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Abstract—In this paper, we address the ergodic mutual in-
formation of amplify-and-forward multiple-input multiple-output
two-hop relay channels. In these channels, the source terminal,
relay terminal, and destination terminal are equipped with a
number of correlated antennas, and there presents a line-of-sight
component on each link. The models have widel applications in
the field of machine-type communication devices, such as meters
and sensors. Given channel matrices with Gaussian entries, the
mean of mutual information is derived under the large-system
regimen, in which the number of antennas at the transmitter and
the receiver go to infinity with a fixed ratio. Simulation results
demonstrate that even for a moderate number of antennas at each
end, the proposed analytical results provide undistinguishable
results from those obtained by Monte-Carlo simulations. In
addition, the well approximation property holds even if the
entries of the channel matrices are non-Gaussian.

I. INTRODUCTION

Combining wireless multiple-input multiple-output (MIMO)
antenna systems with relay techniques has recently been
recognized as a promising solution to extend communica-
tion coverage areas and to improve system throughput. This
technique is particularly suitable for the field of machine-
type communication devices, such as meters and monitors.
Motivated by these possibilities, growing attention has been
paid on understanding the achievable rates of relay channels
under various protocols [1–8]. Among relaying protocols, the
amplify-and-forward (AF) protocol receives more attention
because of its simple implementation property. Following the
same trend, our focus is on the mutual information analysis
of the MIMO two-hop relay channels that employ the AF
protocol as illustrated in Figure 1.

The considered two hop relay system consists of a source
terminal (ST), a relay terminal (RT), and a destination terminal
(DT). The transmission from the ST and the RT is done
over two separate phases. The Kronecker correlated Rician
fading model is considered for each communication link. We
assume that the DT has perfect channel state information
(CSI), while the ST and the RT do not have CSI. Although the
setting above is common (or conventional), deriving analytical
expressions for the average mutual information of finite-size
MIMO relay channels is very difficult. For recent progress on
a special channel setting please refer to [2]. To circumvent the
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Fig. 1. A MIMO two-hop relay relay communication system.

mathematical difficulties, we consider the derivation under a
large-system regimen, in which the numbers of antennas at the
transmitter and the receiver go to infinity with a fixed ratio.

In the large system regimen, we can obtain an analytical
approximation for the average mutual information of the
MIMO relay channel. Simulation results indicate that the
asymptotic regime is reached for a relatively small number
of antennas. The derived analytical approximation provides a
general formula that encompasses the known result of [4],
wherein the line-of-sight (LOS) components are absent. In
the Kronecker correlated Rician fading model, the random
parts of the channel matrices are usually assumed to consist
of independent and identically distributed (i.i.d.) standard
complex Gaussian entries. We further show that the analytical
approximation holds even when the considered random ma-
trices are non-Gaussian. This extension makes the analytical
expression more general, and thus our result can be used to
cope with more general applications.

The remainder of this paper is structured as follows. Section
II introduces the channel model of the two-hop relay system.
Section III presents our main results along with a few dis-
cussions. Simulation results are provided in Section IV and
conclusions are presented in Section V.

Notations—Throughout this paper, for any matrix A, [A]i,j
indicates the (i, j)th entry of A, A† represents the conjugate
transpose of A, A

1
2 represents the principal square root of

A, and Tr(A) represents the trace of A. Also, I denotes the
identity matrix, 0 denotes the zero matrix, ∥ · ∥ denotes the



Euclidean norm, E[·] denotes the expectation operator, log(·)
is the natural logarithm, and ⊗ denotes the Kronecker product.

II. SYSTEM MODEL

We consider the two-hop MIMO AF relay system consisting
of a ST, a RT, and a DT (see Figure 1). The transmission
from the SD and the RT is done over two separate phases. We
assume that there is no direct communication link between
ST and DT. First, the ST transmits a symbol vector s ∈ Cns

through a precoding matrix Fs ∈ Cns×ns , and the received
signal at the RT is1

yr = H1Fss+ nr, (1)

where H1 ∈Cnr×ns denotes the channel between the ST and
the RT (referred to as the first-hop channel), and nr ∈Cnr are
the i.i.d. standard (zero-mean unit-variance) complex Gaussian
noise vectors at the RT.

In the second phase, the RT is required to transmit the
received signal in the first phase y1 to the DT. Before being
forwarded to the DT, the received signal y1 should be weighted
by a forwarding matrix Fr in order to adjust the forwarding
direction and to satisfy the power constraint of the RT. Hence,
the signal received by the DT in the second phase can be
written as

y = H2Fr (H1Fss+ nr) + nd, (2)

where H2 ∈Cnd×nr denotes the channel matrix of the RD
link and nd ∈Cnd is the standard complex Gaussian noise
vector at the DT.

For the channel model, we consider the Kronecker corre-
lated Rician fading channel as:

H1 = R
1
2
r H

(w)
1 T

1
2
s + H̄1,

H2 = R
1
2

d H
(w)
2 T

1
2
r + H̄2,

where Rr ∈ Cnr×nr , Ts ∈ Cns×ns , Rd ∈ Cnd×nd , and
Tr ∈ Cnr×nr are the spatial correlation matrices at the
respective terminals; H̄1 and H̄2 are the LOS component of
the channel matrix for the respective communication links;
H

(w)
1 ∈ Cnr×ns and H

(w)
2 ∈ Cnd×nr denote the channel

components that are i.i.d. standard complex Gaussian entries.
The signal-to-noise-ratios (SNRs) of the communication

links are defined as

SNRs =
tr
(
E{H1H

H
1 }

)
E{nH

r nr}
, (3a)

SNRd =
tr
(
E{H2H

H
2 }

)
E{nH

d nd}
. (3b)

Note that the above definitions cannot reflect the true SNR of
the communication links because the true ones should depend
on the input signals at the respective terminals. Therefore, the

1In this paper, we aim to complement the results of [4] by extending the
asymptotic analysis to the case of separately correlated Rician fading MIMO
channels. For the readers convenience, similar notations as those of [4] are
used.

definitions are merely for convenience. With a simple algebraic
calculation, we have

tr
(
E{H1H

H
1 }

)
= tr(Rr)tr(Ts) + tr(H̄1H̄

H
1 ) (4)

Therefore, to satisfy (3), we assume without loss of generality
that Rr, Ts, and H̄1 are normalized in such a way that

tr(Ts) = 1

tr(Rr) = nr
1

K1 + 1
SNRs

tr(H̄1H̄
H
1 ) = nr

K1

K1 + 1
SNRs,

(5)

where K1 (Rician factor) determines the relative power of
the channel’s LOS and non-LOS components. The similar
normalization is used for H2.

III. MAIN RESULTS

We assume that the DT knows the channel matrices H1 and
H2 perfectly, and s is Gaussian with covariance I. The mutual
information between x and y is thus given by

I = log det (Rn +Rs)− log det (Rn) (6)

with

Rn = Ind
+H2FrF

H
r HH

2

Rs = H2FrH1FsF
H
s HH

1 FH
r HH

2 .

For ease of expression, (Fs, Fr) are incorporated into the
channel correlation matrices resulting in

T̃
1
2
s := T

1
2
s Fs

T̃
1
2
r := T

1
2
r Fr

H̄1 := H̄1Fs

H̄2 := H̄2Fr.

(7)

For convenience, we still use H̄1 and H̄2 to denote those
matrices that include the effect of (Fs, Fr).

The mutual information of the Kronecker Rician fading
MIMO relay channel, I , is also a random variable because H1

and H2 are random. Deriving an analytical distribution of I
for finite-size MIMO relay channels is difficult and unsolvable.
This difficulty is circumvented by considering the large-system
regime where {ns, nr, nd} approach to infinity at fixed ratios:
nr

ns
and nd

nr
.

Proposition 1: The mean of I can be asymptotically ap-
proximated by

E{I} ∼ log det (Ins
+Φ1) + log det (Inr

+Φ2Θ1)

+ log det (Θ2)− log det (Θ3)− log det (Inr +Φ3)

− (s1t1 + s̃2t2 − s3t3) (8)



with

t1 = tr
{
(Ins +Φ1)

−1T̃s

}
(9a)

t2 = tr

{(
Θ2 + H̄2Ω(Inr + t2T̃rΩ)−1H̄H

2

)−1

Rd

}
(9b)

t3 = tr
{
(Inr

+Φ3)
−1T̃r

}
(9c)

s1 = tr
{
(Inr +Φ2Ω)−1Φ2Rr

}
(9d)

s̃2 = tr
{
(Inr +ΩΦ2)

−1ΩT̃r

}
(9e)

s3 = tr
{
(Ind

+Ψ3)
−1Rd

}
(9f)

and
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+ t3Rd
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Ξ3 , Inr + s3T̃r
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−1H̄1

Φ2 , t2T̃r + H̄H
2 Θ−1

2 H̄2

Φ3 , s3T̃r + H̄H
2 Θ−1

3 H̄2

Ψ1 , t1Rr + H̄1Ξ
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1 H̄H

1

Ψ3 , t3Rd + H̄2Ξ
−1
3 H̄H

2

Ω , Θ1 + H̄1Ξ
−1
1 H̄H

1 .

Consider a Gaussian vector channel with the following
input-output relationship

y̌ = Φ
1/2
1 x̌+ ň (10)

where y̌ ∈ Cns , Φ1/2
1 ∈ Cns×ns is the deterministic channel

matrix, and n ∈ Cns is a standard complex Gaussian ran-
dom vector. Clearly, the first term log det (Ins +Φ1) in (8)
corresponds to the mutual information between x̌ and y̌ over
the Gaussian vector channel (10). Note that Φ1 consists of
the two parts s1T̃s and H̄H

1 Φ2(Inr +Θ1Φ2)
−1H̄1, wherein

one is related to the random part of the channel and the other
is related to the deterministic part of the channel (i.e, LOS
component). Finally, we note that Propositions 1 provides a
general formula that encompasses the known result of [4],
wherein the LOS components are absent.

Proposition 2: Proposition 1 is true even if the entries of
H

(w)
1 and H

(w)
2 are non-Gaussian.

The proofs of Propositions 1&2 are omitted due to the space
limitation.

IV. NUMERICAL RESULTS

All of our analyses are based on the assumption that the
dimensions of the channel matrices are large. In this subsec-
tion, we provide simulation results that show the asymptotic
regime is reached for a relatively small number of antennas.
For the simulations, we assumed that the spatial correlation is
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Fig. 2. Ergodic mutual information versus SNRd for the MIMO relay channel
with K1 = K2 = 0 and nr = 2ns = nd = 4, 8, 16. The lines plot the
analytical results, while the markers plot the exact results.
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Fig. 3. Ergodic mutual information versus SNRd for the MIMO relay channel
with K1 = K2 = 1 and nr = 2ns = nd = 4, 8, 16. The lines plot the
analytical results, while the markers plot the exact results.

generated by

[Ts]ij =

(
1

2

)|i−j|

, [Rr]ij =

(
1

3

)|i−j|

,

[Tr]ij =

(
1

4

)|i−j|

, [Rd]ij =

(
1

5

)|i−j|

.

In addition, the LOS components H̄1 and H̄2 are generated
randomly.

The mean of the mutual information results is plotted versus
SNRd for ns = nd = 2, 4, 8 and nr = 2ns in Figure 2, when
SNRs = 20 dB and K1 = K2 = 0. In this figure, we show
1) the average mutual information E{I}, which is obtained
by 10,000 Monte Carlo simulations, and 2) its asymptotic
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Fig. 4. Ergodic mutual information versus SNRd for the MIMO relay channel
under different types of fading distributions with K1 = K2 = 0.
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Fig. 5. Ergodic mutual information versus SNRd for the MIMO relay channel
under different types of fading distributions with K1 = K2 = 1.

approximation (8). We see the trend that the approximation
results come close to the simulation results asymptotically
when the numbers of antennas increase. Under the same
setting as the above simulations but with K1 = K2 = 1,
Figure 3 illustrates the similar observation.

Recall that Proposition 1 is true even if the entries of H(w)
1

and H
(w)
2 are non-Gaussian in the large-system regimen. Next,

we intend to clarify if the mean of the mutual information
approximation is also insensitive to different types of fading
distributions when the number of antennas is not so large. For
different types of fading distributions, [H(w)

1 ]ij (or [H
(w)
2 ]ij)

is assumed to be of the form Wij exp(jθij), where θij is
the phase modeled as a uniform distribution over [0, 2π], and
Wij is the amplitude fading drawn from a distribution with
E{W 2

ij} = 1. In Figures 4 and 5, we evaluate E{I} when Wij

is drawn from common probability density functions including
the Rayleigh, Nakagami, or log-normal distributions [9, 10].
When the number of antennas grows large (e.g., ns = nd = 8,
nr = 2ns) all of the curves tend to overlap regardless of
the distributions. Thus, this invariance phenomenon of the
ergodic mutual information in the large-system limit agrees
with Proposition 2.

V. CONCLUSIONS

This paper investigated the approximated mutual informa-
tion expression for the MIMO relay channel under the large-
system assumption. Our result addressed the general MIMO
relay model where the correlation matrices are generally
nonnegative definite, an LOS component is presented on each
link, and the channel entries are non-Gaussian distributed. The
approximation result seems to provide a realizable estimate
under all types of fading distribution. From the practical per-
spectives, the mean of the mutual information approximation is
important to the design of capacity achieving input covariance
matrix and the relay amplifying matrix. This is a promising
future work.
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