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Abstract—Analysis of EEG energy is a useful technique in method by using artificial data and we compare MEMD
the brain signal processing. This paper presents a data analysis tg MEMD with ICA results, then we use real-world EEG

method based on multivariate empirical mode decomposition yat5 collected from the quasi brain death patient. Section IV
(MEMD) with ICA pre-processing to calculate and evaluate . .
includes the conclusion.

the energy of EEG recorded from the quasi brain deaths. The
main advantage of introducing ICA pre-processing is that we

can reduce the noise and other unexpected components. The II. METHOD OFEEG DATA ANALYSIS
simulation results illustrate the effectiveness and performance of
the proposed method in brain death determination. A. ICA with FA
l. INTRODUCTION In this subsection, we present a high level additive noise

o ) reduction technique based on the factor analysis (FA). Com-

EEG energy analysis is important and useful in the brayining this technique with one of the standard ICA algorithms
signal process_ing. In the determination of k_)rain _d_eath, EE(ﬁ)r example, using JADE algorithm [4]), we can reduce the
energy analysis is used to evaluate the brain activity. Sevefglyer of additive noise, and extract source signal efficiently.

methods of EEG energy analysis such as empirical moderne model based on the practical EEG examination can be
decomposition (EMD) [1] and multivariate empirical modg, mylated by

decomposition (MEMD) [2] have been proposed to evaluate

the brain activity [3]. The MEMD is a fully data-driven time- x(t) = As(t) +e(t), t=1,2,---, (1)
frequency technique which adaptively decomposes a set of
signals into a finite set of amplitude-frequency modulatedhere x(t) = [z1(t),- - , 2., (t)]T represent the observed

components, namely intrinsic mode functions (IMFs). Sine@ signals observed from sensor at time t. Each sensor
the influence of environmental noise such as additive noisgnal z;(t) contains n common components (e.g. brain
or/and the power supply interference, so that the accuracyaativities, interference components, etc.) represented by the

EEG energy analysis by using MEMD is not high. vector s(t) = [s1(t), -+ ,s,(t)]T and a unique component
In this paper, we focus on a novel data analysis methgchlled additive noise) which is an element in the vector
based on MEMD with ICA pre-processing to calculate ane(t) = [e1(t),- -, en(t)]T. Since the source components are

evaluate the energy of EEG recorded from patients. In tlegerlapped, and transferred rapidly to the sensors, an element
pre-processing stage, the joint approximate diagonalizatiohthe numerical matrixA € R™*" = (a;;) can be consider
of eigenmatrices (JADE) [4] algorithm associated with thas a quantity related to the physical distance betwge#n
developed factor analysis (FA) method [5] is applied to redusensor andj-th source. Base on this definition of Eq. (1),
the power of additive noise and power supply interference. We note that a source componeft at least contributes to
the MEMD stage, each channel is decompose into a smalbre than two sensors, and a noise comporggbntributes
number of IMFs with a specific frequency. The desirablat most only one sensor. In the model, our goal is to estimate
components can be extracted from the decomposed IMF ba#igegl unknown independent sources
on the frequency band. In the post processing stage, the energyhere are two kinds of noise components that have to be
of EEG recorded from patients is calculated by fast Fouriegduced or discarded in the EEG data analysis. The first kind
transformation (FFT). The computer simulations are given tif noise is called additive noise which is generated from each
demonstrate the effectiveness of the proposed method not asdysor. The standard ICA is usually failed to reduce such
in the artificial data but also in the quasi brain death EEG datdnd of noise. Therefore, we apply the FA technique in the
The paper is organized as follows. In Section Il, we firgire-processing step to reduce the power of additive noises
introduce ICA associated our developed factor analysis algat-first. The second kind of noise is a common component
rithms, and the recently developed MEMD method; in Sectiguch as environmental interference. This kind of noise can be
I, we first conduct the computer simulation to validate oudiscarded after the independent source decomposition.



Let us rewrite Eqg. (1) set in a data matrix form as The estimated sensor signalare obtained as

XmxN) = Amxn)Smxn) + Emxny, (2 X(t) =W'Q ly(t), )

where N denotes data samples. When the sample 8izes B. Multivariate Empirical Mode Decomposition (MEMD)
sufficiently large, the covariance matrix of the data can be
written as¥ = AAT + ¥, whereX= XX”/N, and the
covariance of additive noise componerfs represented by

1) Existing EMD Algorithm: EMD decomposes the orig-
inal signal into a finite set of amplitude- and/or frequency-
- 8 g - g modulated components, termed intrinsic mode functions
¥ = EE /N is a diagonal matrix. For convenience, Wevirs), which represent its inherent oscillatory modes [1].
assume thak has been divided by’N so that the covariance \jore specifically, for a real-valued signalk), the standard

; ; T
matrix can be given bfC = XX*. EMD finds a set of N IMFs {c;(k)}Y,, and a monotonic
To estimate both matriA and the diagonal elements ¥ | ogique signat(k), so that ’

from the data, we employ a cost function as

n

T — .

LA, @) = tr [AAT - (C- w)| [AAT — (- w)| . z(k) = Z;C’L(k) +r(k). (8)

Minimizing the cost function, we obtain an estimatesuch  IMFs ¢;(k) are defined so as to have symmetric upper and
~ ~ AT . R . B

as W = diag(C — AA ). The estimate forA can be ob- IowekrJ envfelopes, W|tdh_ﬁthe_ number oszero Crosr?mgs and the
tained fromdL(A, ¥)/0A = 0. Here, we employ eigenvalue"Umber 0 extrema differing at most by one. The process to
decompositionA = U, A2, whereA,, is a diagonal matrix obtain the IMFs is called sifting algorithm.

h P | i - ”th;’l t § | 9 © Th The first complex extension of EMD was proposed in [8].
whose elements are argest eigenvaiues ob. TN€ - an extension of EMD to analyze complex/bivariate data which

co!lyr?‘l nlf AofU?ha:je tlhe c?rr]respondlnglg glgenvecto:js. | t.0 erates fully in the complex domain was first proposed in
€ method piays the same role in source decorrela ﬁ termed rotation-invariant EMD (RI-EMD). An algorithm

as the standard principal component analysis (PCA) meth ich gives more accurate values of the local mean is the

g_c;rwever tf;)etnmse t;\/ar;anc@ ,'; ?kgntr;nttothacg%lft. The bivariate EMD (BEMD) [10], where the envelopes correspond-
inerence between the two methods 1S that the approe}ﬁa to multiple directions in the complex plane are generated,

is used to fit both the diagonal and off-diagonal elemer;é d then averaged to obtain the local mean. An extension

ST C, Wlherelas th? Fﬁ\capgroacah IS uti?d to onI}[/ flttk:heFZ\ f EMD to trivariate signals has been recently proposed in
|agonar? eelr)r;ens ¢ ' dase h'oﬂl 'SI p;%pt?r y, the hg&]; the estimation of the local mean and envelopes of
approach enables us 1o reduce nign level additive noise w rivariate signal is performed by taking projections along

IS very |mportar_1t in EEG energy analysis. multiple directions in three-dimensional spaces.
Once the estimates fok and ¥ converge to stable values, 2) The Proposed-Variate EMD Algorithm[2]: For mul-
we can finally compute the score matrix using tivariate signals, the local maxima and minima may not be
C[aTa-1:7"1 AT -1 defined directly because the fields of complex numbers and
Q= [A v A} AT . ) guaternions are not ordered [11]. Moreover, the notion of

From the above result, the new transformation data can B&cillatory modes’ defining an IMF is rather confusing for
obtained by employing: = Qx. Note that the covariance multivariate S|gpals_. To deal W|th_ thesg problems, the multiple
matrix is E [ZZT] — A, + C®CT, which implies that the real-valued prOjectlops of thg signal is proppsed in [2]. The
source signals in a subspace are decorrelated. extrema _of such projected _S|gnals are then_ interpolated com-
The rotation procedure in JADE uses matride@) for- ponentwise to yield the desired multidimensional envelopes of

mulated by a fourth-order cumulant tensor of the outputs witR€ Signal. In MEMD, we choose a suitable set of direction
an arbitrary matrixM as vectors inn-dimensional spaces by using: (i) uniform angular

coordinates and (ii) low-discrepancy pointsets.
K L The problem of finding a suitable set of direction vectors
FM) = chum(zivzjazk»zl)mlkv () that the calculation of the local mean in andimensional
k=1 1=1 space depends on can be treated as that of finding a uniform
where Cum{ denotes a standard cumulant angj is the sampling scheme on an sphere. For the generation of a
(I, k)-th element of matriXM. The correct rotation matri¥v  pointset on an(n — 1) sphere, consider the sphere with
can be obtained by diagonalizing the matiXM); namely, centre pointC' and radiusR, given by

T . .
WF(M)W* approaches to a diagonal matrix. After the FA —

and ICA approaches, the decomposed independent compo- R— Z(z' — o) 9)
n . . . == j 7 .
nentsy € R"™ can be obtained from a linear transformation =
as
y(t) = Wa(t), (6) A coordinate system in an n-dimensional Euclidean space

can then be defined to serve as a pointset ofnanl) sphere.
whereW € R™"*" is also termed as the demixing matrix. Let{6;,0s,---,60,_1} be the(n—1) angular coordinates, then



ann-dimensional coordinate system havifig; }”_; as then Original Signals g _onor Stenals Separated Slanale

coordinates on a unit. — 1) sphere is given by o o
Ty = sin(01) X - X sin(0,_2) X sin(0p_1). (10) ;2 -_ ’
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Discrepancy can be regarded as a quantitative measure fc 0
the irregularity (non-uniformity) of a distribution, and may NZ : o
be used for the generation of the so-called ‘low discrepancy *° 5
pointset’, leading to a more uniform distribution on the . | = L2 - ‘
sphere. A convenient method for generating multidimensional  « w
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‘low-discrepancy’ sequences involves the family of Halton _* ‘ L .
. @ 0 5 0 =
and Hammersley sequences. Lgt zo,--- ,x, be the first 0 " !
n prime numbers, then th&h sample of a one-dimensional 0 = L e = . Sk v |
Halton Sequence, denoted by |S glven by Time (sec.) Time (sec.) Time (sec.)
ap a12 a3 ag s+l Fig. 1: ICA decomposed results
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Consider a sequence ofdimensional vector§v ()}, = Tosf 1
-1

{v1(t),v2(t), -+, v,(t)} which represents a multivariate sig- s
nal with n-components, ang?* = {z% 2% ... 2*} denoting

a set of direction vectors along the directions given by angles
O = {0%.05 ... 0% .} on an(n — 1) sphere. Then, the 2ol
proposed MEMD suitable for operating om-variate time |
series is summarized in the following. T R e SRR

L L L L L L L L L
100 200 300 400 500 600 700 800 900 1000

1) Choose a suitable pointset for sampling on(an- 1)
sphere. Fig. 2: Estimated sensor signatsusedy; back-propagation

2) Calculate a projection, denoted b+ (t)}7_,, of the
input signal{v(t)}Z_, along the direction vectox®",
for all k£ (the whole set of direction vectors), giving
p% (t)}K_, as the set of projections.

3) Find the time instant$tf’*} corresponding to the max- I1l. EXPERIMENTS AND RESULTS
ima of the set of projected signaté*(t)}X_, .

4) Interpolate[t’:, v(t?*)] to obtain multivariate envelope
curvese?s ()} <.

5) For a set ofK direction vectors, the meam(t) of the
envelope curves is calculated as

the sifting process once the stopping condition is met for all
projections.

In this section, we first conduct the computer simulation to
compare the algorithm of MEMD with ICA pre-processing and
MEMD. We then use the real-world EEG data collected from
the quasi brain death patient to demonstrate the effectiveness
of the proposed method.

K
1
m(t) = - > e (). (14) A. Simulation Results for Artificial Data
k=1

Three artificial signals: a low frequency (5Hz) sine wave
6) Extract the ‘detail'd(t) usingd(t) = x(t) —m(t). If the  signal simulated a delta wave brain activity, an impulse signal
‘detail’ d(t) fulfills the stoppage criterion for a multi- simulated ECG and a higher frequency (50Hz) sine wave
variate IMF, apply the above procedure#¢t) — d(t), signal simulated the power supply interference are used to
otherwise apply it tai(t). generate the sensor signals with random numerical matrix as
The stoppage criterion for multivariate IMFs is similar to thé&q. (1). Moreover, an additive noise with a SNR (signal noise
standard one in EMD, which requires IMFs to be designed iatio) 16 dB (the power of noise is higher than the power of
such a way that the number of extrema and the zero crossisiggnal) was added to the sensor signal.
differ at most by one folS consecutive iterations of the sifting By applying FA and ICA algorithms described in Section
algorithm. The optimal empirical value 6fhas been observedll(A) to above 3 signals, we obtain the result shown in Fig.
to be in the range of 2-3 [12]. In the MEMD, we applyl. As seen from Fig.1, the expected 5Hz sine wave compo-
this criterion to all projections of the input signal and stopent was decomposed well. Used the decomposed component
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y1, We can obtain the estimated sensor signals by=
W 'Q 'y, whereQ and W are estimated matrix obtained
from the factor analysis (FA) and independent component Fig. 4: The result for MEMD.
analysis (ICA), respectively. The result is shown in Fig. 2. As
shown in Fig. 2, we found that the estimated sensor sign&sFig. 3(b), we found that the decomposed component in the
still have some unexpected high-frequency noisy componefitne domain shown in Fig. 4(b) is not smoothly, this means
In order to obtain more accuracy estimated component, W&t only used the MEMD is not sufficiently to remove noise
further apply the MEMD algorithm described in Section II(Bompletely. Moreover, the power spectrum of the decomposed
to the estimated sensor signats The results were showncomponent in the frequency domain shown in Fig. 4(b) is
in Fig. 3. In Fig. 3(a), three estimated sensor sigmalst, much higher than that of shown in Fig. 3(b).
and &3 were decomposed into two IMF componemrts co Let's define the EEG energy using the power spectrum
and a monotonic residue componerfrom high frequency to within the frequency band multiply by recorded EEG time.
low frequency simultaneously. Since the IMF components This definition can be also used to calculate the other signals
with a high frequency scales refer to noise and the residwalergy generated by artificial data. Using the formula of
component- is not the typical useful components considere@nergy, we can calculate and evaluate the energy of the sensor
only the desired components is the denoised component, wesignal generated by an original source signal, the estimated
named it asd = [dl,dg,dg] By using fast Fourier transform sensor signal by used ICA pre-processing with the MEMD
(FFT), we can obtainf(d) in frequency domain (see Fig.algorithms, and the estimated sensor signal used MEMD
3(b)). It should be noted that the above this result is obtainatjorithms. The results were shown in Table I.
from two stages processing as ICA with FA decomposition In Table I, the duration of signal is one second. As seen from
and the multivariate empirical mode decomposition (MEMD]Table |, we know that the accuracy of the estimated sensor
The result by using these stages processing was almost clsigmal used the MEMD with ICA pre-processing algorithm is
to the ideal case. much higher than that of used the MEMD algorithm. This
Next, in order to comparison, we apply MEMD to thdllustrates the effectiveness of the proposed method.
same set of artificial data without ICA pre-processing.
The results were obtained in Fig. 4. In Fig. 4(a), manfy- Result for Patient's EEG Analysis
IMF componentse; toc; and a residue component were Based on the results in the previous sub-section, we now
decomposed. By removing high frequency compongrand apply the proposed method to analysis the real-world EEG
the residual component, then combined the components data recorded from quasi brain death. This patient’s EEG data
to ¢5 as a desired component namédwe obtain the result was directly recorded at the bedside of the patients in the
shown in Fig. 4(b). Comparing the results shown in Fig. 4(liitensive care unit (ICU) in a hospital of Shanghai. In the

(b) Denoised components in time and frequency domains.



TABLE I: The energy of sensor signal and its estimates

energy of EEG data and the energy of this patient is 310%.
In this case, we know that this patient is in the coma state.
The clinical doctor confirmed this result is correct.

IV. CONCLUSIONS

In this paper, we proposed a data analysis method based on
MEMD with ICA pre-processing to calculate and evaluate the
energy of EEG recorded from the quasi brain deaths. From
the simulation result for artificial data, we demonstrate the
proposed method is more effective than by using MEMD. In
real-world EEG data, we can distinguish the coma patient from
the quasi brain deaths correctly by proposed method. We have
illustrated that the proposed method is useful and necessary

Energy of sensor signal and its estimates Value
Sensor signal generated by a 5Hz original source signal96x 103
Estimated sensor signal
used the ICA pre-processing and MEMD 2.45x10°
Estimated sensor signal
used the MEMD 8.07x10*
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Fig. 5: The result of the quasi brain death by MEMD with
ICA per-processing.

0 10 20 0 10 20

signal in time and frequency domains. [5]

(6]

EEG recording, only nine electrodes are chosen to apply {4
patients. Among these electrodes, six exploring electrodes as
well as GND were placed on the forehead, and two electrodes
(A1, A2) as the reference were placed on the earlobes. Thg
sampling rate of EEG was 1000 Hz and the resistances of the
electrodes were set to less than X0.k (9]
To analyze the EEG energy of this patient, one second EEG
data of patient is selected randomly. We firstly remove the
unexpected high-frequency noisy component which is similEf]
to the power supply interference by FA and ICA algorithmg
described in Section II(A) and obtain the estimated sensor
signalsx. In order to obtain more accuracy component, by
using the MEMD algorithm described in Section 1I(B), the
estimated sensor signatsvere decomposed into 10 IMF com-
ponents ¢; to ¢y andr)(Fig. 5(a)). Since IMF components
to c¢3 with high frequency scales refer to noise and the residual
component- is not the typical useful components considered,
the desired components from to ¢g are combined to form
the denoised EEG signdl and change into frequency domain
by fast Fourier transform (FFT)(Fig. 5(b)). We calculate the

in brain death determination.
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