
Memory-Efficient Belief Propagation in
Stereo Matching on GPU

Young-kyu Choi, Williem, and In Kyu Park
Inha University, Incheon 402-751, Korea

E-mail: {ykchoi@cs.ucla.edu, williem060689@hotmail.com, pik@inha.ac.kr}

Abstract—Belief propagation (BP) is a commonly used global
energy minimization algorithm for solving stereo matchingprob-
lem in 3D reconstruction. However, it requires large memory
bandwidth and data size. In this paper, we propose a novel
memory-efficient algorithm of BP in stereo matching on the
Graphics Processing Units (GPU). The data size and transfer
bandwidth are significantly reduced by storing only a part of the
whole message. In order to maintain the accuracy of the matching
result, the local messages are reconstructed using shared memory
available in GPU. Experimental result shows that there is almost
an order of reduction in the global memory consumption, and
21 to 46% saving in memory bandwidth when compared to the
conventional algorithm. The implementation result on a recent
GPU shows that we can obtain 22.8 times speedup in execution
time compared to the execution on CPU.

I. I NTRODUCTION

Stereo matching is one of the most fundamental tech-
nique that can be used for 3-dimensional reconstruction. The
problem is first formulated as a label assignment problem
in a probabilistic graphical model such as Markov random
field (MRF). Next, it is solved by well-established global
energy minimization algorithms such as belief propagation
(BP) or graph cuts (GC).

However, one of the bottleneck of such global algorithms
is that they require large memory bandwidth and space. This
problem becomes more severe in BP algorithm. Although BP
has advantage in terms of its intrinsic parallel characteristic, it
requires large memory space that increases linearly with both
the number of pixels (N ) and the number of labels (L). This
is much larger than GC, which only requires memory space
linear toN .

Thus, our aim is to devise an efficient BP algorithm which
is suitable for memory-efficient MRF-based energy minimiza-
tion. We concentrate on two aspects: reducing data size and
transfer bandwidth. There are two common approaches to
solve this problem, namely reducing number of labels (i.e.
reduction in disparity range) [7][8] and reducing number of
pixels (i.e. reduction in spatial domain) [3]. The proposed
method follows the second type of approach. Note that these
techniques are not exclusive of each other, but can be com-
bined to obtain better result.

In this paper, we propose a novel memory-efficient al-
gorithm for BP. The data size and transfer bandwidth is
significantly reduced by storing only a part of the whole
message. This approach, however, reduces the accuracy of the

estimated disparity map. In order to maintain the accuracy,the
local messages are reconstructed by taking advantage of the
shared memory available in Graphic Processing Units (GPU).
The experimental result shows that the proposed method
requires less memory space and bandwidth than conventional
algorithms. It also shows that we can obtain high speedup
when the proposed method is implemented on GPU.

This paper is organized as follows. We briefly describe
how belief propagation is used to perform stereo matching
in Section II. In Section III, the proposed method is explained
in detail. The experimental results are shown in Section IV.
Finally, we give a conclusive remark in Section V.

II. B ELIEF PROPAGATION IN STEREOMATCHING

Stereo matching is a process of finding the distance to
objects with two cameras. The distance is measured by find-
ing the correspondence between pixels in the left and right
images. This matching problem can be solved by minimizing
the energy functionE, which models the cost of assigning
disparity label to each pixel.E is composed of data matching
cost energyEd and smoothness energyEs:

E = Ed + Es =
∑

p

dp(lp) + λ
∑

(p,q)

Vp,q(lp, lq) (1)

where dp(lp) is the matching cost of assigning labellp to
pixel p. Vp,q(lp, lq) is the smoothness cost of assigning labels
lp and lq to neighboring pixelsp and q, andλ is the weight
of the smoothness cost. Note that we use the truncated linear
function to model the smoothness cost.
E can be minimized by loopy BP algorithm [5]. BP operates

by passing messages to the neighbors. A new message is
constructed by the following equation:

mt
p→q(lq) = minlp [dp(lp) + λVp,q(lp, lq) +

∑

o

mt−1
o→p(lp)]

(2)
wheret andt−1 denotes the current and previous iteration, and
mt−1

o→p(lp) refer to the messages from neighboring pixels ofp
except the pixelq. This message passing process is repeated
until the algorithm converges.



Fig. 1. Data transfer in the proposed algorithm.

III. O N-THE-FLY RECONSTRUCTION OF

LOCAL MESSAGES

A. Principles

Due to the ever-increasing difference between slow memory
and fast compute devices, many modern computing systems
are heavily utilizing local memory. Examples of such system
includes shared memory in GPUs, block RAMs in FPGAs,
and scratchpad memory in embedded systems. In this paper,
we take advantage of such architecture to reduce memory
bandwidth and the global memory size.

The intuition of the proposed method comes from the
observation that most messages in the neighboring pixels are
highly correlated. This suggests that we could use only one
message value to represent the messages in the neighborhood.
However, performing BP based on such naive approach will
inevitably reduce the quality of the estimated disparity map.
Thus, we propose a new method of reconstructing the local
messages using shared memory in GPU.

The local messages are reconstructed with the block’s
representative message and each pixel’s matching cost. For
example, if the image is divided into 4×4 pixel blocks, only 1
representative message is read or written to the global memory.
However, the matching costs for all 16 pixels are used to
reconstruct the local messages. For the representative message,
we simply use averaged value of the 16 messages. Note that
the matching cost is computed on-the-fly using left/right image
intensity values, as suggested in [3].

In order to reconstruct messages, first, all pixels within the
block are initialized with the representative value. Next,we
iteratively perform message passing within the block until
convergence. However, simply performing message passing
within the block will not work correctly, because there is no
information about the messages from outside the block. Thus,
we also have to fetch messages from the outside the block. As
a result, a total of 5 representative value (up, down, left, right,
center), along with the intensity of each pixel, is fetched from
the global memory. This process is depicted in Fig. 1.

target
block

discarded

passed to 
target 
block

on-the-fly 
reconstructed 

boundary 
messages

Fig. 2. On-the-fly boundary message reconstruction.

B. Boundary Message Reconstruction

The problem with the proposed method explained in the
previous section is that the representative message from neigh-
boring block only has low-resolution information. It does not
have detailed information of each pixel.

Thus, we propose on-the-fly reconstruction of the neighbor-
ing blocks’ pixel-wise messages, in addition to the reconstruc-
tion of messages of the current block. The neighboring blocks’
message reconstruction process is similar to that of the current
block - the message passing is performed until convergence.
After convergence, only the message to the current block is
saved - the rest of the messages is discarded, as shown in
Fig. 2.

From the perspective of [3], the proposed algorithm can
be seen as on-the-fly boundary message reconstruction. [3]
proposesstoring all boundary message, whereas the proposed
algorithm saves memory space by only storing representative
message andreconstructing all boundary messages. Due to the
reconstructed boundary messages, the proposed algorithm still
maintains comparable energy minimization performance. The
proposed algorithm requires less memory space and bandwidth
since only a singular value is stored among all pixels of this
block.

Note that due to the additional message passing in the neigh-
boring blocks, the computation demand increases compared to
original BP. However, this overhead is alleviated by reduced
data bandwidth and abundant compute devices in GPUs.

C. Implementation Details

For implementation, we have to decide 3 types of iteration
number: the number of iteration performed to pass messages
among the blocks (outer iter num), the number of iteration
performed inside the block (inner iter num), and the number
of iteration performed to construct boundary message inside
the block (boundary iter num). The final energy level decreases
as these iteration number increases, at the cost of additional
computation. These parameters were decided experimentally



TABLE I
EXPERIMENTAL RESULT ONTSUKUBA IMAGE

Bad Final Num of Consumed Consumed Local↔Global

Block Hier. Outer Inner Boundary Pixel Minimized Message Local Global Data

Size level iter iter iter (%) Energy Comp. (M) Memory (KB) Memory (MB) TRX(MB)

Hier BP-M - 6 5 - 1.75 303,173 2.9 - 34 765

Tile BP

4×4 - 5 5 - 3.45 293,327 22 5.4 6.8 160

8×8 - 5 5 - 3.08 296,479 22 21 3.4 84

16×16 - 5 10 - 2.77 296,973 44 83 1.7 46

Proposed

4×4 4 5 5 3 1.98 309,427 37 7.4 1.7 127

8×8 3 5 5 3 2.33 298,773 37 26 0.42 48

16×16 2 5 10 5 3.13 290,515 64 97 0.11 25

(a) (b) (c) (d)

Fig. 3. Comparison between hierarchical BP-M, tile-based BP, and the proposed method on Tsukuba (384×288), Venus (434×383), Teddy (450×375), Cones
images (450×375). The block size is 8×8. (a) Minimized energy. (b) Number of message computation.(c) Consumed global memory. (d) Global↔local data
transaction.

by increasing its value until the final energy converged to a
minimum point.

For fast convergence, we apply hierarchical method [2]
before performing the proposed algorithm. For example, if
the target block size is 8×8, the hierarchical BP from level
6 (64×64 block) to level 3 (8×8 block) would be performed
first. Then, the proposed algorithm would be applied. This
technique improves the minimization performance at the cost
of small increase in execution time.

We adopt asynchronous update scheme proposed in [6]
(‘BP-M’) to accelerate convergence. We also use fast message
update technique in [2] to reduce the amount of computation.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

For experiment, we use Tsukuba, Venus, Cones, Teddy
stereo test images from Middlebury website [4]. The input
images were smoothed with Gaussian filterσ = 0.7, and we
use smoothness weight ofλ = 8, 4, 20, 15 for Tsukuba, Venus,
Teddy, Cones images, respectively. The test result for Tsukuba
image is shown in detail in Table I. The result for the rest of
the images is shown in Fig. 3.

Table I and Fig. 3 show the result for energy minimization
performance, memory resource consumption, and computa-
tional complexity. For comparison purpose, they also show the
result for our implementation of hierarchical BP-M and tile-
based BP [3]. The values for tile-based BP and the proposed
method in Fig. 3 are normalized to that of hierarchical BP-M.

Note that the number of message passing computation
and global memory transfer was obtained by reading from a

counter that was triggered whenever such event has occurred.
Also, for fair comparison, we have matched the iteration
number of tile-based BP and the proposed method.

B. Performance

The performance of the compared algorithms is shown as
the final minimized energy level in Table I and Fig. 3 (a). It
can also be judged from the percentage of non-occluded pixels
that has more than 1 label difference from the true disparity
map (‘bad-pixel’). The result shows that the proposed method
has comparable performance to the original hierarchical BP-M
and the tile-based BP. As an example, the disparity maps for
Tsukuba and Venus images are shown in Fig. 4.

C. Memory Resource Consumption

If the total number of pixels in the entire image isN and the
number of pixels in the block isM , the total global memory
size requirement of the proposed algorithm isN/M . This is
large improvement over the hierarchical BP-M (N ) and the
tile-based BP (4N/M

1

2 ). As mentioned in Section III, this
improvement is from the fact that only signle pixel out of
M pixels requires data storage space in the global memory.
Table I and Fig. 3 (c) confirm that there is almost an order
of magnitude reduction. The saving becomes larger as the
block size increases. As a result, the proposed method allows
higher resolution images to fit into systems with smaller global
memory space.

Since only single representative value is read from or written
to global memory, the proposed algorithm also saves local to
global data transfer bandwidth. As observed in Table I and



(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 4. Depth map obtained for Tsukuba and Venus testset. (a)(g) Left image. (b)(h) Right image. (c)(i) Ground truth. (d)(j) Hierarchical BP-M. (e)(k)
Tile-based BP. (f)(l) Proposed algorithm.

Fig. 3 (d), the proposed method requires 21 to 46% less
bandwidth than the tile-based BP, and much less than the
hierarchical BP-M. As a result, the proposed method will cause
less memory contention problem and leads to faster execution
time in systems with memory bottleneck problem.

D. Computational Complexity

It is known that the total amount of computation is almost
proportional to the number of message passing computation
[1]. Thus, the number of message passing computation is
provided in Table I and Fig. 3 (b) to infer the computational
complexity. They show that the amount of computation is
increased by about 45 to 68% compared to the tile-based
BP. Such overhead, which was caused by the on-the-fly
reconstruction of the boundary messages, is the main limitation
of the proposed algorithm.

E. GPU Implementation

We have implemented the proposed algorithm on NVIDIA
GTX580 GPU running at 3.91GHz with 3GB global memory.
It has 512 CUDA cores in 16 streaming multiprocessors and
48KB shared memory in each multiprocessor. For comparison
with the baseline algorithm, we implemented hierarchical BP
on Intel CPU i7 2600. Note that the small shared memory on
GPU has limited the implementation choice to using only 8×8
block.

In order to exploit massive parallelism in GPU architec-
ture, we have used synchronous update scheme in [2]. As a
result, all pixels can perform message passing independently.
For higher parallelism, the message update to 4 neighboring
pixels is also parallelized, and each update is performed by
independent threads.

Experiment shows that the execution time for Tsukuba test-
set is 4.38 and 0.192 seconds on CPU and GPU, respectively.
This corresponds to 22.8 times speedup. The main cause is
due to the GPU’s massive parallel compute units and global
memory bandwidth reduction by the proposed algorithm. As
the future GPUs incorporate more compute units and memory

bottleneck problem becomes more severe, we expect further
savings with the proposed algorithm.

V. CONCLUSION

In this paper, we have described a new memory-efficient
algorithm of BP in stereo matching. We have proposed on-
the-fly local message reconstruction method using matching
cost and reconstructed boundary message. The experimental
result on Middlebury test images showed that, at the cost of
about 45 to 68% increase in the computation, almost an order
of magnitude savings in global memory space and 21 to 46%
savings in memory bandwidth was obtained compared to the
conventional algorithm. GPU implementation of the proposed
algorithm shows 22.8 times speedup in execution time.

REFERENCES

[1] Y. Choi, “CUDA implementation of belief propagation forstereo vision,”
in Proc. IEEE Int. Conf. Intelligent Transportation Systems, pp. 1402–
1407, Sept. 2010.

[2] P. Felzenszwalb and D. Huttenlocher, “Efficient belief propagation for
early vision,”Int. J. Computer Vision, vol. 70, no. 1, pp. 41–54, Oct. 2006.

[3] C.-K. Liang, C.-C. Cheng, Y.-C. Lai, L.-G. Chen, and H. H.Chen,
“Hardware-efficient belief propagation,”IEEE Trans. Circuits and Sys-
tems for Video Technology, vol. 21, no. 5, pp. 525–537, May 2011.

[4] D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense two-
frame stereo correspondence algorithms,”Int. J. Computer Vision, vol. 47,
no. 1–3, pp. 7–42, Apr. 2004.

[5] J. Sun, H. Shum, and N. Zheng, “Stereo matching using belief propaga-
tion,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 25,
no. 7, pp. 787–800, July 2003.

[6] M. Tappen and W. Freeman, “Comparison of graph cuts with belief
propagation for stereo, using identical MRF parameters,” in Proc. IEEE
Int. Conf. Computer Vision, vol. 2, pp. 900–906, Oct. 2003.

[7] Q. Yang, L. Wang, and N. Ahuja, “A constant-space belief propagation
algorithm for stereo matching,” inProc. IEEE Conf. Computer Vision and
Pattern Recognition, pp. 1458–1465, June 2010.

[8] T. Yu, R.-S. Lin, B. Super, and B. Tang, “Efficient messagerepresenta-
tions for belief propagation,” inProc. IEEE Int. Conf. Computer Vision,
pp. 1–8, Oct. 2007.


