 
ROI-SIM+ RFopt 1.79% 4.95% 0.47% 2.47% 
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