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Abstract—Belief propagation (BP) is a commonly used global estimated disparity map. In order to maintain the accuthey,
energy minimization algorithm for solving stereo matchingprob-  Jocal messages are reconstructed by taking advantage of the
lem in 3D reconstruction. However, it requires large memory —ghared memory available in Graphic Processing Units (GPU).
bandwidth and data size. In this paper, we propose a novel Th - | It sh h h d hod
memory-efficient algorithm of BP in stereo matching on the e .experlmenta result shows that t.e propose met. o
Graphics Processing Units (GPU). The data size and transfer requires less memory space and bandwidth than conventional
bandwidth are significantly reduced by storing only a part ofthe algorithms. It also shows that we can obtain high speedup
whole message. In order to maintain the accuracy of the matéhg when the proposed method is implemented on GPU.

result, the local messages are reconstructed using sharecemory : : : : :
available in GPU. Experimental result shows that there is ahost This paper is organized as follows. We briefly describe

an order of reduction in the global memory consumption, and _hOW be_lief propagat_ion is used to perform stereo matching
21 to 46% saving in memory bandwidth when compared to the in Section Il. In Section Ill, the proposed method is expdain
conventional algorithm. The implementation result on a reent in detail. The experimental results are shown in Section IV.

GPU shows that we can obtain 22.8 times speedup in execution,:ina”y we give a conclusive remark in Section V.
time compared to the execution on CPU. '

|. INTRODUCTION Il. BELIEF PROPAGATION IN STEREOMATCHING
Stereo matching is one of the most fundamental tech-Stereo matching is a process of finding the distance to
nique that can be used for 3-dimensional reconstructioe. T@bjects with two cameras. The distance is measured by find-
problem is first formulated as a label assignment probleitg the correspondence between pixels in the left and right
in a probabilistic graphical model such as Markov randofmages. This matching problem can be solved by minimizing
field (MRF). Next, it is solved by well-established globathe energy function”Z, which models the cost of assigning
energy minimization algorithms such as belief propagatighisparity label to each pixeE is composed of data matching
(BP) or graph cuts (GC). cost energylr; and smoothness enerdy;:
However, one of the bottleneck of such global algorithms
is that they require large memory bandwidth and space. This
problem becomes more severe in BP algorithm. Although BP  E = Eq+ Es = de(lp> +A Z Voallp,lg) (1)
has advantage in terms of its intrinsic parallel charastieriit P (p,a)
requires large memory space that increases linearly with bo _ _ o
the number of pixels ) and the number of labeld.}. This Whered,(l,) is the matching cost of assigning labgl to

is much larger than GC, which only requires memory spa@&€! p- V5,4(lp, l4) is the smoothness cost of assigning labels
linear to N. l, andl, to neighboring pixely and g, and X is the weight

Thus, our aim is to devise an efficient BP algorithm whicﬂf the smoothness cost. Note that we use the truncated linear

is suitable for memory-efficient MRF-based energy minimiz4!"Ction to model the smoothness cost.

tion. We concentrate on two aspects: reducing data size and” c&n be minimized by loopy BP algorithm [5]. BP operates

transfer bandwidth. There are two common approaches % Passing messages to the neighbors. A new message is

solve this problem, namely reducing number of labéls, ( constructed by the following equation:

reduction in disparity range) [7][8] and reducing number of

pixels (.e. reduction in spatial domain) [3]. The proposed _ B

method follows the second type of approach. Note that thes@fﬁq(lq) = ming, [dp(lp) + AVpq(lp, lg) + ZmZJp(lp)]

techniques are not exclusive of each other, but can be com- ° @)

bined t(,) obtain better result. . wheret and¢—1 denotes the current and previous iteration, and
In this paper, we propose a novel memory-efficient 'f;lp(lp) refer to the messages from neighboring pixelg of

gorithm for BP. The data size and transfer bandwidth |5 cent the pixel;. This message passing process is repeated
significantly reduced by storing only a part of the whole i the algorithm converges.

message. This approach, however, reduces the accuraoy of th
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Fig. 1. Data transfer in the proposed algorithm.
Fig. 2. On-the-fly boundary message reconstruction.

IIl. ON-THE-FLY RECONSTRUCTION OF
LocAL MESSAGES B. Boundary Message Reconstruction

The problem with the proposed method explained in the
previous section is that the representative message fragh-ne
Due to the ever-increasing difference between slow memd?gring block only has low-resolution information. It doestn
and fast compute devices, many modern computing systeh@ve detailed information of each pixel.
are heavily utilizing local memory. Examples of such system Thus, we propose on-the-fly reconstruction of the neighbor-
includes shared memory in GPUs, block RAMs in FPGA#g blocks’ pixel-wise messages, in addition to the reawrest
and scratchpad memory in embedded systems. In this pajien of messages of the current block. The neighboring tdock
we take advantage of such architecture to reduce memangssage reconstruction process is similar to that of thecur
bandwidth and the global memory size. block - the message passing is performed until convergence.
The intuition of the proposed method comes from théfter convergence, only the message to the current block is
observation that most messages in the neighboring pixels &fved - the rest of the messages is discarded, as shown in
highly correlated. This suggests that we could use only ofitg. 2.
message value to represent the messages in the neighborhoddom the perspective of [3], the proposed algorithm can
However, performing BP based on such naive approach wi¢ seen as on-the-fly boundary message reconstruction. [3]
inevitably reduce the quality of the estimated disparitypmaproposesstoring all boundary message, whereas the proposed
Thus, we propose a new method of reconstructing the lo@gorithm saves memory space by only storing represestativ
messages using shared memory in GPU. message anikconstructing all boundary messages. Due to the
The local messages are reconstructed with the block&constructed boundary messages, the proposed algotithm s
representative message and each pixel'’s matching cost. Pw@intains comparable energy minimization performance Th
example, if the image is divided intox# pixel blocks, only 1 Proposed algorithm requires less memory space and barfdwidt
representative message is read or written to the global memd@ince only a singular value is stored among all pixels of this
However, the matching costs for all 16 pixels are used fock.
reconstruct the local messages. For the representatieages ~ Note that due to the additional message passing in the neigh-
we simply use averaged value of the 16 messages. Note tp@ting blocks, the computation demand increases compared t
the matching cost is computed on-the-fly using left/righagra  original BP. However, this overhead is alleviated by reduce
intensity values, as suggested in [3]. data bandwidth and abundant compute devices in GPUs.
In order to reconstruct messages, first, all pixels withm th
block are initialized with the representative value. Nexg C. Implementation Details
iteratively perform message passing within the block until

¥ ol formi . For implementation, we have to decide 3 types of iteration
convergence. HOwever, simply performing message passiiigyper: the number of iteration performed to pass messages

yvithin th_e block will not work correctly, be_cause there is n%mong the blocks (outer iter num), the number of iteration
|nforr|nat|r(1)n at?(m:ct :hre] messages ffromt(;]utsmte .tgettr)]loi)lf‘ ’TQB%rformed inside the block (inner iter num), and the number
we asI(: a;/et IO feSc messa%ef_ roml € ou S(; € el' (ic -iSiteration performed to construct boundary message énsid
a retsu ' al ota qth trr]ep_retsen? 'V? va l;]e (.uPi .0\?/:’ h‘gh "' the block (boundary iter num). The final energy level deasas

center), along wi € Intensity of each pIxe,, IS Telc as these iteration number increases, at the cost of adalition

the global memory. This process is depicted in Fig. 1. computation. These parameters were decided experimentall

A. Principles



TABLE |
EXPERIMENTAL RESULT ONTSUKUBA IMAGE

Bad Final Num of Consumed Consumed | Locak-Global
Block | Hier. | Outer Inner Boundary| Pixel Minimized Message Local Global Data
Size level iter iter iter (%) Energy Comp. (M) | Memory (KB) Memory (MB) TRX(MB)
Hier BP-M - 6 5 - 1.75 303,173 2.9 - 34 765
4x4 5 5 - 3.45 293,327 22 5.4 6.8 160
Tile BP 8x8 5 5 - 3.08 296,479 22 21 3.4 84
16x16 5 10 - 2.77 296,973 44 83 1.7 46
4x4 5 5 3 1.98 309,427 37 7.4 17 127
Proposed 8x8 5 5 3 2.33 298,773 37 26 0.42 48
16x16 5 10 5 3.13 290,515 64 97 0.11 25
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Fig. 3. Comparison between hierarchical BP-M, tile-baséd d@d the proposed method on Tsukuba (3348), Venus (434 383), Teddy (456 375), Cones
images (45& 375). The block size is88. (a) Minimized energy. (b) Number of message computationConsumed global memory. (d) Globkalocal data
transaction.

by increasing its value until the final energy converged to aunter that was triggered whenever such event has occurred

minimum point. Also, for fair comparison, we have matched the iteration
For fast convergence, we apply hierarchical method [Bumber of tile-based BP and the proposed method.

before performing the proposed algorithm. For example, if

the target block size is»83, the hierarchical BP from level B. Performance

6 (64x64 block) to level 3 (&8 block) would be performed  The performance of the compared algorithms is shown as

first. Then, the proposed algorithm would be applied. Thie final minimized energy level in Table | and Fig. 3 (a). It

technique improves the minimization performance at thé cQn also be judged from the percentage of non-occludedspixel

of small increase in execution time. ~ that has more than 1 label difference from the true disparity
We adopt asynchronous update scheme proposed in {8l (‘bad-pixel’). The result shows that the proposed metho

(‘BP-M’) to accelerate convergence. We also use fast m@ssags comparable performance to the original hierarchicaVBP

update technique in [2] to reduce the amount of computatiofag the tile-based BP. As an example, the disparity maps for

IV, EXPERIMENTAL RESULTS Tsukuba and Venus images are shown in Fig. 4.

A. Experimental Setup C. Memory Resource Consumption

For experiment, we use Tsukuba, Venus, Cones, Teddyf the total number of pixels in the entire image/isand the
stereo test images from Middlebury website [4]. The inputumber of pixels in the block i87/, the total global memory
images were smoothed with Gaussian filker= 0.7, and we size requirement of the proposed algorithmNgA/. This is
use smoothness weight af= 8, 4, 20, 15 for Tsukuba, Venus, large improvement over the hierarchical BP-W) and the
Teddy, Cones images, respectively. The test result for Tisak tile-based BP AN/M?z). As mentioned in Section IIl, this
image is shown in detail in Table I. The result for the rest dmprovement is from the fact that only signle pixel out of
the images is shown in Fig. 3. M pixels requires data storage space in the global memory.

Table | and Fig. 3 show the result for energy minimizatiofable | and Fig. 3 (c) confirm that there is almost an order
performance, memory resource consumption, and comput-magnitude reduction. The saving becomes larger as the
tional complexity. For comparison purpose, they also shmv tblock size increases. As a result, the proposed method sllow
result for our implementation of hierarchical BP-M and -tilehigher resolution images to fit into systems with smallebglo
based BP [3]. The values for tile-based BP and the proposae¢mory space.
method in Fig. 3 are normalized to that of hierarchical BP-M. Since only single representative value is read from or emitt

Note that the number of message passing computatimnglobal memory, the proposed algorithm also saves local to
and global memory transfer was obtained by reading fromgéobal data transfer bandwidth. As observed in Table | and
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Fig. 4. Depth map obtained for Tsukuba and Venus testsdp)(&gft image. (b)(h) Right image. (c)(i) Ground truth. (@@)Hierarchical BP-M. (e)(k)
Tile-based BP. (f)(l) Proposed algorithm.
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Fig. 3 (d), the proposed method requires 21 to 46% lebsttleneck problem becomes more severe, we expect further
bandwidth than the tile-based BP, and much less than thevings with the proposed algorithm.

hierarchical BP-M. As a result, the proposed method willseau

less memory contention problem and leads to faster exerutio V. CONCLUSION

time in systems with memory bottleneck problem. In this paper, we have described a new memory-efficient

D. Computational Complexity algorithm of BP in stereo matchirjg. We have p_roposed on-
) o the-fly local message reconstruction method using matching
It is known that the total amount of computation is almog{yst and reconstructed boundary message. The experimental
proportional to the number of message passing computatiiy it on Middlebury test images showed that, at the cost of
[1]. Thus, the number of message passing computation g,y 45 to 68% increase in the computation, almost an order
prowded_ in Table | and Fig. 3 (b) to infer the computaﬁuon%f magnitude savings in global memory space and 21 to 46%
complexity. They show that tf;e amount of computation i§,yings in memory bandwidth was obtained compared to the
increased by about 45 to 68% compared to the file-basgglentional algorithm. GPU implementation of the progbse

BP. Such overhead, which was caused by the on-the-fiiyqrithm shows 22.8 times speedup in execution time.
reconstruction of the boundary messages, is the main tiorita
of the proposed algorithm. REFERENCES
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