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Abstract—Distributed state estimation in smart grid highly
relies on the availability of measurements. Transmitting a lot
of measurements within a small time interval is costly and
sometimes even impossible. This paper explores the problem
of distributed state estimation in smart grid with constraint on
the number of measurements that is able to be transmitted in
one step. It is shown that there exists a lower bound which
depends on the structure of the grid such that if the number
of permissible measurements is beyond the bound, then the
estimator achieves the same performance as its peer without the
constraint. Further, if the number of permissible measurements
is below the lower bound, a tradeoff between the performance
of the estimator and the measurements transmitted is needed to
meet the constraint. A method to attain the tradeoff is offered in
this paper. The proposed conclusions and methods are illustrated
in the simulation on the IEEE 14-bus system.

I. INTRODUCTION

The power grid in the United States has evolved over the
past century from a series of small independent community-
based systems to a large-scale and complex system involving
many kinds of components. Such a system entails advanced
operating methods that are more sensitive, reliable and eco-
nomic than before. Efficient operation of the system requires
precise real-time estimation of the states [1]. There has been a
lot of research on the state estimation for large-scale systems
[2]–[4].

Compared with traditional state estimation of the large-scale
system, state estimation on smart grid has a lot of differences.
Fortunately, we usually do not have power constraint in
computation because they have access to the power. Moreover,
the sensors are generally not mobile thus it is possible to use
stationary grouping. However, there are some other features
that make the state estimation in power grid a special problem
that needs to be investigated.

One of the features is that the power grid can be distributed
in quite a variety of environments, for instance some island
wind farms [5] and some grid across mountains. Such en-
vironment may limit the choice of communication methods.
Some of the traditional communication methods cannot be
used in such environment. Moreover, transmitting high-rate
measurements in such environment may be expensive by
the choice of communication methods and sometimes even
impossible. Thus, distributed estimation of the state is always
needed to reduce the communication cost.

Another feature is that there is no existing model for the
state evolution. The state of the power grid is affected by

many factors such as the time of the day and the weather.
There is no existing model that could take all these factors
into account [6]. Thus, without the knowledge of evolution
model, the choice of estimation method is also limited. There
has been a lot of research on the distributed state estimation
on power grid [7]–[11]. One common approach is to use the
hierarchical method [7], [8], where the local measurements are
first combined by the local estimator to estimate the states and
then transmitted to a central coordinator for further estimation.
Similar approaches are proposed by using a fully distributed
way without the central coordinator [9]–[11].

In this paper, we investigate the problem of distributed state
estimation in smart grid with communication constraints. It is
motivated by the fact that in some cases, transmitting a lot
of data in a time interval is expensive and sometimes even
impossible, thus reducing the communication burden is nec-
essary. In this paper, we define the communication capability
as the number of measurements to be transmitted from the pre-
processing station to the global estimation center in one time
slot, which is an important criterion since it is proportional
to the required bandwidth of transmission. We propose a
distributed state estimation approach to reduce the number of
measurements needed to be transmitted. Each substation first
transmits its measurements to a local pre-processing station
that will transmit the processed measurements (not necessarily
the local estimation) to a global estimation center in distance.
We first derive a lower bound for the communication capability
such that if the communication capability is beyond the bound,
then we can achieve the same performance as the global min-
imum mean square error (MMSE) estimator in a distributed
way. When the communication capability is below the bound,
we show that there exists a tradeoff between the performance
of the estimator and the measurements transmitted. We further
propose a method to achieve this tradeoff.

The rest of this paper is organized as follows. In section
II, we describe the problem formulation. The lower bound
for the communication capability is derived in section III. In
section IV, we introduce in details the proposed optimal state
estimator. Finally, we show simulation results in section V and
draw conclusions in section VI.

II. PROBLEM FORMULATION

We consider a state estimation problem on a smart grid with
its substations mainly distributed in k areas as shown in Figure
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Fig. 1. The Hierarchical System Structure

1. We assume that each substation is metered and each line is
metered in bidirections.

Let x ∈ Rn denote the vector composed of the n states
of the system, which are the phase angle differences in
substations, z ∈ Rm denote the vector composed of the m
measurements. With the DC power flow model [12], we have

z = Hx + v, (1)

where H is the m by n measurement matrix with m > n.
The v ∈ Rm is the random vector composed of the m mea-
surement noises which are independently Gaussian distributed
with zero-mean and variance V ar(v).

By the DC power flow model, the system states could be
estimated using the measurements. One way to reduce the
number of measurements transmitted in distance is to use the
hierarchical structure as shown in Figure 1. Suppose there is a
pre-processing station at each area which combines the mea-
surements inside the area and is responsible for transmitting
the processed data to the estimation center. Assume that there
is no overlapping measurement, i.e., each measurement is only
reported to one of the pre-processing stations. Therefore, let
zi denote the corresponding measurement of each area, and
we have z = [z1

′ · · · zk′]′, zi ∈ Rmi , where mi is the number
of measurements corresponding with area i and z′ denotes the
conjugate transpose of z.

We aim to design a distributed two-level linear estimator
K =

(
K1 K2 · · · Kk

)
,L =

(
L1 L2 · · · Lk

)
,

and Gi = LiKi, i = 1, 2, · · · , k, where the local measure-
ments related to the pre-processing station i are first locally
combined using Ki, and then further processed using Li at
the estimation center as follows

ŷ =

k∑
i=1

LiKizi =

k∑
i=1

Gizi. (2)

Our goal is to design proper K and L such that the per-
formance of the proposed distributed estimator is comparable
with the MMSE estimator. By assuming that x and v are
independently Gaussian [13], z is also Gaussian. The MMSE
estimation for x can be written as follows

x̂ = [Σx−ΣxH′Σ−1e H(Σ−1x + H′Σ−1e H)−1]H′Σ−1e z, (3)

where Σx and Σe denote the covariance matrix of x and v,
respectively. Partitioning the corresponding matrices into sub-
matrices for each area, we have H = [H1

′ · · ·Hk
′]′, Hi ∈

Rmi×n, and Σe is the block diagonal matrix composed of
Σe1 , · · · ,Σek , Σei ∈ Rmi×mi . Let us define

Wi , [Σx−ΣxH′Σ−1e H(Σ−1x +H′Σ−1e H)−1]H′iΣ
−1
ei (4)

for i = 1, · · · , k and then (3) can be written as

x̂ =

k∑
i=1

Wizi. (5)

From (2), we can see that reducing the number of measure-
ments transmitted in distance is equivalent to reducing the
number of nonzero rows of Ki because the output of all-zero
row of Ki is always 0 and need not to be transmitted.

Reducing the number of measurements to be transmitted
will inevitably cause performance degradation to the dis-
tributed estimation. Given the constraints of the number of
measurements to be transmitted, the problem of minimizing
the gap between the global MMSE estimation x̂ and the
distributed estimation ŷ, can be formulated as follows,

min
Li,Ki

E[‖ŷ − x̂‖22]

s.t. pi ≤ ri,∀i, (6)

where pi is the number of nonzero rows of Ki, ri is the
communication capability of the pre-processing station i.

III. THE LOWER BOUND FOR PERFECT MEASUREMENT
COMPRESSION

Clearly, if there is no constraint on pi, minLi,Ki
E[(ŷ −

x̂)2] = 0 with Gi = Wi. In other words, the global MMSE
estimation is achieved distributively. In this section, it will be
shown that there is a lower bound ci for ri. If ri ≥ ci, then it
is possible to design appropriate estimators Li,Ki such that
the MMSE estimation is achieved distributively. Otherwise,
performance degradation of distributed estimation will occur
due to the communication constraints.

Lemma 1: For a matrix A = BC, where B and C are
matrices with appropriate dimensions, let f denote the number
of nonzero rows of C. Then f ≥ rank(A).

Proof: Suppose that f < rank(A). Then rank(A) ≤
min(rank(B), rank(C)) ≤ f < rank(A).

By Lemma 1, pi ≥ rank(Gi), where the equality can be
always obtained by the singular value decomposition (SVD).



Thus, pi ≤ ri is equivalent to rank(Gi) ≤ ri. The problem
in (6) becomes

min
Li,Ki

E[‖ŷ − x̂‖22]

s.t. rank(Gi) ≤ ri,∀i. (7)

Thus, the estimator that we aim to design is actually a low-rank
estimator. Performance degradation of distributed estimation
may occur due to the constraints of the number of measure-
ments to be transmitted. In the following, we will show that
there are some necessary conditions for the communication ca-
pabilities such that if they are met, it will be possible to design
the low-rank estimators without performance degradation.

Theorem 1: If the measurements cannot be used across the
area, a necessary condition to achieve the global MMSE state
estimation in the distributed way is ri ≥ ci = rank(Hi).

Proof: The state estimation ŷ in (2) as a function of
z, ŷ(z) is said to achieve the MMSE if ŷ(z) = x̂(z) for
each z ∈ Rm. Next, we will show the necessary condition by
contradiction.

Suppose there exists an index s such that rs < rank(Hs).
It can be clearly seen from (4) that rank(Ws) = rank(Hs).
Since rank(Gs) ≤ rs < rank(Hs) = rank(Ws), then
dim(ΘGs

) > dim(ΘWs
) where ΘGs

and ΘWs
denote the

null space of Gs and Ws, respectively. In other words,
∃ a vector z̃s such that Gsz̃s 6= Wsz̃s. Therefore, ∃ a
vector z̃ = ( 0 z̃s 0 )′ such that ŷ(z) =

∑k
i=1 Gizi 6=

x̂(z) =
∑k

i=1 Wizi, where 0 is the vector with appropriate
size composed with all zeros. Obviously, the estimation ŷ(z)
does not achieve the MMSE, which leads to a contradiction.
Therefore, ri ≥ rank(Hi) is a necessary condition for the
estimator G to achieve MMSE.

From Theorem 1, we can see that one necessary condition to
achieve MMSE is that ri ≥ rank(Hi). However, this condition
may not be satisfied. In such cases, there exists a tradeoff
between the accuracy of the estimation and the number of
measurements to be transmitted, which will be shown in next
section.

IV. COMPRESSION BELOW THE LOWER BOUND

In this section, we study the scenario where the commu-
nication capability is below the lower bound. We first derive
an upper bound for the performance degradation, which is the
mean square difference between the low-rank estimation and
the MMSE estimation, and then design the low-rank estimator
by minimizing the upper bound.

Define di ,
∑i

t=1 mt. The Σz is the covariance matrix
of z and is diagonalized by Σz = QΛzQ

′. The Qij is the
submatrix formed using the elements that appear in rows from
di to di+1 and columns from dj to dj+1 of matrix Q. The Λzi

is the submatrix formed using the elements that appear in rows
from di to di+1 and columns from di to di+1 of matrix Λz.

Theorem 2: For a system with k pre-processing stations, let
ŷ be the low-rank estimation of the state in (7). Then E[‖ŷ−
x̂‖22] ≤ k

∑k
j=1

∑k
i=1

∥∥∥FiQ
ijΛ

1/2
zj

∥∥∥2
F

where Fi , Gi −Wi

and F ,
(

F1 F2 · · · Fk

)
.

Proof: The performance degradation can be expressed by

E[‖ŷ − x̂‖22] = tr(E[(ŷ − x̂)(ŷ − x̂)′]) = tr(FΣzF
′)

Note that the Σz = HΣxH′ + Σv, which is positive
definite and thus can be diagonalized by Σz = QΛzQ

′. Then,

tr(FΣzF
′) = tr(FQΛzQ

′F′) =
∥∥∥FQΛ

1/2
z

∥∥∥2
F
. Substituting

the submatrices into it, we have∥∥∥FQΛ1/2
z

∥∥∥2
F

=
∥∥∥(
∑k

i=1 FiQ
i1Λ

1/2
z1

∑k
i=1 FiQ

i2Λ
1/2
z2

· · ·
∑k

i=1 FiQ
ikΛ

1/2

zk
)
∥∥∥2

F

=

k∑
j=1

∥∥∥∥∥
(

k∑
i=1

FiQ
ijΛ

1/2
zj

)∥∥∥∥∥
2

F

≤ k

k∑
i=1

k∑
j=1

∥∥∥FiQ
ijΛ

1/2
zj

∥∥∥2
F
, (8)

where (8) is due to the Cauchy-Schwartz inequality.
Define Di ,

(
Qi1Λ

1/2
z1 · · · QikΛ

1/2

zk

)
∈ Rmi×m.

Since
∑k

j=1

∥∥∥FiQ
ijΛ

1/2
zj

∥∥∥2
F

= ‖FiDi‖2F , by minimizing the
upper bound of the performance degradation, (7) becomes

min
Fi

k∑
i=1

‖FiDi‖2F

s.t. rank(Gi) ≤ ri,∀i (9)

Applying SVD to Di, Di = UiΣiV
′
i. Since Vi is a

unitary matrix, ‖FiDi‖2F = ‖FiUiΣiV
′
i‖

2
F = ‖FiUiΣi‖2F =∥∥ FiUiΣ

∗
i 0

∥∥2
F = ‖FiUiΣ

∗
i ‖

2
F where Σi =

(
Σ∗i 0

)
,

Σ∗i ∈ Rmi×mi . Therefore,

‖FiDi‖2F = ‖(Gi −Wi)UiΣ
∗
i ‖

2
F = ‖(GiUi −WiUi)Σ

∗
i ‖

2
F .

(10)
Thus, the estimator Gi is

Gi = arg min
Gi

‖(GiUi −WiUi)Σ
∗
i ‖

2
F

s.t. rank(Gi) ≤ ri,∀i, (11)

which can be transformed into the weighted low rank approx-
imation problem and solved by the numerical method in [14].

V. SIMULATION RESULTS

In this section, we evaluate the proposed scheme under the
IEEE 14 bus system using Matpower [15]. We divide the
14 substations into two groups. The measurements are first
processed in the pre-processing station and then transmitted
to the estimation center for state estimation using proposed
scheme. The performance of the estimators is evaluated in
terms of mean square error as follows,

MMSE =
ΣN

i=1‖x̂− x‖22
N

LRMSE =
ΣN

i=1‖ŷ − x‖22
N

,



Fig. 2. The Comparison of Two Systems of Different Topology

where N is the number of runs, MMSE is the minimum
mean square error and LRMSE is the mean square error
achieved by the distributed low-rank estimator. Without loss of
generality, the 13 state components and the 54 measurement
noise components are assumed to be independent zero-mean
Gaussian variables with variance 4 for the state components
and 0.2 for the measurement noise components, respectively.

TABLE I
THE MSE FOR rank(H1) = 10, rank(H2) = 12

r1 r2 MMSE LRMSE r1 r2 MMSE LRMSE
8 10 0.04035 0.44954 10 10 0.03917 0.07109
8 11 0.03942 0.41249 10 11 0.03992 0.04627
8 12 0.03909 0.40263 10 12 0.03943 0.03943
8 13 0.03935 0.39911 10 13 0.03875 0.03875
9 10 0.03915 0.07451 11 10 0.03933 0.07145
9 11 0.03997 0.04889 11 11 0.03973 0.04597
9 12 0.03926 0.04153 11 12 0.03978 0.03978
9 13 0.03948 0.04167 11 13 0.03971 0.03971

In Table I, it is illustrated that if r1 ≥ rank(H1), r2 ≥
rank(H2), then the low-rank estimator achieves the MMSE.
Otherwise, the LRMSE is higher than the MMSE. The smaller
the communication capability is, the higher is the LRMSE.

By changing the grouping of these substations, it can be
shown in Figure 2 that the two systems have quite different
performances even with the same communication settings. In
system 1, the substations 1, 2, 3, 4, 5, 6, 11 are in one group
while the rest are in the other group. In system 2, the
substations 1, 2, 3, 4, 5, 6, 11, 14 are in one group while the
rest are in the other group. Fixing r2 = 9 which is the lower
bound for r2 of both systems and vary r1, the performances of
the two systems have distinctions at some r1. It illustrates that
the lower bounds for r1, r2 are dependent on the grouping,
i.e., the topology of the system.

VI. CONCLUSION

In this paper, we present a solution to the distributed
state estimation problem in a smart grid with communication

constraints by designing a low-rank estimator. It is shown
that to achieve the global MMSE estimation, there exists a
minimum requirement of the communication capability. If
the requirement is satisfied, a distributed estimator can be
designed to achieve the global MMSE estimation. Otherwise,
an estimator meeting such constraints is proposed to trade the
performance for communication cost.

A number of issues can be further addressed in this paper.
For instance, since directly solving the problem in (7) is rather
difficult, we tackle the optimization problem by minimizing
the upper bound of the performance degradation derived in
(8). Such an approximation can be further improved by either
finding a tighter upper bound of the performance degradation
or directly solving the original optimization problem if pos-
sible. Moreover, since the states of a system are actually the
phase difference in different substations according to the DC
power flow model, instead of Gaussian distribution, Laplace
distribution may be an alternative model for the system states.
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