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Abstract—Analysis of EEG energy is a useful technique in
the brain signal processing. This paper presents a data analysis
method based on multivariate empirical mode decomposition
(MEMD) with ICA pre-processing to calculate and evaluate
the energy of EEG recorded from the quasi brain deaths. The
main advantage of introducing ICA pre-processing is that we
can reduce the noise and other unexpected components. The
simulation results illustrate the effectiveness and performance of
the proposed method in brain death determination.

I. I NTRODUCTION

EEG energy analysis is important and useful in the brain
signal processing. In the determination of brain death, EEG
energy analysis is used to evaluate the brain activity. Several
methods of EEG energy analysis such as empirical mode
decomposition (EMD) [1] and multivariate empirical mode
decomposition (MEMD) [2] have been proposed to evaluate
the brain activity [3]. The MEMD is a fully data-driven time-
frequency technique which adaptively decomposes a set of
signals into a finite set of amplitude-frequency modulated
components, namely intrinsic mode functions (IMFs). Since
the influence of environmental noise such as additive noise
or/and the power supply interference, so that the accuracy of
EEG energy analysis by using MEMD is not high.

In this paper, we focus on a novel data analysis method
based on MEMD with ICA pre-processing to calculate and
evaluate the energy of EEG recorded from patients. In the
pre-processing stage, the joint approximate diagonalization
of eigenmatrices (JADE) [4] algorithm associated with the
developed factor analysis (FA) method [5] is applied to reduce
the power of additive noise and power supply interference. In
the MEMD stage, each channel is decompose into a small
number of IMFs with a specific frequency. The desirable
components can be extracted from the decomposed IMF based
on the frequency band. In the post processing stage, the energy
of EEG recorded from patients is calculated by fast Fourier
transformation (FFT). The computer simulations are given to
demonstrate the effectiveness of the proposed method not only
in the artificial data but also in the quasi brain death EEG data.

The paper is organized as follows. In Section II, we first
introduce ICA associated our developed factor analysis algo-
rithms, and the recently developed MEMD method; in Section
III, we first conduct the computer simulation to validate our

method by using artificial data and we compare MEMD
to MEMD with ICA results, then we use real-world EEG
data collected from the quasi brain death patient. Section IV
includes the conclusion.

II. M ETHOD OFEEG DATA ANALYSIS

A. ICA with FA

In this subsection, we present a high level additive noise
reduction technique based on the factor analysis (FA). Com-
bining this technique with one of the standard ICA algorithms
(for example, using JADE algorithm [4]), we can reduce the
power of additive noise, and extract source signal efficiently.

The model based on the practical EEG examination can be
formulated by

x(t) = As(t) + e(t), t = 1, 2, · · · , (1)

where x(t) = [x1(t), · · · , xm(t)]T represent the observed
m signals observed from sensor at time t. Each sensor
signal xi(t) contains n common components (e.g. brain
activities, interference components, etc.) represented by the
vector s(t) = [s1(t), · · · , sn(t)]T and a unique component
(called additive noise) which is an element in the vector
e(t) = [e1(t), · · · , em(t)]T . Since the source components are
overlapped, and transferred rapidly to the sensors, an element
of the numerical matrixA ∈ Rm×n = (aij) can be consider
as a quantity related to the physical distance betweeni-th
sensor andj-th source. Base on this definition of Eq. (1),
we note that a source componentsi at least contributes to
more than two sensors, and a noise componentei contributes
at most only one sensor. In the model, our goal is to estimate
the unknown independent sourcess.

There are two kinds of noise components that have to be
reduced or discarded in the EEG data analysis. The first kind
of noise is called additive noise which is generated from each
sensor. The standard ICA is usually failed to reduce such
kind of noise. Therefore, we apply the FA technique in the
pre-processing step to reduce the power of additive noises
at first. The second kind of noise is a common component
such as environmental interference. This kind of noise can be
discarded after the independent source decomposition.



Let us rewrite Eq. (1) set in a data matrix form as

X(m×N) = A(m×n)S(n×N) +E(m×N), (2)

whereN denotes data samples. When the sample sizeN is
sufficiently large, the covariance matrix of the data can be
written asΣ = AAT + Ψ, whereΣ= XXT /N , and the
covariance of additive noise componentsE represented by
Ψ = EET /N is a diagonal matrix. For convenience, we
assume thatX has been divided by

√
N so that the covariance

matrix can be given byC = XXT .
To estimate both matrixA and the diagonal elements ofΨ

from the data, we employ a cost function as

L(A,Ψ) = tr
[
AAT − (C−Ψ)

] [
AAT − (C−Ψ)

]T
.

(3)
Minimizing the cost function, we obtain an estimatêΨ such

as Ψ̂ = diag(C − ÂÂ
T
). The estimate forÂ can be ob-

tained from∂L(A,Ψ)/∂A = 0. Here, we employ eigenvalue

decompositionÂ = UnΛ
1
2
n , whereΛn is a diagonal matrix

whose elements are then largest eigenvalues ofC. The
columns ofUn are the corresponding eigenvectors.

The FA method plays the same role in source decorrelation
as the standard principal component analysis (PCA) method,
however the noise varianceΨ is taken into account. The
difference between the two methods is that the PCA approach
is used to fit both the diagonal and off-diagonal elements
of C, whereas the FA approach is used to only fit the off-
diagonals elements ofC. Based on this property, the FA
approach enables us to reduce high level additive noise which
is very important in EEG energy analysis.

Once the estimates for̂A andΨ̂ converge to stable values,
we can finally compute the score matrix using

Q =
[
Â

T
Ψ̂

−1
Â
]−1

Â
T
Ψ̂

−1
. (4)

From the above result, the new transformation data can be
obtained by employingz = Qx. Note that the covariance
matrix is E

[
zzT

]
= Λn + CΨCT , which implies that the

source signals in a subspace are decorrelated.
The rotation procedure in JADE uses matricesF(M) for-

mulated by a fourth-order cumulant tensor of the outputs with
an arbitrary matrixM as

F(M) =
K∑

k=1

L∑
l=1

Cum(zi, zj , zk, zl)mlk, (5)

where Cum(·) denotes a standard cumulant andmlk is the
(l, k)-th element of matrixM. The correct rotation matrixW
can be obtained by diagonalizing the matrixF(M); namely,
WF(M)WT approaches to a diagonal matrix. After the FA
and ICA approaches, the decomposed independent compo-
nentsy ∈ Rn can be obtained from a linear transformation
as

y(t) = Wz(t), (6)

whereW ∈ Rn×n is also termed as the demixing matrix.

The estimated sensor signalx̂ are obtained as

x̂(t) = W−1Q−1y(t), (7)

B. Multivariate Empirical Mode Decomposition (MEMD)

1) Existing EMD Algorithm: EMD decomposes the orig-
inal signal into a finite set of amplitude- and/or frequency-
modulated components, termed intrinsic mode functions
(IMFs), which represent its inherent oscillatory modes [1].
More specifically, for a real-valued signalx(k), the standard
EMD finds a set ofN IMFs {ci(k)}Ni=1, and a monotonic
residue signalr(k), so that

x(k) =

n∑
i=1

ci(k) + r(k). (8)

IMFs ci(k) are defined so as to have symmetric upper and
lower envelopes, with the number of zero crossings and the
number of extrema differing at most by one. The process to
obtain the IMFs is called sifting algorithm.

The first complex extension of EMD was proposed in [8].
An extension of EMD to analyze complex/bivariate data which
operates fully in the complex domain was first proposed in
[9], termed rotation-invariant EMD (RI-EMD). An algorithm
which gives more accurate values of the local mean is the
bivariate EMD (BEMD) [10], where the envelopes correspond-
ing to multiple directions in the complex plane are generated,
and then averaged to obtain the local mean. An extension
of EMD to trivariate signals has been recently proposed in
[11]; the estimation of the local mean and envelopes of
a trivariate signal is performed by taking projections along
multiple directions in three-dimensional spaces.

2) The Proposedn-Variate EMD Algorithm[2]: For mul-
tivariate signals, the local maxima and minima may not be
defined directly because the fields of complex numbers and
quaternions are not ordered [11]. Moreover, the notion of
‘oscillatory modes’ defining an IMF is rather confusing for
multivariate signals. To deal with these problems, the multiple
real-valued projections of the signal is proposed in [2]. The
extrema of such projected signals are then interpolated com-
ponentwise to yield the desired multidimensional envelopes of
the signal. In MEMD, we choose a suitable set of direction
vectors inn-dimensional spaces by using: (i) uniform angular
coordinates and (ii) low-discrepancy pointsets.

The problem of finding a suitable set of direction vectors
that the calculation of the local mean in ann-dimensional
space depends on can be treated as that of finding a uniform
sampling scheme on ann sphere. For the generation of a
pointset on an(n − 1) sphere, consider then sphere with
centre pointC and radiusR, given by

R =

n+1∑
j=1

(xj − Cj)
2. (9)

A coordinate system in an n-dimensional Euclidean space
can then be defined to serve as a pointset on an(n−1) sphere.
Let {θ1, θ2, · · · , θn−1} be the(n−1) angular coordinates, then



an n-dimensional coordinate system having{xi}ni=1 as then
coordinates on a unit(n− 1) sphere is given by

xn = sin(θ1)× · · · × sin(θn−2)× sin(θn−1). (10)

Discrepancy can be regarded as a quantitative measure for
the irregularity (non-uniformity) of a distribution, and may
be used for the generation of the so-called ‘low discrepancy
pointset’, leading to a more uniform distribution on then
sphere. A convenient method for generating multidimensional
‘low-discrepancy’ sequences involves the family of Halton
and Hammersley sequences. Letx1, x2, · · · , xn be the first
n prime numbers, then theith sample of a one-dimensional
Halton sequence, denoted byrxi is given by

rxi =
a0
x

+
a1
x

2
+

a2
x

3
+ · · ·+ as

x

s+1
, (11)

where base-x representation ofi is given by

i = a0 + a1 × x+ a2 × x2 + · · ·+ as × xs. (12)

Starting fromi = 0, the ith sample of the Halton sequence
then becomes

(rx1
i , rx2

i , rx3
i , · · · , rxn

i ). (13)

Consider a sequence ofn-dimensional vectors{v(t)}Tt=1 =
{v1(t), v2(t), · · · , vn(t)} which represents a multivariate sig-
nal withn-components, andxθk = {xk

1 , x
k
2 , · · · , xk

n} denoting
a set of direction vectors along the directions given by angles
θk = {θk1 , θk2 , · · · , θkn−1} on an (n − 1) sphere. Then, the
proposed MEMD suitable for operating onn-variate time
series is summarized in the following.

1) Choose a suitable pointset for sampling on an(n − 1)
sphere.

2) Calculate a projection, denoted bypθk(t)}Tt=1, of the
input signal{v(t)}Tt=1 along the direction vectorxθk ,
for all k (the whole set of direction vectors), giving
pθk(t)}Kk=1 as the set of projections.

3) Find the time instants{tθki } corresponding to the max-
ima of the set of projected signalspθk(t)}Kk=1.

4) Interpolate[tθki ,v(tθki )] to obtain multivariate envelope
curveseθk(t)}Kk=1.

5) For a set ofK direction vectors, the meanm(t) of the
envelope curves is calculated as

m(t) =
1

K

K∑
k=1

eθk(t). (14)

6) Extract the ‘detail’d(t) usingd(t) = x(t)−m(t). If the
‘detail’ d(t) fulfills the stoppage criterion for a multi-
variate IMF, apply the above procedure tox(t) − d(t),
otherwise apply it tod(t).

The stoppage criterion for multivariate IMFs is similar to the
standard one in EMD, which requires IMFs to be designed in
such a way that the number of extrema and the zero crossings
differ at most by one forS consecutive iterations of the sifting
algorithm. The optimal empirical value ofS has been observed
to be in the range of 2–3 [12]. In the MEMD, we apply
this criterion to all projections of the input signal and stop
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Fig. 1: ICA decomposed results
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Fig. 2: Estimated sensor signalsx usedy1 back-propagation

the sifting process once the stopping condition is met for all
projections.

III. E XPERIMENTS AND RESULTS

In this section, we first conduct the computer simulation to
compare the algorithm of MEMD with ICA pre-processing and
MEMD. We then use the real-world EEG data collected from
the quasi brain death patient to demonstrate the effectiveness
of the proposed method.

A. Simulation Results for Artificial Data

Three artificial signals: a low frequency (5Hz) sine wave
signal simulated a delta wave brain activity, an impulse signal
simulated ECG and a higher frequency (50Hz) sine wave
signal simulated the power supply interference are used to
generate the sensor signals with random numerical matrix as
Eq. (1). Moreover, an additive noise with a SNR (signal noise
ratio) 16 dB (the power of noise is higher than the power of
signal) was added to the sensor signal.

By applying FA and ICA algorithms described in Section
II(A) to above 3 signals, we obtain the result shown in Fig.
1. As seen from Fig.1, the expected 5Hz sine wave compo-
nent was decomposed well. Used the decomposed component



0  0.5 1  
-2

0

2

x̂1

0  0.5 1  
-2

0

2

x̂2

0  0.5 1  
-2

0

2

x̂3

0  0.5 1  
-0.2

0

0.2

c
1

0  0.5 1  
-0.2

0

0.2

0  0.5 1  
-0.5

0

0.5

0  0.5 1  
-2

0

2

c
2

0  0.5 1  
-2

0

2

0  0.5 1  
-2

0

2

0  0.5 1  
-1

0

1

r

0  0.5 1  
-1

0

1

0  0.5 1  
-1

0

1

(a) Decomposed IMFs for estimated sensor signalx̂.
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Fig. 3: The results for MEMD with ICA per-processing.

y1, we can obtain the estimated sensor signals byx̂ =
W−1Q−1y1, whereQ andW are estimated matrix obtained
from the factor analysis (FA) and independent component
analysis (ICA), respectively. The result is shown in Fig. 2. As
shown in Fig. 2, we found that the estimated sensor signals
still have some unexpected high-frequency noisy component.

In order to obtain more accuracy estimated component, we
further apply the MEMD algorithm described in Section II(B)
to the estimated sensor signalŝx. The results were shown
in Fig. 3. In Fig. 3(a), three estimated sensor signalsx̂1, x̂2

and x̂3 were decomposed into two IMF componentsc1, c2
and a monotonic residue componentr from high frequency to
low frequency simultaneously. Since the IMF componentsc1
with a high frequency scales refer to noise and the residual
componentr is not the typical useful components considered,
only the desired componentsc2 is the denoised component, we
named it aŝd = [d̂1, d̂2, d̂3]. By using fast Fourier transform
(FFT), we can obtainf(d̂) in frequency domain (see Fig.
3(b)). It should be noted that the above this result is obtained
from two stages processing as ICA with FA decomposition
and the multivariate empirical mode decomposition (MEMD).
The result by using these stages processing was almost close
to the ideal case.

Next, in order to comparison, we apply MEMD to the
same set of artificial datax without ICA pre-processing.
The results were obtained in Fig. 4. In Fig. 4(a), many
IMF componentsc1 toc5 and a residue componentr were
decomposed. By removing high frequency componentc1 and
the residual componentr, then combined the componentsc2
to c5 as a desired component namedd, we obtain the result
shown in Fig. 4(b). Comparing the results shown in Fig. 4(b)
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(a) Decomposed IMFs for sensor signalx.
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Fig. 4: The result for MEMD.

to Fig. 3(b), we found that the decomposed component in the
time domain shown in Fig. 4(b) is not smoothly, this means
that only used the MEMD is not sufficiently to remove noise
completely. Moreover, the power spectrum of the decomposed
component in the frequency domain shown in Fig. 4(b) is
much higher than that of shown in Fig. 3(b).

Let’s define the EEG energy using the power spectrum
within the frequency band multiply by recorded EEG time.
This definition can be also used to calculate the other signals
energy generated by artificial data. Using the formula of
energy, we can calculate and evaluate the energy of the sensor
signal generated by an original source signal, the estimated
sensor signal by used ICA pre-processing with the MEMD
algorithms, and the estimated sensor signal used MEMD
algorithms. The results were shown in Table I.

In Table I, the duration of signal is one second. As seen from
Table I, we know that the accuracy of the estimated sensor
signal used the MEMD with ICA pre-processing algorithm is
much higher than that of used the MEMD algorithm. This
illustrates the effectiveness of the proposed method.

B. Result for Patient’s EEG Analysis

Based on the results in the previous sub-section, we now
apply the proposed method to analysis the real-world EEG
data recorded from quasi brain death. This patient’s EEG data
was directly recorded at the bedside of the patients in the
intensive care unit (ICU) in a hospital of Shanghai. In the



TABLE I: The energy of sensor signal and its estimates

Energy of sensor signal and its estimates Value

Sensor signal generated by a 5Hz original source signal2.96×103

Estimated sensor signal

used the ICA pre-processing and MEMD 2.45×103

Estimated sensor signal

used the MEMD 8.07×104
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(a) Decomposed IMFs for multi-channel EEG.
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Fig. 5: The result of the quasi brain death by MEMD with
ICA per-processing.

EEG recording, only nine electrodes are chosen to apply to
patients. Among these electrodes, six exploring electrodes as
well as GND were placed on the forehead, and two electrodes
(A1, A2) as the reference were placed on the earlobes. The
sampling rate of EEG was 1000 Hz and the resistances of the
electrodes were set to less than 10 kΩ.

To analyze the EEG energy of this patient, one second EEG
data of patient is selected randomly. We firstly remove the
unexpected high-frequency noisy component which is similar
to the power supply interference by FA and ICA algorithms
described in Section II(A) and obtain the estimated sensor
signals x̂. In order to obtain more accuracy component, by
using the MEMD algorithm described in Section II(B), the
estimated sensor signalsx̂ were decomposed into 10 IMF com-
ponents (c1 to c9 andr)(Fig. 5(a)). Since IMF componentsc1
to c3 with high frequency scales refer to noise and the residual
componentr is not the typical useful components considered,
the desired components fromc4 to c9 are combined to form
the denoised EEG signald̂, and change into frequency domain
by fast Fourier transform (FFT)(Fig. 5(b)). We calculate the

energy of EEG data and the energy of this patient is 3.34×103.
In this case, we know that this patient is in the coma state.
The clinical doctor confirmed this result is correct.

IV. CONCLUSIONS

In this paper, we proposed a data analysis method based on
MEMD with ICA pre-processing to calculate and evaluate the
energy of EEG recorded from the quasi brain deaths. From
the simulation result for artificial data, we demonstrate the
proposed method is more effective than by using MEMD. In
real-world EEG data, we can distinguish the coma patient from
the quasi brain deaths correctly by proposed method. We have
illustrated that the proposed method is useful and necessary
in brain death determination.
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