
A Five-stage Pipeline Design of Binary Arithmetic
Encoder in H.264/AVC

Song Rui and Cui Hongfei and Li Yunsong and Xiao Song
Xidian University, Xi’an, 710071,Peoples R China

E-mail: rsong@xidian.edu.cn Tel/Fax: +86-29-88200187

Abstract—Context-based Adaptive Binary Arithmetic Coding
(CABAC) is a well known bottleneck in H.264/AVC encoder.
Despite its high performance, the tight feedback loops make
it difficult to parallelize. Most researchers are concernedabout
multi-bin processing regardless of the pipeline design. But with-
out pipeline, the overall performance is greatly limited. In this
paper, the critical path for hardware implementation of binary
arithmetic encoder (BAE) was analyzed in detail. We break the
computing steps to the best extent, and re-arrange it to the
appropriate pipeline to get a balanced latency at each stage.
Further, new binary arithmetic encoder architecture with fi ve
stage pipeline and 1 bin per cycle was proposed, the latency of
critical path were cut off exceedingly, and the frequency and
throughput rate was improved. An FPGA implementation of
the proposed pipelined architecture in our H.264 encoder is
capable of 190Mbps encoding rate. And a maximum 483MHz
could be achieved on SMIC 0.13µm technology, which meets
the requirements of QFHD encoding at 30fps. The proposed
architecture could be utilized in other designs to get a better
performance.

I. I NTRODUCTION

High definition and high speed video are of the most
promising applications for future consumer electronics. Frame
resolution as high as Quad Full HD becomes much more
prevalent in recent years along with the rapid innovation of
silicon technology[1]. For hardware implementation, parallel
processing is a commonly used technique to improve perfor-
mance. But in H.264/AVC, the well known bottleneck owing
to highly serialized calculating of context adaptive binary
arithmetic coding is hard to be parallelized. Complex steps
were involved to encode each one bit for CABAC, including
binarization, context modeling and binary arithmetic encoding.
Besides, a massive probability model should be maintained
and updated before the next bit encoding. Strong correlation
exists between contiguous bits, therefore, the incoming bit
could not be correctly coded until all the necessary computing
and updating process for prior bit ended. These properties
make it quite challenging to parallelize the encoding process to
improve throughput rate. Most researches focused on how to
process more than 1 bit in average by the statistical encoding
property, but limited attention was paid on optimization ofthe
pipeline architecture to promote frequency performance.

The encoder designed by R. R. Osorio[4] could attain more
than 2 bin encoding per cycle on average. To accelerate

This work is partially supported by the Fundamental Research Funds for
the Central Universities; the 111 project under Grant No.B08038; Program
for Changjiang Scholars and Innovative Research Team in University.

encoding, efficient binarizer and optimized storage strategy of
context model were presented. Nevertheless the control logic
is too complex, and only two stage pipeline is used, which
degrades the overall performance. The proposed encoder was
implemented on an Virtex-II 2000 FPGA and the a maximum
frequency of 92MHz could be achieved. In Ref.[5] by F. Wei,
with adjustment to the data flow, the operator low is replaced
by “range+low”, and some redundant calculation was reduced.
However, without pipeline architecture, the critical pathwould
hardly be shortened. A RDO supported cabac encoder is given
by T. XiaoHua[6], efficient memory access scheme is proposed
to reduce context ram access frequency, but traditional three
stage pipeline is used in binary arithmetic coding. The latency
of unit(e) is considerably longer than each stage of unit(f),
hence for binary arithmetic coding, the frequency performance
is not optimized. The pipeline architecture was advanced by
Z. Wei.[7], in which four-stage pipeline were applied and
the maximum frequency could achieve 300MHz on .18µm

SMIC standard cell lib. Nonetheless in our opinion, the critical
path could be further cut off. A six stage pipeline cabac
encoder is proposed in Ref.[8], all the design strategies on
pipeline focused on multi-bin processing. However, for hard-
ware design, the benefit of efficient pipeline is neutralizedby
complex processing of multi-bin, then the overall performance
is degraded.

The authors doesn’t focus on pipeline design, therefore
pipeline is not optimized intentionally. In this paper, we
analyzed the critical path of binary arithmetic encoder in
detail. Computing steps of binary arithmetic coding were
broken and re-arranged to separate pipeline to get a balanced
latency. Then, a five-stage pipeline architecture were proposed.
The critical path were cut off to a great extent, as a result,
the maximum frequency could be up to 190MHz on Virtex-V
FPGA. Synthesis report given by synopsys design compiler on
SMIC 0.13µm shows a maximum 483MHz frequency, which
fulfills the application of QFHD encoding.

II. PIPELINE ANALYSIS OF CABAC ENCODER

The CABAC encoding process in H.264/AVC consists of
four parts as Fig. 1. Before encoding one slice, the encoder
were firstly initialized, which including initialization of binary
arithmetic encoder and probability model for each syntax
element(SE). Then the input SE was binarized to get the bin
string. Specific probability model was selected and input to
binary arithmetic encoder, then gets the output bit stream.

��������	
�
��
���������

�	�
���

	�����

�������

���
���
���

���	���

��	������
��

	���
���
������
�	�

�
��

�
��

�
	
��
�����
	 �
����
��

�����
�������
	
������
	

����
�
�
�	
���
��

������
	
������
	�

��
�
�	
���
��

Fig. 1. Block diagram of cabac encoder in H.264/avc

����������	���
���
����������

����
�����
�����
���
���������������

���
������� ���!����"���� #$ ����
��%#����
�����
��%

���
�����������
������& ���
�������

�������'��

(��)�

���
��*������
��*�+����
�����

���
�����������
�������

$ ����
���'��,

(��)� ���-�& (��)�

$ ����
������!��	
���� #$ ����
��%
$ ����
�����

�!��	
��)� #$ ����
��%

����!.�

����

���

��

���

��

	/.������	/.����+�-

Fig. 2. Flowchart of binary arithmetic encoding process

The probability model should be immediately updated after
encoding. For CABAC encoder, SE of each MB could be feed
in parallel, as well as the binarization process. But at binary
arithmetic encoding stage, all the bin string should be input
and encoded sequentially. Thus, the binary arithmetic encoder
is the most critical block, and affects the overall performance.
BAE consists of probability model fetch, update of range and
low interval, bit generation, and probability model updateand
store, as Fig.2 shows. Limited by the normative syntax, the
encoding process of the rear bit in binarized continuous bins
should not be started before the end of prior bit. This necessity
is the hindrance of parallel computing. But actually, not all the
computing results of prior bits are dependent. The complex
computing process could be spited into several tiny steps. For
rear bit on stepn, if only the result of stepn of the front
bit and the(n − 1)th step result of current bit is dependent,
one pipeline could be inserted. If all the pipeline stages are
balanced, the overall performance could be improved. As
Fig.2 shows, the update of range and low is independent of
context model update, and could be parallelized. For hardware
implementation, these two processes could be placed into one

��

��

��

��

������

��������

��������

	
��
�� 	
��
�� 	
��
��

�������

�
��

��

������

���������	���

�������

�
��
��

��

��

��

��

��

��

��

�����
��� ���!�
���

�"�����

�
�"#$�

��

�� �	

�%����$
�%
�
��
���
�� �	

�� �	

���
�����&�
�

Fig. 3. Directly mapped three stage pipeline

pipeline stage, and computed simultaneously. The pipeline
could be roughly mapped as Fig.3, in this three stage pipeline,
the context model of the current bin were fetched at the first
stage. Then, in the second stage, the arithmetic coding state
and context model were updated. The third stage accounts
for bit code generation and context store. For the pipeline
in Fig.3, most calculation is completed in the second stage.It
increases the latency greatly, and constitutes the critical path.
To attain better throughput performance, the pipeline should
be improved.

III. B INARY ARITHMETIC ENCODERWITH FIVE-STAGE

PIPELINE

In this section, three ways were presented to improve the
encoding performance of CABAC encoder. By preprocessing
of range update, split and re-arrange of range and low and
simplification of the normalization process, the pipeline was
optimized at each stage. Critical path was cut off progressively,
and the maximum frequency was finally advanced.

A. Preprocess of Range Update

From the flowchart in Fig.2, to update the “range”, we
have to look up the two dimensional rLPS table firstly. The
dimensional index is probability state index “pStateIdx” and
range index “RangeIdx”. In the pipeline architecture of Fig.3,
pStateIdx is ready after context fetch process in the first stage.
But the RangeIdx could not be obtained until the end of range
update process. Extra time was wasted at the current stage
when pStateIdx is waiting for RangeIdx to look up the table.
Hence, the looking up process of rLPS table could be divided
into two steps, at the first step, one of the four rLPS tables
indexed by the first dimensional index pStateIdx was selected.
And at the second step, the certain rLPS was found. Then the
two steps could be divided by one pipeline stage, which will
decrease the latency. Meanwhile, the decision on whether the
current bin is MPS could also be broken away from the second
stage to further reduce path delay.

In order to separate the two interested step from the second
pipeline, a new pipeline has to be inserted between the first
and second stage. The new inserted pipeline stage should not
affect the context update which placed in the former second
stage, so the context update was kept at the second stage in
new pipeline to reduce the access confliction on probability
model. Revised pipeline was depicted in Fig.4, the preprocess
for interval division along with context update were placedat

��

��

��

��

���������	�����
�

�
�����������
�������

����������
���������
�

�������������������

���������	���������� �	

�������������������

�����
�������

�� ��
�� ��
�	 ��

�������������������������

���������
�������

Fig. 4. Four stage pipeline with preprocess for interval division stage inserted

���������	�����
�

�
�����������
�������

�������������������

���������	��������

�������������������

�� ����� ����	 �

�� ����� �� �� �

��������� ������

������� ������

���������������������������

������������������������

�����
��� ���

 ��� �����
����!����
�

Fig. 5. Five stage pipeline with range update and low update split into two
stages

the second stage, and the remainder process of interval division
accompanied by renormalization process was accomplished at
the third stage.

B. Split and re-arrange of Range and Low Update

At the third stage in the revised four stage pipeline, when
the input bin is MPS, no action was needed for “low”, when
the bin is LPS, the renewed “low” should be “low+rMPS”, in
which rMPS is “Range-rLPS”. Since the low update process
is based on rMPS, which is an intermediate result of the
updated Range. And for the next bin, range update has no
connection with low update of the prior bin, thus, to decrease
the update delay of low, the range and low update could also
be split into two steps and re-arranged at two pipeline stages.
As Fig.5 shows, the third stage was further divided into two
new pipeline stages. At the refreshed architecture, range update
is placed at the third stage, and the low update at the fourth
stage. At the renewed fourth stage, the calculation result of
rMPS at range update slot could be directly reused, and only
some addition process were needed at low update process. As
a consequence, the critical path in Fig.4 was further cut off.

C. Renormalization Using LUT

After each update of Range and Low, the renormalization
process both involves non-determined number of iterations, as
Fig.6 shows. The Iteration has to be finished within one clock
cycle, which is not suitable for hardware implementation. Usu-
ally the calculation was done by firstly determine the iteration
time. Then shift the “Range” and “Low” by specific number of
bits. And the key point is to determine the iteration number.
One frequently used “leading zero detector” is counting the
number of zeros before the first ’1’ of Range.

The problem could be solved by utilizing of look up table.
The case could be separated by its corresponding probability
state of the input bin. When the bin is LPS, the Range

�������

����

	�
����
���������

	�
������������

���������

	�
�������������

���������

	�
�������	�
������ �����

	�
����
����	�
����
������

	�
�������	�
���������

 �!

 �!

"�

 �!

"�

	�
�������	�
������ �����

#��!$��!���
��
���#��!$��!���
��
�%��

"�

Fig. 6. Flowchart of normalization process

���������� ���������	 ���������
 ����������

������	��� ������	��	 ������	��
 ������	���

�

���

�

��	

���������

�������

����������� ����������	 ����������
 ������������

����

����������

�������

�����������������

Fig. 7. Expanded rLPS look up table

equivalent to rLPS, then the iteration number could be easily
stored accompanied with rLPS table, as Fig.7 shows. We add
3 extra bits to each entry of rLPS table, and the width is
expanded to 11 bits. When we are seeking the rLPS in ram,
its corresponding iteration number is acquired simultaneously,
then left shift Range and Low with this iteration number of
bits. When the bin is MPS, the maximum iteration number
is 1, so the necessity of renormalization could be determined
by the highest bit of Range. If the bit is 1, normalization
process was completed by left shift Range and Low with one
bit. Otherwise, no normalization is needed.

D. CABAC Encoder with Five-stage Pipeline

Applying all the three techniques above, the five stage
pipeline architecture is presented at Fig.8. At the first stage,
context was pre-fetched, then the context was updated on
observation of input bin at the second stage. The first dimen-
sion of rLPS is concurrently located at stage two. After that,
Range was updated in advance at the third stage and Low
was updated at the next fourth stage. Finally, at stage five,
code was generated. In the proposed pipeline architecture,the
calculation process is only dependent on the results of the
previous stage for current bit and result at the same stage of
the preceding bit, therefore, the data dependency constraints
were fully met. When the process of one bit were arranged
into different pipeline stage, the latency for each pipeline was

���������	�����
�

���������	���
���� �������������������

�� ����� �� �� �	

��������� �
����
������� �
����

�������
��
�����������

�� ����� �� �� �	

�� ����� �� �� �	������

������ �

������!�

�����" �����"! �����"# �����"$ �����"%

Fig. 8. Proposed five stage pipeline cabac encoder

�������

��	
���

��

������������

�������������

����������� ���

�	

���

�
����

���	

���	

��� ���

����

��������

�
�

�

��

�
�

�

�����	

��	

�����

��	

��	

�
�

� ����

��	
!�"

�����

���	

#
��	

 ��

��

�
�

�

 �� ����

 �� ����

���	

 ��

Fig. 9. Hardware architecture of proposed five stage pipeline

balanced extremely. Although the latency for each stage could
not be almost equal, for example, the latency of Range update
is apparently longer than other stages, nothing could be done
further under the syntax constraints in our opinion.

Hardware implementation of the proposed five stage
pipeline is designed as Fig.3, context model was stored in
context ram, and was read out at the first stage. Input bit was
compared with the current MPS, and an isMPS flag is asserted,
while one of the four rLPS tables is determined by pState at the
second stage. All the information is used to update the context
model in the current stage to facilitate the next input bit. At
stage three and four, Range and Low are updated separately.
Then, fifth stage generates the final bits. The latency is evident
in Fig.9.

IV. I MPLEMENTATION

The proposed cabac encoder was implemented on a Xilinx
Virtex-V FPGA in verilog HDL, and utilized in our H.264
encoder chip design. The design is further synthesized using
Synopsis Design Compiler with .13µm SMIC cell library.
The critical path delay on range update in the worst case is
2.07ns, which accounts for a maximum frequency of 483MHz.
The architecture is designed to process one bin per cycle,
so the equivalent encoding throughput rate is 483Mbps. The
comparison to other stat-of-the-art CABAC encoder designsis
listed in Table.I. Although the architecture given by F. Wei[5]
claimed to achieve 1056Mbps throughput, it is just a equiva-
lent conversion and only part of the design is stated. Besides,
the proposed design could get a competitive performance.
In addition, the proposed pipeline architecture could alsobe
integrated into other multi-bin designs to enhance their overall
performance.

Simulation results on QFHD video sequences were given in
Table.II. The test frame rate is 30 fps, gop is set as IBBP, the
target output bit rate is set to no more than 240Mbps, which
is the maximum allowed bit rate in H.264/AVC main profile
level 5.1[2]. The average processing cycle for one macroblock

TABLE I
COMPARISON OF MAXIMUM THROUGHPUT RATE

Architecture Technology Bin/Cycle Max. Speed Max. Th.

R. R. Osorio[4] AMS 0.35µm 2.3 186 MHz 427.8Mbps
F. Wei[5] SMIC 90nm 4 264 MHz 1056Mbps

T. XiaoHua[6] TSMC 0.13µm 1 328 MHz 328Mbps
Z. Wei[7] SMIC 0.18µm 1 300 MHz 300Mbps

C. JianWen[8] 0.13 CMOSµm 1.42 222 MHz 315Mbps
Proposed. SMIC 0.13µm 1 483MHz 483Mbps

TABLE II
CLOCK CYCLES NEEDED PER MACROBLOCK

Video Seq. Frame Res. QP Actual bitrate Cyc/MB

Bluesky 3840x2176@30 12 235.9 Mbps 469.1
Sunflower 3840x2176@30 12 210.4 Mbps 445.6
Rushhour 3840x2176@30 12 225.2 Mbps 490.3

is not more than 500, hence the proposed architecture meets
the requirement of QFHD encoding.

V. CONCLUSIONS

A CABAC encoder with five-stage pipeline and 1bin per
cycle was presented in this paper, the processing steps are
mapped to an custom three step pipeline originally, then
critical path along with computing units are broken progres-
sively, the split computing units are finally re-mapped to a
five stage pipeline architecture. In the proposed architecture,
data dependence between front and rear bits is preserved,
and the generated code fully conforms to the H.264/AVC
standard. Simulation results show that an average processing
cycle number of no more than 500 was needed. The design is
implemented on FPGA and synthesized with Synopsys Design
Compiler, a maximum of 483MHz was achieved which meets
the requirement of QFHD encoding.

REFERENCES

[1] V. Sze and A. P. Chandrakasan, “A highly parallel and scalable CABAC
decoder for next generation video coding,”in Solid-State Circuits Con-
ference Digest of Technical Papers (ISSCC), 2011 IEEE International,
2011, pp. 126-128.

[2] Advanced Video Coding for Generic Audiovisual Services, “ITU-T
Recommendation H.264 and ISO/IEC 14496-10 AVC,”Joint Video Team,
2003.

[3] D. Marpe, H. Schwarz, and T. Wiegand, “Context-based adaptive binary
arithmetic coding in the H.264/AVC video compression standard,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. 13, pp.
620-636, Jul 2003.

[4] R. R. Osorio and J. D. Bruguera, “High-Throughput Architecture for
H.264/AVC CABAC Compression System,”Circuits and Systems for
Video Technology, IEEE Transactions on, vol. 16, pp. 1376-1384, 2006.

[5] F. Wei, Z. Dajiang, and S. Goto, “A high throughput CABAC encoder
design,” in Signal Processing and its Applications (CSPA), 2011 IEEE
7th International Colloquium on, 2011, pp. 99-102.

[6] T. XiaoHua, T. M. Le, J. Xi, and L. Yong, “Full RDO-SupportPower-
Aware CABAC Encoder With Efficient Context Access,”Circuits and
Systems for Video Technology, IEEE Transactions on, vol. 19, pp. 1262-
1273, 2009.

[7] Z. Wei, L. DongXiao, S. Bing, L. HoangSon, and Z. Ming, “Efficient
pipelined CABAC encoding architecture,”Consumer Electronics, IEEE
Transactions on, vol. 54, pp. 681-686, 2008.

[8] C. JianWen, W. LiCian, L. PoSheng, and L. YounLong, “A high-
throughput fully hardwired CABAC encoder for QFHD H.264/AVC main
profile video,” Consumer Electronics, IEEE Transactions on, vol. 56, pp.
2529-2536, 2010.

