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Abstract—In this paper, we present an auxiliary-function-based
independent vector analysis (AuxIVA) based on the Generalized
super Gaussian source model or Gaussian source model with
time-varying variance. AuxIVA is a convergence-guaranteed it-
erative algorithm for independent vector analysis (IVA) with a
spherical and super Gaussian source model, and the source model
can be characterized by a weighting function. We show that
both of the generalized Gaussian source models with the shape
parameter 0 < β ≤ 2 and the Gaussian source model with
time-varying variance unifiedly yield a power of vector-norm
type weighting functions. A scaling and a clipping technique
for numerical stability are discussed. The dependency of the
separation performance on the source model is also investigated.

I. INTRODUCTION

Blind source separation (BSS) is one of the important signal

processing techniques for extracting a desired source from

mixtures, and it has still been one of the most interesting topics

in the signal processing field. In recent years, multivariate-type

independent component analysis (ICA), which can be referred

to as independent vector analysis (IVA), was developed [1], [2]

and applied to the frequency-domain approach for convolutive

mixtures [3]. In IVA, the whole frequency components of a

source are modeled as a stochastic vector variable. Thanks to

modeling the dependencies over frequency components, IVA is

theoretically not affected by the permutation ambiguity, unlike

conventional frequency-domain ICA.

Recently, a fast and robust update rule for IVA was de-

veloped [4] that is based on auxiliary function technique [5],

which is denoted as auxiliary-function-based IVA (AuxIVA),

and its implementation in the iPhone was also investigated [6].

In AuxIVA, a spherical and super Gaussian source model is

used, and the separation performance should depend on the

source model, and this source model can be characterized by

a weighting function.

In this paper, as typical source models in AuxIVA, the

generalized Gaussian source model with the shape parameter

0 < β ≤ 2 and the Gaussian source model with time-varying

variance are focused on. We show that both of them unifiedly

yield a power of vector-norm type weighting functions. The

dependency of the separation performance on the source model

is also investigated.

II. INDEPENDENT VECTOR ANALYSIS

A. BSS in Frequency Domain

Assume here that K sources are observed by K micro-

phones and that their short-time Fourier transform (STFT)

representations are obtained. Let s(ω, τ), x(ω, τ), and y(ω, τ)
be the frequency-wise vector representation of the sources, the

observations, and the estimated sources, respectively, which

are defined as

s(ω, τ) = (s1(ω, τ) · · · sK(ω, τ))t, (1)

x(ω, τ) = (x1(ω, τ) · · · xK(ω, τ))t, (2)

y(ω, τ) = (y1(ω, τ) · · · yK(ω, τ))t, (3)

where t denotes the vector transpose, and the size of each

vector is K × 1. In the frequency-domain approach for a

convolutive mixture, a linear mixing model,

x(ω, τ) = A(ω)s(ω, τ), (4)

is assumed, where A(ω) is a K × K mixing matrix. The

sources are estimated by a linear demixing process,

y(ω, τ) = W (ω)x(ω, τ), (5)

where

W (ω) = (w1(ω) · · · wK(ω))h (6)

is a K × K demixing matrix, and h denotes Hermitian

transpose.

B. Objective Function of IVA

In IVA, assuming a multivariate p.d.f. for sources to exploit

the dependencies over frequency components, the demixing

matrices are estimated by minimizing the following objective

function.

J(W ) =
K

∑

k=1

1

Nτ

Nτ
∑

τ=1

G(yk(τ)) −
Nω
∑

ω=1

log | detW (ω)|, (7)

where W denotes a set of W (ω), Nω is the number of

frequency bins, Nτ is the number of time frames, yk(τ) is

the source-wise vector representation with the size Nω × 1
defined as

yk(τ) = (yk(1, τ) · · · yk(Nω, τ))t, (8)



and G(yk(τ)) is called a contrast function. When G(yk(τ)) =
− log p(yk(τ)), where p(yk(τ)) represents a multivariate

p.d.f. of a source, the minimization of eq. (7) is equivalent

to the maximum likelihood (ML) estimation.

III. OVERVIEW OF AUXIVA [4]

A. Conditions for contrast function

In AuxIVA, the following two conditions are assumed for

the contrast function.

Spherical symmetry G(yk(τ)) is assumed to be a function

of only the L2 norm of yk(τ). This means that G(yk(τ)) can

be represented as

G(yk(τ)) = GR(rk(τ)), (9)

rk(τ) = ||yk(τ)||2, (10)

where GR(r) is a function of a real-valued scalar variable, r.

Super Gaussianity GR(r) is assumed to be a continuous

and differentiable function of r, satisfying the condition that

G′

R(r)/r is positive and continuous everywhere and is mono-

tonically decreasing in the wider sense in r ≥ 0. Taking the

relationship G(yk(τ)) = − log p(yk(τ)) into account, this

means that a multivariate p.d.f. of a source, p(yk(τ)), is a

Gaussian or a super Gaussian distribution.

B. Auxiliary function for IVA

When G(yk(τ)) satisfies these two conditions,

G(yk(τ)) ≤ G′

R(r0)

2r0

||yk(τ)||2
2

+

(

GR(r0)−
r0G

′

R(r0)

2

)

(11)

holds for any yk(τ) and r0. The equality sign is satisfied if

and only if r0 = ||yk(τ)||2.

On the basis of this inequality, the following auxiliary

function can be derived.

Q(W , r) =
1

2

K
∑

k=1

Nω
∑

ω=1

wh
k(ω)Vk(ω)wk(ω)

−
Nω
∑

ω=1

log | detW (ω)|+ R, (12)

Vk(ω) =
1

Nτ

Nτ
∑

τ=1

[

G′

R(rk(τ))

rk(τ)
x(ω, τ)xh(ω, τ)

]

, (13)

where r denotes a set of auxiliary variables, rk(τ), and R is

a constant independent of W . For any W and r,

J(W ) ≤ Q(W , r) (14)

holds. The equality sign holds if and only if

rk(τ) = ||yk(τ)||2 =

√

√

√

√

Nω
∑

ω=1

|wh
k(ω)x(ω, τ)|2. (15)

C. Update Rules

Auxiliary variable updates: Update the weighted covariance

matrices Vk(ω) for all ω as follows.

rk(τ) =

√

√

√

√

Nω
∑

ω=1

|wh
k(ω)x(ω, τ)|2, (16)

φ(rk(τ)) =
G′

R(rk(τ))

rk(τ)
, (17)

Vk(ω) =
1

Nτ

Nτ
∑

τ=1

[

φ(rk(τ))x(ω, τ)xh(ω, τ)
]

. (18)

Demixing matrix updates: Apply the following updates in

order for all ω.

wk(ω) ← (W (ω)Vk(ω))−1ek, (19)

wk(ω) ← wk(ω)/
√

wh
k(ω)Vk(ω)wk(ω). (20)

In AuxIVA, φ(r) is a key function rather than the contrast

function G(yk(τ)) or GR(r). Hereafter, we denote φ(r) as a

weighting function because it works as a weight for calculating

a weighted covariance matrix, Vk(ω).

IV. POWER OF VECTOR-NORM TYPE WEIGHTING

FUNCTIONS

A. Generalized Gaussian Source Models

One of the typical super Gaussian distributions can be

given by generalized Gaussian distribution with an appropriate

shape parameter [7]. If we assume a spherical complex-valued

generalized Gaussian distribution such as

p(yk(τ)) ∝ exp

{

−
( ||yk(τ)||2

α

)β
}

, (21)

as the p.d.f of the source, the corresponding contrast function

and the weighting function can be represented as follows.

GR(r) =
( r

α

)β

, (22)

φ(r) = βα−βrβ−2, (23)

where α and β denote a scale and a shape parameter, respec-

tively, and 0 < β ≤ 2 is necessary for super Gaussianity.

B. Gaussian Source Model with Time-varying Variance

Instead of a stationary super Gaussian model, we can as-

sume that a source-wise vector yk(τ) follows a non-stationary

Gaussian distribution such as

p(yk(τ); σ2

k(τ)) ∝ exp

(

−||yk(τ)||2
2

2σ2

k(τ)

)

, (24)

where σ2

k(τ) denotes the time-varying variance [8]1. In this

case, the corresponding contrast function and the weighting

1In this paper, we focus on only Gaussian distribution as the time-varying
model because a generalized Gaussian model with time-varying variance does
not yield the weighting function with the unified form of eq. (29)



function can be represented as follows.

GR(r) =
r2

2σ2

k(τ)
, (25)

φ(r) =
1

σ2

k(τ)
. (26)

By replacing the unknown σ2

k(τ) by its ML estimation, we

have

σ̂2

k(τ) =
1

Nω

∑

ω

||yk(ω, τ)||2
2

=
r2

Nω

, (27)

which is equivalent to alternatively minimizing the objective

function J(W , σ2) in terms of W and σ2, where σ2 is a set

of σ2

k(τ). Then, we have

φ(r) = Nωr−2. (28)

C. Unified Weighting Function Form

Both eq. (23) and eq. (28) can be represented as the power

of a vector norm r such as

φ(r) = γrβ−2, (29)

where γ is a scale parameter. Note that 0 ≤ β ≤ 2 is

necessary for AuxIVA. If β < 0, minimizing the objective

function loses the meaning of ML estimation because the

integral of the corresponding probability function p(yk(τ))
does not converge, while, if β > 2, AuxIVA is invalid because

eq. (11) is not satisfied.

V. SCALING AND CLIPPING OF WEIGHTING FUNCTION

FOR NUMERICAL STABILITY

A. Scaling

Let Ŵ (ω) be the demixing matrix at the convergence point

of AuxIVA when the weighting function defined in eq. (29)

with γ = 1 is used. Ŵ (ω) should satisfy

ŵ
h
l (ω)Vk(ω)ŵk(ω) = δkl, (30)

where

Vk(ω) =
1

Nτ

Nτ
∑

τ=1

[

γr̂β−2

k (τ)x(ω, τ)xh(ω, τ)
]

, (31)

r̂k(τ) =

√

√

√

√

Nω
∑

ω=1

|ŵh
k(ω)x(ω, τ)|2, (32)

and γ = 1. Then, we can easily confirm that when a scale

parameter, γ = γ0, is used, CŴ (ω) becomes the convergence

point where Cβγ0 = 1. Therefore, the scale parameter γ does

not matter theoretically because it only determines a scale of

W , and it will be adjusted by the followed projection back

operation.

However, a simple setting, γ = 1, may cause a very huge

magnitude of W (ω), especially when β is close to or equal to

0. Let us assume that yk(τ) actually follows eq. (21). Then,

the variance of yk(τ) can be obtained as

E[||yk(τ)||2
2
] = α2

NωΓ(1 + 2

β
(Nω + 1))

(Nω + 1)Γ(1 + 2

β
Nω)

, (33)

where E[·] denotes the expectation operation. Applying the

well-known Starling’s approximation to Gamma functions

such as Γ(1 + z) ≃
√

2πz(z/e)z to eq. (33), we have

E[||yk(τ)||2
2
] ≃ α2

(

Nω + 1

Nω

)
2

β
Nω−

1

2

(

2(Nω + 1)

βe

)
2

β

,

(34)

which is larger than 1033 for Nω = 1025, β = 0.2, and γ = 1.

Thus, such a huge magnitude can cause numerical instability

or divergence even in floating point calculation.

To avoiding this, the scale normalization

W (ω)←W (ω)/

√

1

NωNτK

∑

k

∑

τ

||yk(τ)||2
2

(35)

is here introduced after each iteration of AuxIVA such that

E[|yk(ω, τ)|2] = 1 is satisfied.

B. Clipping

Obviously, the weighting function rβ−2 diverges when

r = 0. Even though the observation is not silent, an estimated

source can be accidently close to silent at a frame during

iterations. In this case, the weighting function becomes a very

huge value at the frame, which leads numerical divergence or

over-fitting of Vk to only the frame. To avoid this, the clipping

of the weighting function is also introduced here as

φ(r) = min{φ0, r
β−2}, (36)

where φ0 denotes a clipping value.

VI. EXPERIMENTAL EVALUATIONS

The separation performances of AuxIVA with different βs

in eq. (36) were compared with experiments by using synthe-

sized convolutive mixtures of speech. The impulse responses

from nine directions recorded in two variable reverberation

rooms (E2A and E2B) from RWCP Sound Scene Database

in Real Acoustical Environments [10] were used. Note that

the reverberation time of E2B is very long (1.3 s). Also,

we selected nine speech utterances from the ATR Japanese

speech database (Set B), assigned them to each of the nine

directions, convoluted each of them after downsampling to 16

kHz, and mixed them. We prepared two mixtures (K = 2)

and three mixtures (K = 3) of all combinations (9C2 = 36
and 9C3 = 84, respectively) of them. Other experimental

conditions are summarized in Table I.

The AuxIVA update with the weighting function of eq. (36)

including the normalization of eq. (35) was applied to all

mixtures, and β = 0, 0.2, 0.4, 0.6, 0.8 and 1 were compared.

Note that β = 1 and β = 0 corresponded to the time-

invariant Laplacian source model [4], [6] and the time-varying

Gaussian source model [8], respectively. The initial value of

the demixing matrix was given by the identity matrix for

simplicity. A clipping value, φ0 = 1000, was experimentally

determined. Although AuxIVA almost converged at 10 or 20 it-

erations in most cases, we applied 50 iterations to evaluate the

best separation performance in this experiment. No divergence

happened over all trials for any βs. The estimated sources were



TABLE I
EXPERIMENTAL CONDITIONS

room type E2A E2B

reverberation time 0.3s 1.3s

microphone spacing 2.83cm

source-microphone distance 2m

source direction 10
◦ to 170

◦ by 20
◦

frame length 4096 8192

frame shift 2048 4096

window function hamming

signal length 10s

sampling frequency 16kHz

calculated by applying the estimated demixing matrix with the

projection back operation [9]. The performance was evaluated

by the average of the SDR over all trials calculated by using

the BSS toolbox [11].

The resultant SDRs for different βs at each of the four

conditions (the number of sources, 2 or 3, by room type, E2A

or E2B) are shown in Fig. 1. The bars and the error bars

indicate the averaged SDR and the quantile range over all

trials, respectively. The best choice of β slightly depends on

the conditions, but β = 0.2 or β = 0.4 showed almost the

best performance at all conditions.

VII. CONCLUSIONS

In this paper, AuxIVA with the power of vector norm

type weighting function φ(r) = rβ−2 was presented, where

0 ≤ β ≤ 2. The normalization and the clipping operation were

discussed for numerical stability. The experimental results

suggest that β = 0.2 ∼ 0.4 should be a good choice for

speech separation.
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Fig. 1. The resultant SDR for different βs. From top to bottom, the results
in the conditions of two mixtures in room E2A, two mixtures in room E2B,
three mixtures in room E2A, and three mixtures in room E2B are shown.


