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Abstract—This paper proposes a fast panorama synthesis
algorithm that runs on a mobile devices real-time. Like most
existing methods, the proposed method consists of following steps:
feature tracking, rotation matrix estimation, and image warping
on a targeting plane, where the feature tracking is usually a
bottleneck for real-time implementation. Hence, we propose to
track the features on a virtual sphere surface instead of projected
surface or image domain as in the conventional methods. By
performing the feature tracking on the sphere, the camera pose
can be found by linear and non-iterative least squares method,
which was usually obtained by nonlinear and iterative methods.
The fast estimation of camera pose can make outlier rejection
more robust since the camera pose can be inferred from the
hypotheses by one iteration, which can’t be done in real-time
by iterative estimation. We also propose a two-step blending
algorithm, i.e., celling-filling followed by linear blending along
the cell boundary. The panorama canvas is partitioned into
many cells where each cell contains pixels from the same shot.
Hence there is no stitching seam within the cell and only the
boundaries need to be blended, which reduces the stitching
artifacts significantly.

Index Terms—Panorama image, feature tracking, real-time
AR, mobile system

I. INTRODUCTION

Panorama image synthesis is to generate a large or wide
image from a sequence of shot. With the advancement of
digital camera technologies and embedded systems, it has be-
come possible to implement the panorama synthesis algorithm
on the camera or mobile devices [1]. However, the elaborate
panorama synthesis such as [2] cannot be implemented on the
embedded system due to their high computational complexity,
which degrades the quality of synthesized image on a mobile
device. The main bottleneck for the real-time implementation
of panorama seems to be feature detection and tracking
between the frames, and thus there have been many algorithms
to reduce the computations for these steps [3] [4] [5]. Specifi-
cally, in order to avoid heavy computations required for feature
detection, the early mobile panorama systems assumed the
fixed camera motions such as horizontal rotations with fixed
angles using user-constrained interfaces [3]. This simplified
the calculations of transformation matrix with high accuracy,
but the degree of freedom to handle the panoramic images was
restricted. Adams proposed a feature tracking method which
simplified the descriptor-based matching to reduce the time for
the estimation of camera’s translational motion [4]. Wagner
developed the feature tracking to estimate 3-DOF (degree
of freedom) rotation matrix in the mobile systems, which

tracks the feature points in the hierarchical multi-resolutions to
reduce time consumption, and iteratively updates the rotation
matrix using Gauss-Newton method [5]. The panorama system
in [5] also generated the panoramic images in real-time, but
since it needs iterative computation of feature matching and
camera pose estimation, it is difficult to use robust outlier
rejection scheme. Moreover, this system warps every input
frames with small misalignment caused by matching error
and translation of camera which was not assumed in the
3-DOF model, so the artifact such as discontinuous seam
may arise in the panorama image. This paper proposes a
real-time panorama algorithm using feature matching in the
mobile systems. Especially, we focus on the fast estimation
of rotation matrices which is the main process for real-
time and automatic panorama synthesis. We change the non-
linear and iterative problem of rotation matrix estimation into
linear and non-iterative problem without loss of performance.
This linear and non-iterative process improves the operation
speed and eliminates the problem of floating point precision
in the fixed integer coding for mobile devices. In addition,
we improve quality of panoramic images by adopting robust
outlier rejection scheme and by using fast two-step blending.
We demonstrate the proposed panorama algorithms in the
usual mobile systems such as mobile phones and tablet PC.

The rest of paper is organized as follows. Section 2 de-
scribes the proposed panorama system in detail. Experimental
results are shown in Section 3. and we conclude the paper in
Section 4.

II. PROPOSED PANORAMA SYSTEM

The proposed panorama algorithms consist of feature extrac-
tion, feature tracking in the multi-resolutions, rotation matrix
estimation, warping, and display interface.

A. Feature Tracking

To estimate the camera motions automatically without user
interaction, a robust feature matching scheme is required.
However, the feature detection has been a bottleneck for the
real-time operation due to heavy computation. Reference [5]
proposed a method to reduce the time required for feature
detection by tracking the previously detected features in the
next image. We also apply the tracking method of [5] for
feature matching. Fig. 1 shows the panorama canvas and
illustrates feature tracking. The panorama canvas is partitioned
into 64×64 pixel blocks, which will be called cells. When the



Fig. 1. Panorama canvas and feature tracking. The cell (green block) is a
basic unit to extract features (red points). The input frame (yellow rectangle)
is located at the predicted position from extended kalman filter.

cell is completely filled with warped images, feature points
are extracted in the cell. We implement the feature extraction
in the three multi-resolutions for saving the computation. In
large and middle resolution, FAST features in [6] is extracted,
which is one of the fastest feature detection algorithms. In
small resolution, we use fast hessian detector in [7] since the
number of reliable features are small in lowest resolution due
to noise and down-sampling. The fast hessian detector has
the best repeatability even though the number of extracted
feature is small [8]. The features to track are picked out
from previously extracted features within overlapped cells
between the panorama canvas and input image. The overlapped
region is initially guessed from previous camera pose, for
current camera pose is not known without tracking results. The
guessed camera pose has to be close to true value since the
search range for feature tracking is limited to small window
near guessed position due to limited computation power.
To predict initial pose of camera accurately, each parameter
related to camera pose is tracked using extended Kalman filter
[9]. The selected features in the lowest resolution are first
tracked by the block-based matching within the search range,
and the tracking result in the lower resolution is refined in the
higher resolutions.

B. Estimation of Rotation Matrix

Using the correspondences from features tracking, we esti-
mate the camera pose of the input frame. We model the camera
motions as 3-D rotation along a fixed camera center. The 3-D
rotation matrix has 3 parameters of angles Θ = (θx, θy, θz)
according to the coordinate axes.

Previous algorithms update the rotation parameters of cur-
rent input using the previous ones, Θt = Θt−1 + ∆Θ,
where the incremental parameter vector ∆Θ is estimated to
update the rotation matrices. Finding the parameters is not
linear, so M-estimator was used in the iterative process [5].
In addition, the increment of parameters is too small between
the input frames to express by the fixed point coding. This
causes the performance degradation in the mobile devices
without FPU. We propose a method to transform the non-
linear estimation problem into linear and non-iterative process.
The correspondences are computed not between input images
but between the cylindrical surface and an input image by
tracking, and this is the main reason that makes the parameter
estimation a non-linear problem. Thus, we first project the
feature points on the panorama canvas and input frames to a
unit sphere in the 3-D world coordinates. This “projection onto

unit sphere” changes the non-linear warping process into a
linear transform. For convenience, let us define some notations
as: W (P |O) → M is the cylindrical warping by rotation
matrix O, from a feature coordinate P in the input image onto
a point M on the cylindrical surface. The world coordinates
of feature point P is described as

Pw = (X,Y, Z) = O−1K−1π′(P ), (1)

where π′ is a function to map the 2-D coordinates into the
homogenous coordinates by adding 1 in the z-coordinate, and
K is the camera calibration matrix. Since the panorama canvas
is a cylindrical surface, 3-D coordinates (X,Y, Z) are mapped
onto cylindrical coordinates (u, v) as,

M = (u, v) =

(
R tan−1

(
X

Z

)
, R

Y√
X2 + Z2

)
, (2)

where R is the radius of cylinder as the projection surface.
Now, we get the coordinates of features that are projected

on the unit sphere,

Ms =
1√

R2 + v2

 R sin(u/R)
v

R cos(u/R)

 , (3)

and
Ps =

1

|K−1π′(P )|
K−1π′(P ), (4)

where Ms is the coordinates of features on the panorama can-
vas projected on the unit sphere, and Ps is the coordinates of
features on the input frame projected on the unit sphere. After
projecting feature points on the panorama canvas and those on
the input frame onto the unit sphere, two corresponding points
on the unit sphere are linearly related by rotation matrix O of
current camera pose,

Ps = OMs. (5)

Using the relation between eq. (3) and eq. (5), we estimate
rotation parameters in the linear process. Consequently, we
derive the formulation using singular value decomposition
(SVD) to get the parameters from correlation matrix T of
corresponding feature points on the unit sphere,

T =

N∑
i=1

PsiM
T
si = UΣV T , (6)

and the rotation matrix is derived as

O = U

 1 0 0
0 1 0
0 0 s

V T , (7)

where s is a sign values [10], [11],

s = sign
(
det(UV T )

)
. (8)

In (8), there is no possibility that s is −1 since the correspon-
dences are matched within a small search range. Thus, s is
always 1 in (8). The process from (6) to (8) is a well-known
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Fig. 2. Comparison of blending results, (a) previous method in [5] (b) proposed
method

linear algebra problem that needs little computational load for
3×3 matrix.

C. Removal of Outliers

When we match the corresponding feature points while
tracking, there are some outliers. They cause the incorrect
estimation of camera pose, which distorts the panorama result
and tracking performance. For the removal of outliers, we
use iterative random sample consensus (RANSAC) method
[12]. In the case of M-estimator, many iterative operations are
required due to Gauss-Newton method to evaluate each hy-
pothesis, so it is difficult to use iterative RANSAC. In contrast,
the proposed method performs the non-iterative linear opera-
tion when evaluating the generated hypotheses for RANSAC.
Thus, the iterative RANSAC does not delay the panorama
process in the proposed algorithm. We need 2 samples to
generate a hypothesis for the rotational model and about 10
iterations to remove the outliers sufficiently [12]. For speeding
up the evaluation process for each hypothesis, we adopt early
rejection scheme which is to reject hypotheses that have large
difference from the previous camera pose in the early stage.
When removing the outliers in the iterative RANSAC, we
evaluate the reliability of refined rotation matrix by checking
the ratio of inliers. The number of inliers usually changes very
much according to the scene complexity, and it is not suitable
for testing the correctness of rotation matrix. Hence, we exploit
the ratio of inliers over all initially matched features. When
the ratio of inliers is high, the computed rotation matrix is
reliable. However, when the ratio of outliers is high, we discard
the rotation parameters and track the feature points again until
the reliable rotation matrix is obtained.

D. Warping with two-step blending

Input images are warped into the panoramic canvas using
the refined camera pose from initial value. Basically, we ignore
previously filled pixels in the panorama result and fill only
unfilled pixels with warped image of the input image. Filling
only unfilled pixels can reduce computational time, but the
artifact such as discontinuous seam may arise like Fig. 2(a).
Since this artifact is caused mainly by an accumulation of
small error in estimation of camera pose, we skip the warping
of input frames whose projection regions are considerably
filled with previous input frames. This makes covered area in
panorama canvas by an input image larger, so that number of

TABLE I
TIME CONSUMPTION OF PARAMETER ESTIMATION.

Resolution Iterative Proposed
M-estimator Method

Small (512×128) 0.4 ∼ 0.7ms 0.007 ∼ 0.009ms
Medium (1024×256) 0.8 ∼ 1.0ms 0.01 ∼ 0.02ms

Large (2048×512) 1.0 ∼ 1.5ms 0.03 ∼ 0.05ms

discontinuous seams can be reduced. Though such sampling of
input frames can reduce the artifact caused by small alignment
error between consecutive frames, it cannot affect alignment
error between sampled frames. Moreover, sampled frames
are more vulnerable to alignment error than the consecutive
frames due to their sparsity. To compensate for the alignment
error between sampled frames, we use blending along stitched
boundaries between sampled frames. Considering the compu-
tation time, we use linear blending in a narrow window. Since
linear blending with small window is insufficient to reduce the
alignment error over a large overlap region, we fill each cell
of panoramic image again with one input image which can
cover the whole cell region. This makes whole pixels in one
cell to be brought from an input image, which avoids artifact
at least within the filled cell. In case that neighboring cells are
brought from different input images, discontinuous seams may
arise along the boundaries of cells. The boundaries of cells are
also blended linearly. These two step blending reduces artifact
in panoramic canvas significantly while satisfying real-time
performance.

III. EXPERIMENTAL RESULTS

We have implemented the proposed panorama algorithms in
the mobile phone with 1GHz CPU. The input video consists of
320×240 frames, and panorama canvas is 2048×512. In the
mobile device, the proposed system works over 30 fps and
average timing per frame is about 22ms∼30ms. To compare
the performance of proposed system, we implemented the
method in [5] using M-estimator. Table 1 show the comparison
of time consumption in estimating the rotation parameters
in Intel 2.6GHz PC. Time consumption is dependent on the
number of tracked features. For fair comparison, the number
of features to track in each resolution is limited to the same. In
Table 1, it can be seen that the proposed non-iterative method
is much faster than the iterative M-estimator. In Fig. 3 and
Fig. 4, the results from our own implementation of [5] and the
result of Autostitch[13] which is well-known offline stitching
program are compared with the results of proposed method. It
can be seen that the proposed results suppress the artifact better
than previous method especially inside red circles in Fig. 2 and
they are comparable with results of offline stitching algorithm.
Moreover, since proposed method removes outliers in tracking
process by RANSAC, it shows better tracking performance
than the previous method. In Fig. 3(a), previous method in [5]
fails to track at the bottom of panorama canvas due to lack
of correct matching, but the proposed method tracks camera
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Fig. 3. Comparison of panorama results, (a) previous method in [5] (b)
proposed method (c) Autostitch[13].

pose robustly.

IV. CONCLUSION

We have proposed a real-time panorama algorithm for the
mobile devices. The proposed panorama system consists of
feature extraction, feature tracking, estimation of camera pose,
and image warping with blending. Features are extracted from
the three multi-resolutions of panoramic image. Then, the
detected feature points are tracked on the input images in the
three hierarchical resolutions. The camera pose is modeled as
a rotation matrix which is estimated using the tracked feature
points. For real-time operation of panoramic image synthesis,
we have proposed a method to estimate the rotation matrix
using non-iterative least squares which is much faster than
the previous M-estimator. Fast estimation of camera pose also
enables the system to remove outliers in feature tracking by
RANSAC, so tracking performance can be improved with little
computational load. Finally, we project the input frames onto
panorama surface with fast two-step blending. Experimental
results shows that the proposed system produces panoramic
images with unnoticeable distortion, while satisfying real-time
operation on mobile devices.
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