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Abstract—Motion estimation is a critical step for most
reconstruction-based super resolution methods. However, ac-
curate motion estimation is difficult, and the unavoidable er-
ror degrades performance of super resolution rapidly. In this
paper, we present a robust way to perform super resolution
by improving motion estimation. Starting with feature points
matching, we compute the local motion parameter of feature
point correspondences by using the weighted Lucas-Kanade
algorithm. Then accurate motion field is estimated by support
region search, which refers to edge information and considers
discontinuities of motion boundary and consistency of motion
field. Experimental results validate the efficacy of each step in
the proposed algorithm and show that it produces super resolved
images with higher quality.

I. INTRODUCTION

Reconstruction-based super resolution (SR) aims to recon-

struct one high resolution (HR) image from multiple low

resolution (LR) images. Since these observed LR images are

blurry and noisy, what SR needs to do is not only to increase

the resolution of images but also to restore them to better

quality. A good method is supposed to be robust to the

degrading processing. The key of multi-frame SR is to relate

all the input images. Motion estimation based methods map

each pixel in LR images to one position in the HR image. In

most work, the underlying motion is represented by a simple

parametric model, which assumes there is only global motion

between input images. To handle more complex scene, optical

flow is used to acquire motion vector of each pixel. The

advantage of optical flow is that it does not need to assume the

motion field satisfies some kind of parametric model. However,

the unavoidable motion estimation error may lead to annoying

artifacts in super resolved images. On the other hand, Potter

et al. [1] proposed another motion-estimation-free method,

which could be regarded as a probabilistic motion model. But

the way it computed the motion probability still reflected its

assumption on the motion field.

In the past decades, researchers have made great progress

in both motion parametric model based methods and optical

flow methods. Shen et al. [2] modeled the scene by multiple

independently moving objects and approximated each object

by a parametric model. Then they computed motion fields,

segmentation fields and HR images in an alternate manner.

Bruhn et al. [3] combined local method Lucas-Kanade and
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global method Horn/Schunck, and formulated them in one

equation. Recently Su et al. [4] proposed a method only

to extract reliable motion field rather than dense flow. Its

motivation was that feature point correspondences are usually

more precise and robust than dense flow field. Based on

the local optical flow, they extracted a support region for

each corresponding pair. Their methods gave us some useful

information, and there are three points we consider:

First, a complex motion field can be decomposed into

separate local motion, which can be represented using a simple

model. Local motion estimation is more precise at feature

points because feature points are stable and distinguishable in

images. According to [3], the local method Lucas-Kanade is

more robust to noise than global method, but there still might

be some space to improve the performance of the local method

at feature points. Second, motion boundaries are reference

for local motion estimation. In [2], the motion boundaries

were detected based on the motion field and then were used

for next motion estimation. Instead, what we want is to

compute the motion field and preserve the motion boundaries

simultaneously. Finally, motion continuity is an important

prior in optical flow, e.g. in Horn/Schunk. When there is no

reliable flow, the smoothness prior can fill in motion from

the neighborhood. While in local method, the smoothness of

global motion field does not be involved. So we consider

incorporating the smoothness constrain to the motion field

obtained by local method.

In this paper, we try to find solutions to above problems.

To make the local motion estimation at feature points more

precise, we use the weighted Lucas-Kanade. For computing

the motion field, we propose an edge-constrained motion

estimation algorithm, which refers to edge information to

preserve the motion boundaries. After motion estimation, we

smooth the motion field by performing morphological opening.

The rest of the paper is organized as follows. In Section II,

we formulate the SR problem. Section III proposes the edge-

constrained motion estimation algorithm. Experimental results

are presented in Section IV. Finally, concluding remarks are

given in Section V.

II. SUPER RESOLUTION PROBLEM FORMULATION

The problem of SR is that we have a set of 𝑛 observed LR

images 𝐿1, . . . , 𝐿𝑛 and want to reconstruct HR image 𝐻 with

ideal quality. The imaging model is formulated as follows:

𝐿𝑘 = 𝐷𝐵𝑘𝑀𝑘𝐻 +𝑁𝑘, 𝑘 = 1, . . . , 𝑛 (1)



where 𝑀𝑘, 𝐵𝑘, 𝐷 denote warping matrix, blurring matrix

and downsampling matrix respectively, and 𝑁𝑘 is the additive

noise. The super resolved image 𝐻 can be solved by mini-

mizing the following formula:

𝐻 = argmin
𝐻

(∑
𝑘

∥𝐷𝐵𝑘𝑀𝑘𝐻 − 𝐿𝑘∥2 + 𝜆Γ(𝐻)

)
, (2)

where Γ(𝐻) is the regularization term and 𝜆 controls the effect

of regularization.

Because of occlusion or motion estimation error, some pix-

els cannot find their corresponding motion. So we further use

observable map to remove the outliers from the optimization

formula, which can be written as follows:

𝐻 = argmin
𝐻

(∑
𝑘

∥𝑉 𝐿
𝑘 (𝐷𝐵𝑘𝑀𝑘𝐻 − 𝐿𝑘)∥2 + 𝜆Γ(𝐻)

)
,

(3)

where 𝑉 𝐿
𝑘 is a 0/1 diagonal matrix.

Reference [4] had proved that under mild conditions, (3)

can be reformatted as:

𝐻 = argmin
𝐻

(∑
𝑘

∥𝐷𝐵𝑘𝑉𝑘𝑀𝑘𝐻 − 𝐿𝑘∥2 + 𝜆Γ(𝐻)

)
, (4)

In this work, the matrix 𝐵𝑘 and 𝐷 are assumed known.

III. EDGE-CONSTRAINED MOTION ESTIMATION

The framework of the proposed algorithm is showed in Fig.

1, in which we first detect the feature point correspondences.

Then we compute the local parametric model for each pair by

using the weighted Lucas-Kanade algorithm. Support regions

are extracted for each local parametric model based on edge

information (colored white in Fig. 1(c)). In Fig. 1(c), one color

stands for one support region of a certain feature point. Finally,

we obtain motion field and observable map. Unobservable area

is colored black in Fig. 1(d).

A. Improved local motion estimation

Since the proposed motion estimation results are built on

the parametric model of feature points, the accuracy of initial

estimation of motion parameters at feature points is of great

importance. We first use SIFT to extract feature points in the

reference frame and candidate frame and then match these

points. To make the feature points matching more robust, a

double check is performed as [4] did.

In this work, we use affine model to describe local optical

flow. The affine model parameter 𝑇𝑖 contains six unknown

variables:

𝑇𝑖 =

⎡
⎣ 1 + 𝑝1 𝑝3 𝑝5

𝑝2 1 + 𝑝4 𝑝6
0 0 1

⎤
⎦ , (5)

which minimizes the following formula:∑
𝑥

𝐻𝑟(𝑇𝑖𝑥)−𝐻𝑐(𝑥), 𝑥 ∈ 𝑁(𝑓 𝑐
𝑖 ), (6)

where 𝐻𝑟 and 𝐻𝑐 are interpolated reference frame and candi-

date frame, 𝑓 𝑐
𝑖 is a matched feature point in candidate frame,

and 𝑁(𝑓 𝑐
𝑖 ) is its neighborhood.

(a) Feature points matching

(b) Weighted Lucas-Kanade (c) Support region extraction

(d) Motion field

Fig. 1. Framework of the proposed algorithm.

The above equation can be solved by Lucas-Kanade algo-

rithm [5]. In traditional methods, the size of neighborhood

𝑁(𝑓 𝑐
𝑖 ) is fixed. Reference [4] proposed a way to choose the

window size adaptively. However, their methods still used a

uniform mask, which cannot detect motion boundaries. Ren

[6] used intervening contour to compute the affinity to assign

a weight to each point inside the window, which meant the

probability that this point had the same motion parameter

with the center point. Inspired by their work, we use Nonlocal

means (NLM) to produce the mask. For each pixel (𝑖, 𝑗) in the

window, its weight 𝑤(𝑖, 𝑗, 𝑘, 𝑙) is measured by its similarity

with the center pixel (𝑘, 𝑙) as follow:

𝑤(𝑖, 𝑗, 𝑘, 𝑙) =
1

𝐶(𝑘, 𝑙)
exp

{
−∥𝑅𝑖,𝑗𝑌 −𝑅𝑘,𝑙𝑌 ∥22,𝑎

2𝜎2

}
, (7)

where 𝑅𝑖,𝑗 represents an operator which extracts a patch of

a fixed and predetermined size (𝑞 × 𝑞) from an image and

gets a vector of length 𝑞2, 𝜎 acts as a smoothing parameter

controlling the effect of the grey-level difference between these

two image patches, 𝑌 is the image, 𝑎 is the standard deviation

of Gaussian kernel and 𝐶(𝑘, 𝑙) is the normalization constant

defined as

𝐶(𝑘, 𝑙) =
∑

(𝑖,𝑗)∈𝑁(𝑘,𝑙)

exp

{
−∥𝑅𝑖,𝑗𝑌 −𝑅𝑘,𝑙𝑌 ∥22,𝑎

2𝜎2

}
. (8)

With NLM mask and large window size, we can choose

window shape adaptively. Since our goal is to detect motion

boundaries, we reduce the influence of texture by decompos-

ing image and compute NLM mask in structure layer. The

weighted affine model is defined as follows:∑
𝑥

𝑤(𝑥)[𝐻𝑟(𝑇𝑖𝑥)−𝐻𝑐(𝑥)], 𝑥 ∈ 𝑁(𝑓 𝑐
𝑖 ). (9)

where 𝑤(𝑥) is the weight computed by NLM scheme.



B. Edge-constrained motion field search

Having the feature corresponding pair (𝑓𝑟
𝑖 , 𝑓

𝑐
𝑖 ) and local

affine parameter 𝑇𝑖, we extract support region for each pair,

which means all the pixels in a support region share the same

affine parameter. One simple way is to use confidence map 𝐶𝑖

as follows:

𝐶𝑖 =

{
1, ∣𝐵𝑘(𝐻

𝑟(𝑇𝑖𝑥)−𝐻𝑐(𝑥))∣ < 𝜂𝑐
0, ∣𝐵𝑘(𝐻

𝑟(𝑇𝑖𝑥)−𝐻𝑐(𝑥))∣ ≥ 𝜂𝑐
(10)

where 𝜂𝑐 is a predetermined threshold. This method can make

a correct decision in most time, but in motion boundaries it

may include outliers due to the effect of blur operator. It leads

to blurriness in super resolved results in motion boundaries,

or even produces artifacts because of false information.

To improve the robustness of confidence map and preserve

motion boundaries, we propose an edge-constrained algorithm

for motion field search. In order to reduce outliers, we stop

expanding support region at edge points which are found by

Canny detector. Edge points provide useful information for

support region searching, but there may contain gaps between

points. To overcome this problem, we refer to the trapped

ball method proposed in [7]. The basic idea of trapped ball

method is that it uses a ball instead of a single pixel to perform

searching, and the ball is trapped at small gaps between edge

points. At first, the ball has a large radius, and then its radius

becomes smaller when the ball cannot move any more. Finally,

there are only regions closed by edge points left. Then we

search these regions by priority order. The details of proposed

algorithm are described as Algorithm 1.

With the affine parameter 𝑇𝑖 and the corresponding support

region indicated in matrix 𝑙𝑎𝑏𝑒𝑙, we can extract motion field

and observable map. The process of motion field search is

showed in Fig.2. Since Algorithm 1 does not consider the

continuity of the motion field, we can see that there are still

some holes in the motion field after searching as Fig. 2(d)

shows. While in optical flow algorithm, the smoothness prior

of motion field can fill in motion from the neighborhood when

there is no reliable flow. To fill the holes of motion field with-

out damaging motion boundaries, we perform morphological

opening, which is erosion followed by dilation, on the motion

field.

IV. EXPERIMENTAL RESULTS

In the experiments, seven consecutive frames are extracted

from each original HR video of size 352 × 288 and blurred

using a 3 × 3 Gaussian filter with deviation 1, decimated by

a factor of 2× 2 and then contaminated by an additive noise

with standard deviation 2. For each test sequence, the fourth

frame is set as the reference frame and super resolved.

We set 𝑟𝑎𝑑𝑖𝑢𝑠 = 3, 𝜂𝑐 = 10. The window size for

estimating the local affine parametric model is 41 × 41. We

use total variation (TV) as regularization and set 𝜆 = 0.001.

To solve Eq.(4), we use gradient descend, and the number of

iteration is 50.

To validate the efficacy of NLM mask, we compare the

PSNR of SR results with and without using the NLM mask.

Algorithm 1: Edge-constrained Motion Field Search

Input:
𝑓 𝑐
𝑖 (𝑖 = 1, . . . ,𝑚): matched feature points in candidate

frame;

𝐶𝑖(𝑖 = 1, . . . ,𝑚): confidence map;

𝑟𝑎𝑑𝑖𝑢𝑠: initial size of searching ball;

Output:
𝑙𝑎𝑏𝑒𝑙: 𝑙𝑎𝑏𝑒𝑙(𝑥) = 𝑖 represents that 𝑥 is in 𝑖-th support

region;

Initialization:

Create a zero matrix 𝑙𝑎𝑏𝑒𝑙 of the same size as 𝐻𝑐;

Create a queue 𝑄, if 𝐶𝑖(𝑓
𝑐
𝑖 ) = 1 then Push 𝑓 𝑐

𝑖 into 𝑄;

Create a priority queue 𝑃 ;

Searching:

while 𝑟𝑎𝑑𝑖𝑢𝑠 ≥ 0 do
while 𝑄 is not empty do

Pop 𝑥 from head of 𝑄, 𝑖 = 𝑙𝑎𝑏𝑒𝑙(𝑥);
for 𝑦 ∈ 4-connected neighbors of 𝑥 do

if no edge points inside the ball or
𝑟𝑎𝑑𝑖𝑢𝑠 = 0 then

if 𝑙𝑎𝑏𝑒𝑙(𝑦) = 0 and 𝐶𝑖(𝑦) = 1 then
𝑙𝑎𝑏𝑒𝑙(𝑦) = 𝑖;
if 𝑦 is an edge point then

Push 𝑦 into 𝑃 ;

else
Push 𝑦 into 𝑄;

end
end

end
end

end
𝑟𝑎𝑑𝑖𝑢𝑠 = 𝑟𝑎𝑑𝑖𝑢𝑠− 1;

end
while 𝑃 is not empty do

Pop 𝑥 from head of 𝑃 , 𝑖 = 𝑙𝑎𝑏𝑒𝑙(𝑥);
for 𝑦 ∈ 4-connected neighbors of 𝑥 do

if 𝑙𝑎𝑏𝑒𝑙(𝑦) = 0 and 𝐶𝑖(𝑦) = 1 then
𝑙𝑎𝑏𝑒𝑙(𝑦) = 𝑖;
Push 𝑦 into 𝑃 ;

end
end

end

For the NLM mask, we choose the 𝜎 from 20 to 40 and select

an appropriate value in each test. The results are summarized

in Table I, which shows that NLM mask can improve the SR

performance in most cases, but its gain is small.

In the above experiments, we do not perform morphological

opening. Then we perform the proposed algorithm with and

without opening on motion field to see the difference. The

PSNR gains over bicubic interpolation are showed in Fig.3,

which proves the smoothness of motion field is an important

prior. Finally, we compare different SR algorithms including

SRWDF [4] and motion-estimation-free algorithm NLM SR

[1]. We download code of SRWDF from the author’s website



(a) 𝑟𝑎𝑑𝑖𝑢𝑠 = 3 (b) 𝑟𝑎𝑑𝑖𝑢𝑠 = 2

(c) 𝑟𝑎𝑑𝑖𝑢𝑠 = 1 (d) 𝑟𝑎𝑑𝑖𝑢𝑠 = 0

Fig. 2. The process of motion field search with the radius of searching ball
decreasing.

TABLE I
PSNR OF SR RESULTS WITH AND WITHOUT NLM MASK.

Sequence Uniform NLM Mask

mobile 23.58 23.59
coastguard 28.57 28.68

ice 33.24 33.25
stefan 28.37 28.26

soccer 32.63 32.76

1 2 3 4 5
1.5

2

2.5

3

3.5

4

4.5

5

Test Sequence
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N
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without opening
with opening

Fig. 3. The PSNR gains over Bicubic with and without morphological opening.

. For fair comparison, we perform support region algorithm

by using the original code and reconstruct the high resolution

image by using our TV regularization SR code. The method of

NLM SR is implemented by ourselves according to [1] with

7 × 7 patch size, 41 × 41 window size and 𝜎 = 2.2. The

PSNR results of all the tests are summarized in Table II. The

proposed method generates the best results steadily. Fig.4 gives

the visual comparison in stefan. We can see that the Bicubic

and NLM SR lose some details compared to SRWDF and the

proposed method. Furthermore, the proposed method produces

more satisfactory result in edges than SRWDF because we

consider smoothness of motion field.

V. CONCLUSIONS

In this work, we have two main contributions. First, we use

image decomposition and NLM mask to improve the estima-

http://www.hengsu.tk/research

TABLE II
PSNR RESULTS FOR THE TEST SEQUENCES

Sequence Bicubic NLM SR SRWDF Proposed

mobile 20.88 23.46 23.62 23.94
coastguard 27.09 27.60 27.66 28.74

ice 31.01 33.17 31.50 33.40
stefan 24.22 27.15 27.72 28.78
soccer 30.92 31.36 31.82 32.79

(a) stefan (b) Original

(c) Bicubic (d) NLM SR

(e) SRWDF (f) Proposed

Fig. 4. Visual comparison of the super resolved image in stefan.

tion of local parametric model. Second, we propose an edge-

constrained motion field search algorithm which maintains

motion boundaries while computing motion field and considers

smoothness of motion field. The experimental results have

shown that the proposed algorithm gets better performance

on SR.
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