
Design and Analysis of a Many-Core Processor
Architecture for Multimedia Applications
Jyu-Yuan Lai∗, Po-Yu Chen∗, Ting-Shuo Hsu†, Chih-Tsun Huang∗, and Jing-Jia Liou†

∗ Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan
E-mail: cthuang@cs.nthu.edu.tw

† Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan
E-mail: jjliou@ee.nthu.edu.tw

Abstract—We present a design of many-core processor ar-
chitecture with superior cost-effectiveness to fulfill the rapid
increasing demand of high-speed embedded multimedia appli-
cations. The prototype platform consists of sixteen processor
cores and a 4-by-4 mesh-based duplex network interconnection
with external memory. The hardware and software interface
in a bare-metal environment, i.e., without an Operating Sys-
tem (OS), has been emphasized in our architecture. An on-
chip communication library is developed for practical parallel
applications. In addition, we propose two memory-based file
handling approaches to manipulate files with the lack of file-
system support by OS. Our file handling approach can effectively
reduce the minimum requirement of local memory without page
swapping for each core from 4 MB to 64 KB in a case study
of JPEG encoding. Furthermore, the analysis of instruction and
data caches is addressed for the trade-off between area and speed.
The experimental result indicates that our many-core platform
with its application development infrastructure is efficient in
delivering cost-effective multimedia applications in a bare-metal
environment.

I. INTRODUCTION

With the increasing demand of high-performance multime-
dia applications in embedded systems, the emerging many-
core processor architecture has been regarded as an attractive
alternative to traditional centralized monolithic processor de-
sign, thanks to the ever shrinking process technology. Instead
of stepping up the operating frequency, many-core processor
architectures take the advantage of parallelism to achieve the
throughput requirement with superior cost-effectiveness. In
addition, Network-on-Chip (NoC), which adopts flexible and
scalable packet-switched interconnection to replace conven-
tional shared buses, is widely used in modern many-core
processors to maintain efficient communication among the
Processing Elements (PEs).

There have been numerous many-core processors published
recently [1]–[8]. In [1], [2], the Raw microprocessor was built
by replicating small and simple tiles. Each tile contains a
RISC-like pipelined core which is tightly integrated with a pro-
grammable switch. The network interface is register mapped.
And inter-tile communication is optimized as register access.
In [3], the Asynchronous Array of simple Processors (AsAP)
was geared to handle the task-level parallelism inherent in
modern DSP applications. Because DSP applications usually
exhibit fixed communication patterns between internal tasks,
circuit-switched network with sophisticated task placement
is adopted to manipulate the task communication. The pro-

gram of each task can be written individually and linked
either manually or using the AsAP tool chain. Moreover, the
AsAP was extended to a many-core computational platform
in [4] which is composed of 164 homogeneous processor
cores and three dedicated-purpose accelerators. The TILE64
in [5] consists of 64 tile processors connected through mesh
networks. The networks support five independent and distinct
functions. Three out of the five networks are software-visible.
The tile processors access the software-visible networks by
using register mapped mechanism to reduce routing latency.
In [6], the specialized Semi-Dynamic Flip-Flops (SDFFs) were
utilized as critical registers in the 80-tile processor. Bisection
bandwidth of the on-chip network can achieve 2 Terabits/s
at the clock rate of 4 GHz. In [7], the 48-core processor
was divided to 8 voltage and 28 frequency islands to support
Dynamic Voltage and Frequency Scaling (DVFS) for higher
performance per watt. Message passing between cores in the
48-core processor was accomplished by using on-chip shared
Message Passing Buffer (MPB) [8].

In summary, most of the previous works empha-
sized hardware-driven optimization techniques, e.g., register-
mapped network interface in [1], [2], [5], the circuit-switched
network in [3], the specialized registers in [6], and the ad-
vanced power management in [7]. However, a robust, flexible,
and efficient design framework is essential to modern many-
core systems targeting a variety of practical embedded appli-
cations. Although the programs in the Raw microprocessor
[1], [2], the AsAP [3], and the 48-core processor [7], [8]
can be written in high-level programming language, either
customized compilers or specialized API is mandatory. In
addition, to the best of our knowledge, none of the publications
mentioned about the manipulation of files for embedded many-
core processors in a bare-metal environment, which is the
crucial requirement for practical multimedia applications.

In this paper, we present a many-core processor architecture
together with software development infrastructure for practical
applications. A prototype platform composed of sixteen PEs
and one external memory is implemented. Software applica-
tions can be executed on our platform directly without an
OS. Therefore, overall performance of our many-core platform
can be maximized for specific embedded applications such as
multimedia and image processing, eliminating the overhead
introduced by OS.

However, software development in such a bare-metal envi-
ronment is challenging. There is no OS to support sophisti-
cated file systems. In addition, accessing the parallel hardware
architecture via high-level programming environment is a
burden. So taking full advantage of a many-core platform
at application level is not intuitive. On top of our many-
core processor architecture, we develop a specific parallel
programming library to support both robust message passing
between the PEs and bulk data movement between memories.
In addition, two memory-based file handling approaches are
also proposed particularly for multimedia applications in a
bare-metal environment. Realistic parallel applications on the
many-core platform can be achieved easily in high-level C
programming language using standard GNU C compiler (i.e.,
gcc) and its tool chain.

By using the proposed external memory-based file handling
approach, the minimum requirement of local memory without
page swapping for each PE can be reduced by 98.44% as
compared with that using local memory-based approach, and
the parallel processor using 16 PEs is 13 times faster than
the serial one, in a case study of JPEG encoding. Finally,
the trade-off between area and speed of the prototype plat-
form is explored systematically. The experimental result and
analysis show that our many-core processor architecture with
the proposed parallel programming library and file handling
approaches is an effective solution for developing realistic
parallel multimedia applications in a bare-metal environment.

II. THE PROPOSED MANY-CORE PLATFORM
Fig. 1 shows the prototype platform of our many-core

processor architecture. There are sixteen homogeneous PEs,
4-by-4 mesh-based network request/response switches and
links, and external memory. For the flexibility, we adopt
the standardized Open Core Protocol (OCP) [9] interface
for the interconnection between the PEs and the switches.
Heterogeneous hardware accelerators can also be integrated to
the prototype platform as long as the accelerators are wrapped
with OCP interface. By taking the advantage of network-based
interconnection, the architecture can be scalable to support
more PEs and external memories. In addition, a variety of
realistic multimedia applications, such as JPEG encoding and
object tracking, can be executed on the proposed many-core
platform.

To enhance the efficiency of verification and development,
the prototype platform is implemented in two different abstrac-
tion levels, i.e., Electronic System Level (ESL) and Register
Transfer Level (RTL). The ESL platform can be utilized for
rapid performance and bottleneck analysis, as well as to be a
reference model for verification. On the other hand, the RTL
one can provide realistic physical design parameters such as
critical path delay, hardware area, and power consumption, etc.

Our PE consists of a single microprocessor, a local memory,
a communication unit (including a DMA (direct memory
access) unit and a PE-to-PE unit), and a local system bus
which connects the components in a PE. The local memory
of each PE contains both program instructions and private
data variables. Note that for RTL implementation, the local

External
Memory
Controller

Switch

Processing Element (PE)
External
Memory

Communication
Unit

P

DMA

Local
Mem.

PE-to-
PE

Mux 0

Fig. 1. The proposed many-core platform.

memory is realized by a single-port SRAM and wrapped with
the local system bus interface. The DMA is responsible for
moving bulk data between the local memory and the external
memory. The PE-to-PE unit adopts point-to-point message-
passing mechanism for inter-PE communication.

Note that the external memory in our platform is a shared
memory for data storage and visible to all PEs. Each PE
can access the external memory via the DMA unit. On the
other hand, the local memory, which is the main memory of
the microprocessor, is a private memory and only visible to
the associated PE. A data variable in a parallel application
(resided in the local memory of each PE) could have different
value but the same address with respect to each PE. In
addition, considering the address space in our platform, each
PE accesses its own local memory starting from the address
0x0, and all PEs see the global external memory starting from
the address 0x10000000.
A. The Microprocessor

Our microprocessor is based on OpenRISC CPU [10],
because of its open source architecture and convenient GNU
tool chain. The CPU is a five-stage pipelined 32-bit RISC
architecture with separate instruction and data caches/MMUs
(Memory Management Units). The sizes of instruction cache
can be configured from 512 bytes to 32 KB, while the size of
data cache ranges from 4 KB to 32 KB. Note that the cache
line is 16-byte wide except the cache of 32 KB, which is 32-
byte wide. All MMUs and caches can be removed to minimize
the hardware area. The design exploration by using different
sizes of instruction and data caches is addressed in Sec. IV in
a case study of JPEG encoding.
B. The Proposed Communication Unit and Parallel Program-
ming Library

Our communication unit comprises a DMA unit and a PE-
to-PE unit. The DMA unit is based on the WISHBONE DMA
IP core [11], and we replaced one of the interfaces with OCP
master interface to connect with our network switch, as shown
in Fig. 2(a). Each PE can read/write data from/to the external
memory via its DMA unit to relieve the microprocessor from
heavy memory routines. On the other hand, Fig. 2(b) shows
the proposed PE-to-PE communication unit. There are four
types of FIFOs in the PE-to-PE unit for our message-passing

(b)

Local System Bus Slave I/F

PE-to-PE Engine

Tx
Data
FIFO

Rx
Ctrl.
FIFO

Rx
Header
FIFO

Rx
Data
FIFO

OCP Master I/F OCP Slave I/F

(a)

Local System Bus Master and Slave I/F

OCP Master I/F

DMA Engine

M
ux
0

Channel 0

Channel 1

Channel n-1
⁞

Prioritizing
Arbiter

Channel
Priorities

Fig. 2. (a) The DMA unit and (b) the PE-to-PE communication unit.

flow control protocol. Inter-PE message-passing is done by
the PE-to-PE units in both sender and receiver PEs, instead
of putting the message into the remote local memory of the
receiver by the sender directly.

Both the DMA unit and the PE-to-PE unit can be
programmed by using C-based primitive functions through
memory-mapped I/O technique. To develop practical parallel
applications, we build the parallel programming library to
utilize the DMA unit and the PE-to-PE unit. By using the
PE-to-PE unit, there are functions for point-to-point com-
munication with and without robust flow control protocol
between PEs. For example, send() and recv() are a pair of
functions for transferring variable length of messages between
two PEs with flow control protocol. In addition, utility func-
tions for the DMA unit are also provided. As an example,
the function start dma(), which is similar to the built-in
function memcpy(), triggers the DMA unit to transfer bulk
data from source address to destination address. The source
and destination addresses can be both in the private local
memory, both in the external memory, or one in the private
local memory and the other in the external memory.

III. THE PROPOSED FILE HANDLING APPROACHES IN THE
BARE-METAL MANY-CORE PLATFORM

Most of practical multimedia applications, such as image
processing and 3D graphic rendering, involve frequently ma-
nipulation of massive files. Among the widespread file han-
dling functions, fopen(), fseek(), fread(), and fwrite() are
the most indispensable functions for multimedia applications.
However, the proposed many-core platform is a bare-metal
application processor, i.e., there is no file-system support by
OS. In addition, to implement a versatile file-system requires
extra libraries, which increases the minimum requirement of
local memory without page swapping for each PE. Note that
once the minimum requirement of local memory without page
swapping for each PE exceeds the size of local memory,
either a larger local memory or extra timing overhead for page
swapping is needed.
A. Local Memory-Based File Handling Approach

An eight-bit byte is usually the most atomic block of
multimedia files. For example, a raw colored pixel is typically
represented by three bytes such as Red (R), Green (G), and
Blue (B), each color information is sampled by one byte.

1. unsigned char lena512[] = {0xe9, 0x9a, 0x8f, · · ·
· · · , 0xc7, 0x5c, 0x64};
· · ·

2. int main(){
· · ·

3. char *ifile;
· · ·

4. ifile = lena512;
· · ·

5. return 0;
6. }

Fig. 3. Open a simulated file by using the local memory-based approach.

1. int main(){
· · ·

2. int seek val, num;
· · ·

3. ifile += seek val;
4. memcpy((char *) dest, ifile, num);

· · ·
5. return 0;
6. }

Fig. 4. Reposition the position indicator of a simulated file and read data from
the simulated file by using the local memory-based approach.

Without file-system support by OS, we first decompose a
multimedia file into an array of characters to represent the
file. The preprocessing can be done by a host processor with
OS.

By using our local memory-based file handling approach,
we embed the resultant array in the program. As shown in
Fig. 3, the array lena512 embodies a simulated file in a bare-
metal environment. There can be multiple simulated files in a
program. In addition, we substitute a pointer to a character for
the pointer to a file. To open a simulated file, we just assign
the address of the simulated file, i.e., the address of the first
byte of the array, to the character pointer. As an example, in
Fig. 3, we open a simulated file lena512 by assigning the
address of lena512 to the character pointer ifile.

For parallel multimedia applications, to adjust the position
indicator of an opened file, i.e., the function fseek(), is
necessary for data partition among multiple processor cores.
Since we use a character pointer to locate the simulated file,
to reposition the position indicator can be accomplished by
simply modifying the value of the character pointer, e.g., the
line 3 of Fig. 4. In addition, the built-in function memcpy()
is used to replace the function fread(). As an example, in the
line 4 of Fig. 4, memcpy() copies the value of num bytes
from the current position indicator of the simulated file ifile to
a certain memory block pointed by dest in the local memory.

To write data to a simulated file, we first specify a reserved
address for the output simulated file. The address is also
located in the local memory. As shown in Fig. 5, the address
OUT FILE BASE is reserved for an output simulated file.
Again, there can be multiple output simulated files in the
program, we use a pointer to a character to access the output
simulated file (see line 4 of Fig. 5). We also utilize the function
memcpy() to move data to the position of the output simulated
file. In addition, we use the function sim file end() to set

1. #define OUT FILE BASE 0x00300000
· · ·

2. int main(){
· · ·

3. char *ofile;
· · ·

4. ofile = (char *) OUT FILE BASE;
· · ·

5. memcpy(ofile, (char *) src, num);
6. sim file end(OUT FILE BASE+num);

· · ·
7. return 0;
8. }

Fig. 5. Write data to a simulated file by using the local memory-based
approach.

a special register in the PE for the address of the last byte of
the output simulated file.

At the end of a parallel multimedia application, the host
processor reads the special register in each PE to know the
size of the output simulated file of each PE. The host processor
then dumps fragments of the output simulated file in the local
memories to form the resultant file.

The local memory-based file handling approach straight-
forwardly imitates the original file handling functions. This
approach is simple and easy to implement. But this approach
embeds the input files in the program, which will increases the
minimum requirement of local memory without page swap-
ping. In addition, by using the local memory-based approach,
the input files can only be configured at compile-time, which
limits the flexibility of the program.
B. External Memory-Based File Handling Approach

Instead of embedding input simulated files into the pro-
gram, our second approach puts the files into the exter-
nal memory. Only starting addresses of the input simu-
lated files are specified in the program, e.g., the address
EXT MEM LENA512 BASE in Fig. 6. Content of the
files only needs to be placed into the external memory by the
host processor before the require time of individual files. The
manipulation of a pointer to a character is also used to realize
linking to a file and modifying the position indicator of an
opened file in a bare-metal environment (see line 5 and line 6
of Fig. 6).

Different from the local memory-based approach, the exter-
nal memory-based file handling approach adopts the proposed
DMA utility to read/write data from/to a remote file in the
external memory. As shown in Fig. 6 and Fig. 7, the function
start dma() is utilized to substitute for both fread() and
fwrite(). Since there is only one external memory in current
prototype platform, the PEs take turns to access the external
memory, which will lead to extra performance overhead. In
case of adopting multiple external memories, data partition
among the memories should be handled by the host processor
in advance.

Because the external memory is shared to all PEs, race
condition may occur when multiple PEs intend to write data
to the same output simulated file in the external memory. To
guarantee every block of the file will not be modified by

1. #define EXT MEM LENA512 BASE 0x10200000
· · ·

2. int main(){
· · ·

3. char *ifile;
4. int seek val, num;

· · ·
5. ifile = (char *) EXT MEM LENA512 BASE;

· · ·
6. ifile += seek val;
7. start dma((char *) dest, ifile, num);

// Transfers data of num bytes from ifile to dest
· · ·

8. return 0;
9. }

Fig. 6. Open a simulated file, reposition the position indicator, and read data
from the simulated file by using the external memory-based approach.

1. #define EXT MEM OUT FILE BASE 0x10300000
2. #define EXT MEM OUT FILE END 0x10100000

· · ·
3. int main(){

· · ·
4. char *ofile;
5. int ostart, num;
6. if(ID == FIRST CORE)
7. ostart = EXT MEM OUT FILE BASE;

· · ·
8. if(ID != FIRST CORE)
9. recv(ID-1, &ostart, 4);

// Gets data of 4 bytes from prior core and stores the data to ostart
10. ofile = (char *) ostart;

· · ·
11. start dma((char *) ofile, (char *) src, num);
12. ostart += num;
13. if(ID != LAST CORE)
14. send(ID+1, &ostart, 4);

// Sends data of 4 bytes from ostart to next core
15. else
16. start dma((char *) EXT MEM OUT FILE END, &ostart, 4);

· · ·
17. return 0;
18.}

Fig. 7. Write data to a simulated file by using the external memory-based
approach.

more than one PE, we coordinate the PEs by passing the
position indicator of the file between the PEs. The position
indicator represents the address of the last valid byte of the
output simulated file in the external memory at present. As
shown in Fig. 7, the first PE starts with a specified beginning
address of the output simulated file (see line 6 and line
7). Except the first PE, every PE cannot write data to the
simulated file in the external memory until the PE receives
the position indicator passed from its previous neighbor PE
(see line 8 to line 11). Note that word alignment needs to be
manipulated for word-based DMA unit when writing data to
external memory, because the position indicator is not always
an integral multiple of four bytes (i.e., one word). After writing
data to the simulated file, the PE (except the last one) sends
the current position indicator of the file to its adjacent PE. At
the end, the last PE sends the address of the last byte of the
file to the external memory for the host processor, e.g., line 16
in Fig. 7. Also, the host processor dumps the output simulated

file from the external memory to form the resultant file.
Compared with the local memory-based file handling ap-

proach, the external memory-based approach is more compli-
cated. There will be additional timing overhead for coordinat-
ing the PEs and moving data between memories. However,
by using the external memory-based approach, the input
simulated files can be configured at run-time to improve
the flexibility of the applications. In addition, the minimum
requirement of local memory without page swapping can be
significantly reduced.

IV. DESIGN ANALYSIS AND EXPLORATION
The prototype platform of our many-core architecture has

been implemented in both Verilog HDL (RTL) and SystemC
(ESL). The RTL one was synthesized by using TSMC 0.13-
μm CMOS technology with operating frequency of 100MHz.
Realistic parallel multimedia applications, such as JPEG en-
coding and object tracking, can be evaluated in our platform.
In this section, the design exploration among area and speed is
made in a case study of JPEG encoding. Because JPEG encod-
ing is a typical and extensively used multimedia application.
We assume the external memory is an off-chip/off-die memory,
area of the external memory is excluded in our analysis.
The characteristics of our many-core platform are extracted
from the ASIC synthesis and simulation results. For the
simplification, operation cycles discussed in the exploration
do not include those for preparing input simulated file and
dumping output simulated file by the host processor.

Table I compares the proposed two memory-based file
handling approaches for JPEG encoding with one, two, four,
eight, and sixteen working PEs. The third and the fifth columns
denote the minimum requirement of local memory without
page swapping for each PE. Different from the task-level
parallelism in [3], we adopt data-level parallelism for JPEG
encoding in our platform. A raw bitmap picture is partitioned
into several independent parts, and these parts are concurrently
manipulated by the PEs. The benchmark is a raw bitmap
picture of 512×512 pixels. Considering the serial execution
with one working PE, the number of cycles by using external
memory-based approach is about 12.84% more than the one
using local memory-based approach, because the overhead
of moving data between the external memory and the PEs.
Moreover, because the need of coordinating PEs to avoid race
condition when writing data to external memory, the speed
overhead of parallel execution using external memory-based
approach is increased to between 14.17% and 15.38%.

However, the local memory-based file handling approach
reserves memory blocks of about 3 MB in program to store
input and output simulated files. In addition, all of the in-
termediate data during JPEG encoding are also stored in the
local memory. Accordingly, each PE requires local memory
of at least 4 MB in case of no page swapping. On the other
hand, the external memory-based file handling approach keeps
input and output simulated files in the external memory. Only
a macroblock of 16×16 pixels (i.e., 768 bytes) is fetched into
the local memory at a time. Intermediate data are also sent
back to the external memory. The minimum requirement of

TABLE I
THE CYCLES AND MINIMUM REQUIREMENT OF LOCAL MEMORY WITHOUT
PAGE SWAPPING FOR JPEG ENCODING BY USING PROPOSED LOCAL AND

EXTERNAL MEMORY-BASED FILE HANDLING APPROACHES.

Number of Local Mem.-Based External Mem.-Based Speed Overhead
Working Cycles∗ Local Cycles∗ Local

(B−A
A × 100%)

PE (A) Mem.† (B) Mem.†

1 83.31M

4 MB

94.01M

64 KB

12.84%
2 42.41M 48.42M 14.17%
4 21.73M 24.99M 14.97%
8 11.42M 13.17M 15.38%
16 6.29M 7.23M 14.94%

∗No page swapping is occurred; †The minimum requirement of local memory without
page swapping for each PE.

local memory without page swapping for each PE by using the
external memory-based approach can therefore be significantly
reduced by about 98.44% as compared with that using local
memory-based approach.

In addition, compared with the serial one, the parallel
processor using 16 PEs with local memory-based file handling
approach is 13.24 times faster in terms of cycles, and 13.00
times faster with external memory-based approach, respec-
tively. The overhead of coordinating PEs and the external
memory degrades the benefit of parallelism a little, but reduces
the minimum requirement of local memory without page
swapping for each PE from 4 MB to 64 KB in return. The com-
parison indicates that the external memory-based approach is
effective to the many-core processor architecture with realistic
multimedia applications in a bare-metal environment.

The operation cycles in Table I are obtained by configuring
the microprocessor in each PE with instruction cache of 4 KB
and without data cache. To further analyze the effectiveness of
instruction and data caches, we explore the design space by us-
ing different sizes of instruction and data caches. In this work,
we focus on the design space of parallel processors using 16
PEs with external memory-based file handling approach.

Fig. 8 plots the operation cycles of the parallel processors
with different sizes of instruction cache for JPEG encoding. To
stress the effectiveness of instruction cache, data cache is re-
moved in this experiment. By using an instruction cache of 512
bytes, the operation cycles can be reduced by about 51.34%
compared with that without cache. The number of cycles can
be further reduced by increasing the size of instruction cache.
However, configurations with instruction cache more than 8
KB cannot obtain more improvement.

The JPEG encoding iteratively performs a sequence of
instructions, e.g., fetching a macroblock, converting the repre-
sentation of color, DCT (Discrete Cosine Transform), quanti-
zation, and Huffman encoding. Using instruction cache can
effectively reduce the number of cycles by storing those
instructions in the cache. However, in our experiment, the
size of the instructions iteratively used for JPEG encoding is
about 6 KB. Using instruction cache more than 8 KB therefore
cannot improve the performance further.

On the other hand, we also analyze the effectiveness of
data cache for JPEG encoding. The operation cycles of the
parallel processors with different sizes of data cache is shown

O
pe

ra
tio

n
C

yc
le

s

0

2M

4M

6M

8M

10M

12M

14M

16M

512B 4KB 8KB 16KB 32KB

Size of Instruction Cache

16.21M

7.89M
7.23M 7.20M 7.21M 7.20M

Fig. 8. The operation cycles of the parallel processors using 16 PEs with
different sizes of instruction cache (without data cache) for JPEG encoding.

32KB16KB8KB4KB

Size of Data Cache

0

6M

8M

2M
4M

10M
12M
14M
16M
18M

O
pe

ra
tio

n
C

yc
le

s

16.24M16.21M 16.23M 16.24M 16.18M

Fig. 9. The operation cycles of the parallel processors using 16 PEs with
different sizes of data cache (without instruction cache) for JPEG encoding.

in Fig. 9. Similar to the above experiment, instruction cache
is removed to focus on data cache. With data cache, the
microprocessor tends to store copies of used data into the
cache for future reference. However, as we mentioned before,
the JPEG encoding iteratively fetches a new macroblock from
external memory to local memory by utilizing the DMA
unit. To guarantee the consistency between data cache and
local memory, it involves extra overhead to invalidate the
corresponding cache blocks. Consequently, using data cache
for JPEG encoding does not always improve performance.
The cache line in data cache of 32 KB is two times the size
as compared with other configurations, which can reduce the
overhead of ensuring data consistency.

The AT comparison of parallel processors with different
sizes of instruction and data caches for JPEG encoding is
shown in Fig. 10. All the AT products are normalized to the
smallest one, i.e., AT of the configuration with instruction
cache of 4 KB and without data cache. It is obvious that the
processors without data cache are more AT efficient. The ex-
ploration of the trade-off between area and speed indicates that
adopting more and larger caches does not always guarantee the
improvement. Designers should optimize the system from the
viewpoints of hardware and software altogether.

V. CONCLUSIONS

We have presented a design framework to accomplish
realistic parallel multimedia applications in a bare-metal en-
vironment. The design framework consists of a many-core

8KB
4KB

0

032KB16KB8KB4KB512B

2

3

1 16KB
32KB

Normalized AT

Size of Instruction Cache
Size of Data Cache

Fig. 10. AT comparison of the parallel processors using 16 PEs with different
sizes of instruction and data caches for JPEG encoding.

processor architecture, a parallel programming library, and two
memory-based file handling approaches (i.e., local memory-
based and external memory-based, respectively). A prototype
many-core platform using network-based interconnection has
been implemented with sixteen PEs and one external memory.
The proposed external memory-based file handling approach
can reduce the minimum requirement of local memory without
page swapping for each PE by 98.44% with affordable speed
overhead as compared with the local memory-based approach
in a case study of JPEG encoding. The cost-effectiveness trade-
off among a variety of design configurations has been inten-
sively evaluated systematically. The implementation result and
analysis justify the effectiveness of our design framework for
practical multimedia applications in a bare-metal many-core
environment.

ACKNOWLEDGEMENT
This work was supported in part by National Science Council,

Taiwan, under Contract NSC 100-2628-E-007-009 and NSC 101-
2220-E-007-026 and by Industrial Technology Research Institute of
Taiwan, ROC.

REFERENCES

[1] E. Waingold et al., “Baring it all to software: Raw machines,” IEEE
Computer, vol. 30, no. 9, pp. 86–93, Sept. 1997.

[2] M. B. Taylor et al., “The Raw microprocessor: A computational fabric
for software circuits and general-purpose programs,” IEEE Micro, vol.
22, no. 2, pp. 25–35, Mar. 2002.

[3] B. Baas et al., “AsAP: A fine-grained many-core platform for DSP
applications,” IEEE Micro, vol. 27, no. 2, pp. 34–45, Mar. 2007.

[4] D. N. Truong et al., “A 167-processor computational platform in 65
nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 44, no. 4, pp.
1130–1144, Apr. 2009.

[5] S. Bell et al., “TILE64TM-processor: A 64-core SoC with mesh
interconnect,” in Proc. IEEE Int. Solid-State Cir. Conf. (ISSCC), San
Francisco, Feb. 2008, pp. 88–598.

[6] S. R. Vangal et al., “An 80-tile sub-100-W TeraFLOPS processor in
65-nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 43, no. 1, pp.
29–41, Jan. 2008.

[7] J. Howard et al., “A 48-core IA-32 processor in 45 nm CMOS using
on-die message-passing and DVFS for performance and power scaling,”
IEEE Journal of Solid-State Circuits, vol. 46, no. 1, pp. 173–183, Jan.
2011.

[8] T. G. Mattson et al., “The 48-core SCC processor: the programmer’s
view,” in Proc. Int. Conf. High Performance Computing, Storage and
Analysis (SC), Nov. 2010, pp. 1–11.

[9] OCP-IP, Open Core Protocol Release 2.2, OCP-IP Association,
Redwood City, Jan. 2007.

[10] OpenCores, “OpenRISC 1000 architecture manual,” http://opencores.org
/or1k/Main Page, June 2011.

[11] OpenCores, “WISHBONE DMA/bridge IP core,” http://opencores.org
/project,wb dma, Mar. 2009.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

