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Abstract—For GMM-UBM based text-independent speaker 

recognition, the performance decreases significantly when the 

test speech is too short. Considering that the use of text 

information is helpful, a K-phoneme-class scoring based multiple 

phoneme class speaker model method (shortened as K-phoneme-

class based multi-model method, abbreviated as KPCMMM) is 

proposed including a phoneme class speech recognition stage 

and a phoneme class dependent multi-model speaker recognition 

stage, where K means the number of most likely phoneme classes 

to be used in the second stage. Two different phoneme class 

definitions, expert-knowledge based and data-driven, are 

compared, and the performance as a function of K is also studied. 

Experimental results show that the data-driven phoneme class 

definition outperforms the expert-knowledge based one, and that 

an appropriate K value can lead to much better performance. 

Compared with the baseline GMM-UBM system, the proposed 

KPCMMM can achieve a relative equal error rate (EER) 

reduction of 38.60% for text-independent speaker recognition 

with a length of less than 2 seconds of test speech. 

I. INTRODUCTION 

Speaker recognition [1], aiming to automatically recognize 

the speaker identities, is becoming more and more attractive 

nowadays. It can be used in a wide range of applications 

including access control, providing forensic evidence, and 

user authentication in telephone banking, etc. Current speaker 

recognition technologies provide a satisfying performance 

when data is sufficient. However, in some situations, only a 

short utterance such as one or two words is available to 

recognize the speaker, and in other situations short utterances 

can provide a better user experience. In all such cases, the 

current technologies are unsatisfactory. In this paper, we 

focus on developing a method for short utterance speaker 

recognition (SUSR) where the test utterance contains only 

about 2 seconds’ valid speech. 

GMM-UBM [2] and GMM-SVM [3] are two popular 

speaker recognition technologies. In systems based on such 

structures, [6] illustrates the performance change with 

different valid test speech lengths on the NIST SRE 2005 [5] 

database, and it can be seen that the Equal Error Rate (EER) 

[5] increases sharply from 6.34% to 23.89% when the test 

speech is shortened from 20 seconds to 2 seconds. 

Furthermore, if the length is less than 2 seconds, the EER 

rises to as high as 35.00%.  

In order to improve the performance of SUSR systems, 

some approaches have been proposed. The factor analysis 

subspace estimation introduced in [7] decreases the number of 

redundant model parameters to develop dominant speaker 

models. Some methods try to improve the performance by 

selecting segments with higher discriminability on speaker 

characteristics to perform speaker recognition [8]. The 

weighted bilateral scoring method is used to enhance the 

performance of speaker recognition in the scoring domain [9]. 

However, most of these above approaches show 

improvements with length among 5~10 seconds. There are 

still challenges when the speech is shorter. 

It is no doubt that the performance of text-dependent (TD) 

speaker recognition is much better than that of text-

independent (TI) speaker recognition when the length of 

speech is very short, because in this case the test data can 

better match the training data than in the TI case. This 

suggests us an idea to convert the TI SUSR into TD SUSR by 

integrating the speech recognition technology. In [10] it has 

showed that this method can help improve the text-

independent speaker recognition. 

Let us first introduce an idea of phoneme specific multi-

model method for SUSR. During the training procedure, 

speech recognition is performed to generate a phoneme 

sequence. All data related to a certain phoneme will be 

collected together to train a speaker model specific to this 

phoneme and this speaker. During recognition, given an 

utterance, speech recognition will be first performed as in the 

training procedure to generate a phoneme sequence, each 

phoneme of which will be scored against phoneme specific 

speaker models of a speaker. After all phonemes have been 

scored, the score of the utterance against speakers will be 

obtained. This obviously can change a TI task into a TD one. 

A question rises. None of the current speech recognizers 

is 100% correct, which will introduce errors in both the 

training and the recognition procedures. Error accumulations 

will lead to perhaps a much bigger performance decrease. 

Considering that speech recognition is not our final goal, 

instead we just need it to get the content information so as to 

convert a TI task into a TD one, we further propose to 

perform phoneme class recognition instead of phoneme 

recognition. The number of phoneme classes will be much 

smaller than that of phonemes and therefore the recognition 

errors will be much fewer provided that the phonemes are 



well categorized. Either the expert knowledge based method 

or the data-driven one can be used for this purpose. 

In practice, even a good performance phoneme class 

recognizer inevitably produces errors. To further eliminate the 

negative effect of these recognition errors, we propose not to 

use the top-1 phoneme class recognition results to perform 

phoneme class based multi-model speaker recognition, but 

during the phone class recognition procedure we will select 

top-K results for further speaker model scoring, which is 

referred to as top-K scoring in this paper. This only happens 

in the speaker recognition procedure yet not in the training 

procedure. 

The above-described method is named as K-phoneme-

class based multi-model method (KPCMMM). Depending on 

different phoneme clustering methods, it can be either expert-

knowledge based or data-driven. 

This paper is organized as follows. In Section II, the 

proposed KPCMMM framework for SUSR is detailed. In 

Section III, experimental results and analysis are given.  

Conclusions and future work are presented in Section IV. 

II. THE K-PHONEME-CLASS BASED MULTI-MODEL SUSR 

FRAMEWORK   

The proposed KPCMMM framework for SUSR can be shown 

in Fig. 1. There are three key parts: phoneme class definition, 

phoneme class dependent speaker model training, and K-

phoneme-class based scoring.  

Phoneme

Class Definition

Phoneme Class dependent

Speaker Model Training

K Phoneme Class

based Scoring
 

Fig. 1. The K-Phoneme-Class based Multi-Model SUSR Framework 

A. Phoneme Class Definition 

As mentioned above, an expert-knowledge based definition 

and a data-driven one will be addressed for phoneme class 

definition in this section, 

The expert-knowledge based definition uses prior 

phonetics knowledge summarized by experts to categorize the 

phonemes. In this paper, the phoneme class definition in [11] 

is used and compared, which utilizes the Height and Backness 

information of the phonemes. 

Given sufficient data, the data-driven phoneme class 

definition can be more performance oriented. We develop a 

vector quantization (VQ) phoneme clustering method, 

containing the following steps: 

 (1) Train a UBM with sufficient speech data. The data are 

chosen to cover all possible phonemes, and is also balanced 

according to concerned factors, such as channel and gender. 

(2)  Let {P1, P2, …, PN} denote the entire phoneme set in 

one or several target languages, where N is the total number 

of possible phonemes. Collect data for each phoneme Pn and 

use the Maximum a posteriori (MAP) algorithm to generate 

the phoneme GMM model as in Equation (1). 
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where M is the mixture number of the GMM model. 

(3) Select initial J cluster centers (phoneme GMMs) from 

the phoneme GMM model set with the max-min criterion.  

(4) The K-means algorithm [13] is used to cluster N 

phoneme models into J classes, where Kullback-Leibler (KL) 

divergence [14] is chosen as the distortion measure between 

Gaussian mixtures as described in Equations (2) and (3). 
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The phoneme classes are defined as: 
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where PCj denotes the j-th phoneme class, and totally there 

are J phoneme classes. For PCj, it contains nj phonemes, and 

     denote the t-th (   [    ] ) phoneme in PCj. 

To tell which of these two different phoneme class 

definitions is better, F-ratio, defined as the ratio of within-

class variance to the between-class variance, is taken as the 

criterion on the phoneme clustering level. Equations (4) and 

(5) show how F-ratio is calculated: 
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where     represents the mean vector of the phoneme model 

    . The F-ratio curve of the definition derived through the 

data-driven method, as well as the F-ratio value of the expert-

knowledge based definition, is shown in Fig. 2. 

 
Fig. 2. F-ratio curve of the data-driven and expert-knowledge based 

definitions 

It can be concluded that when the phoneme class number 

is 6, the data-driven definition achieves the minimum F-ratio 

value, which is better than the expert-knowledge based one. 

B. Phoneme Class Dependent Speaker Model Training 

Phoneme class dependent speaker models are trained as: 

(1) Phoneme class UBM training. Phoneme recognition is 

performed on all utterances in the development set, and the 



resulted phoneme sequences are divided and grouped into J 

phoneme classes. For phoneme class PCj (1jJ), the 

phoneme class dependent UBM, denoted by      , is trained 

using the expectation-maximization (EM) algorithm. 
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Fig. 3. Phoneme Class Dependent Speaker Model Training for Speaker s 

(2) Phoneme class dependent speaker model training. For 

target speaker s, J phoneme class dependent models are 

trained, denoted by 




s , j
: 1  j  J  . For speaker s and 

phoneme class j, all data in PCs,j is used to generate      by 

adapting from 




ubm

j

 with MAP algorithm as illustrated in Fig. 
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Fig. 4. Top-K Phoneme Class Scoring Illustration for One Phoneme of the 

Test Speech 

C. K-Phoneme-Class based Scoring 

In order to eliminate the influence of errors introduced by 

speech recognition, the K-NN algorithm is adopted, referred 

to as top-K scoring in this paper. During the phoneme class 

recognition stage of speaker recognition, the top-K phoneme 

class candidates of each phoneme in the utterance are taken 

instead of only top-1 as usual. The scores of this phoneme 

utterance against corresponding K phoneme class models are 

calculated, and fused as the final score of this phoneme. This 

is illustrated in Fig. 4 and in Equation (6). 
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where for each phoneme utterance in fl frames, its 

corresponding top-K phoneme classes are     (      ). 

The fusion method here is a simple weighted sum; that is to 

say, the final score is the weighted average score of the 

phonemes in test speech utterance as defined in Equation (7), 
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where L is the number of phonemes contained in the test 

utterance. 

III. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Database and Setting up 

The experiments were performed on a short utterance 

database specially created for SUSR, called SUD12. The 

SUD12 database consisted of 163 Chinese sentences each 

uttered by 57 Chinese speakers (29 males and 28 females). 

Speech was recorded in clean environments using microphone 

at 16 kHz sampling rate with 16-bit precision. The set of 163 

sentences were grouped into two parts for training and testing 

purposes respectively. In the training part, there were 100 

long sentences covering all Chinese vowels, balanced in term 

of phoneme so that all phoneme classes related models could 

be well trained. The testing part consisted of 63 short 

sentences, with average length of 2 in Chinese syllable, or less 

than 2 seconds at a normal reading speed. The distribution of 

lengths of utterances in the testing part is listed in Table I. 
TABLE   I  

THE DISTRIBUTION OF THE LENGTH OF TEST UTTERANCES 

Length (second) Number of Sentences Percent (%) 

less than 0.5 38 60.3 

0.5 to 1.0 15 23.8 

1.0 to 2.0 10 15.9 
 

The Chinese phoneme recognizer used here was trained 

using 50 hours’ SONY Chinese speech [15]. The traditional 

MFCC features (12-dimensional MFCC coefficients, and their 

acceleration coefficients, delta coefficients, energy and zero 

static coefficients) were used. The recognizer was left-to-right 

no-skip HMM based.   

There were two baseline systems, a speaker recognition 

system based on the conventional GMM-UBM and one using 

KPCMMM with the expert-knowledge based phoneme class 

definition [12]. The UBM consisted of 1,024 mixtures. The 

training data for UBM and the adaptation data for phoneme 

GMM models were taken from 863 CSL Corpus [16].  

 Features used for speaker recognition were also MFCCs, 

the only difference was that for speaker recognition they were 

16-dimentional MFCC coefficients and their first derivative. 

B. Results and Analysis 

The EER and the minimum Detection Cost Function 

(minDCF) were used to evaluate the performance of speaker 

recognition systems, where the parameters of minDCF were 

taken as the same as in [5].  

The EER curve of the SUSR system using the proposed 

KPCMMM with data-driven phoneme class definition as a 

function of K is shown in Fig. 5. It can be found that the 

proposed method achieved the best performance when K was 

3, where the EER was 23.21%. Considering that the choosing 

of K value mainly depends on the performance of the 

phoneme class recognizer, the same K value was used in 

experiments with expert-knowledge based method. Results of 



this method and the two baseline systems are listed in Table II 

and Fig. 5. 

 
Fig. 5. EER curve of the K-phoneme-class based multi-model SUSR system 

(data-driven phoneme class definition) with different values of K 
TABLE   II 

SPEAKER RECOGNITION PERFORMANCE COMPARISION 

Method EER (%) minDCF (10
-2

) 

GMM-UBM 37.81 10.52 

Expert-KPCMMM 27.73 9.72 

Data-Driven-KPCMMM 23.21 9.22 
 

Compared with the traditional GMM-UBM method, the 

proposed method with different phoneme class definitions 

achieved relative EER reductions of 26.64% and 38.60% 

respectively. These results show that the KPCMMM can 

emphasize the match between the models and the test 

utterances. 

For the proposed KPCMMM, the data-driven phoneme 

class definition outperforms the expert-knowledge based one, 

with a relative EER reduction of 16.30%. The reason is 

believed to lie in that the data-driven method is performance 

oriented. 

It is also found that using top-K phoneme recognition 

results for further multi-modal speaker recognition will be 

much better than just using the top-1 results, which can avoid 

the error accumulation introduced by the speech recognition 

stage. The value of K should be appropriate; being too small 

(as 1) or too big (using all classes) does not work well. 

 
Fig. 6.   DET Curve Comparison among GMM-UBM, Expert-Knowledge 

based KPCMMM, Data-Driven KPCMMM 

IV. CONCLUSIONS AND FUTURE WORK 

In this paper, we propose a text-independent short utterance 

speaker recognition method integrating the phoneme class 

definition and the K-phoneme-class based multi-model 

method. The experimental results show that the proposed 

KPCMMM with data-driven phoneme class definition can 

achieve a better result for short test utterances. 

In this paper there is an assumption that the training data 

is sufficient for phoneme class models. By setting up a set of 

reference speakers with sufficient training data, this 

assumption is not necessary. This is one of our future research 

focuses. Combining the expert knowledge and the data-driven 

method is another focus in future research. 
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