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Abstract—As the number of transmit/receive antennas get-
s large in wireless communication systems, the drastically-
increasing complexity in MIMO detection imposes significant
challenges in implementing green communications while achiev-
ing high spectral efficiency. The winner-path-extension (WPE)
K-best algorithm is an efficient detection algorithm in uncoded
MIMO systems, known for its stable throughput and excellent
symbol-error-rate (SER) and bit-error-rate (BER) performances
under relatively low complexity. However, when applying the
WPE K-best algorithm into coded MIMO systems, where soft-
output information such as log-likelihood ratio (LLR) is required,
missing counter-hypotheses issue in LLR calculation often de-
grades the error performance. To solve this problem, in this paper
we propose an improved LLR approximation algorithm, such
that WPE K-best algorithm can be well suited to coded MIMO
systems. Specifically, when a counter-hypothesis misses, we set a
metric threshold for the missing counter-hypothesis by calculat-
ing the metric of the bit flipping vector, and then randomly choose
a value below the threshold as the approximation. We conduct
simulation evaluations for our proposed algorithm in an 8 × 8
MIMO multiplexing system employing 16QAM modulation and
Turbo coding. Simulation results show that compared with other
existing LLR approximation schemes, our proposed approach
can effectively improve the block-error-rate (BLER) performance
as well as reducing the complexity in the tree search of WPE
K-best algorithm. Moreover, we use a look-up table method to
determine the Schnorr-Euchner (SE) enumeration order, which
can further decrease the computational complexity of WPE K-
best algorithms.

Index Terms—WPE K-best algorithm; coded MIMO systems;
LLR approximation; SE enumeration

I. INTRODUCTION

Recently, green wireless communications have attracted

wide attention towards the developing future wireless network-

s. MIMO technology plays a critically important role in green

wireless communications in light of its high spectral efficiency.

However, the high complexity required for MIMO detector al-

so imposes great demands on energy consumption and causes

the generation of more battery wastes. Although there have

been several low-complexity MIMO detection algorithms, e.g.,

zero forcing (ZF) algorithm, minimum mean square error
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(MMSE) algorithm, and successive interference cancellation

(SIC) algorithm, their error performances cannot meet the

application requirement. Consequently, the quasi-maximum

likelihood (ML) detectors have been gradually used in realistic

systems. Quasi-maximum likelihood detectors based on tree-

search can be categorized into breadth-first, depth-first and

metric-first search algorithms. Sphere detection (SD) algorithm

[1]-[2] is a depth-first tree-search algorithm. SD algorithm is

not propitious for hardware implementation due to unstable

throughput. On the other hand, metric-first stack algorithm

[3] suffers from frequent back-search process and the high

store complexity. As one of breadth-first search algorithms,

WPE K-best algorithms [4]-[6] have heavy computation bur-

den in coded MIMO systems, especially when K is large.

These tree-search algorithms all need a ML hypothesis and

a counter-hypothesis to calculate the LLR value for every

output bit. However, the counter-hypotheses of certain bits

may be missing due to pruning. As a consequence, the LLR

values for certain bits cannot be calculated resulting in further

performance degradation.

Some schemes have been proposed to solve the problem of

missing counter-hypotheses. Sizhong Chen et al. [7] proposed

to use the difference between the largest metric and the

smallest metric to approximate the LLR or assign a predefined

LLR, such as +6 and -6. In [8], a bit flipping method was

proposed which flips the desired bit of the ML hypothesis.

The advantage of the above three methods is that they do

not have to expand the searching range. However, the BLER

performance of these methods is not satisfactory. The smart

candidate adding (SCA) algorithms were proposed in [9]-[12],

which use an unconstrained search for ML hypothesis and

multiple constrained searches for counter-hypotheses. In [13],

the authors proposed to make use of the partial metric to

compute the approximated LLR at every layer instead of at the

last layer only. A compressing based transformation method

was developed in [14], which can achieve significant perfor-

mance improvement by compressing the dubious observation

of the metrics. The contributions of our work include two

folds. First, unlike the aforementioned algorithms, we propose

an improved LLR approximation algorithm by applying the

metric threshold of the missing counter-hypothesis. The pro-

posed scheme can improve the accuracy of LLR values without
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Fig. 1. Block diagram of the coded MIMO system

expanding the searching range. Second, a SE enumeration

method is developed. These two approaches can effectively

reduce the complexity of MIMO detectors as compared to

the existing yet widely used WPE K-best algorithms, thus

easing the implementation of MIMO detectors towards green

communications in wireless networks.
The rest of this paper is organized as follows. In Section II,

the MIMO system model is described. An improved LLR

approximation algorithm and a look-up table method to deter-

mine the SE enumeration order are described in Section III. We

analyze the complexity of our scheme and evaluate the error

performance through simulations in Sections IV and Section V,

respectively. The paper concludes with Section VI.

II. SYSTEM MODEL

We consider a coded MIMO system as depicted in Fig. 1.

The input bit stream is encoded and interleaved to become

the coded bits, then the coded bits are mapping to the QAM

constellation. The complex signals are orthogonal frequency

division multiplexing (OFDM) modulated before transmitting.

The length of cyclic prefix is longer than the largest multipath

delay. The signal transmissions can be modeled by

y = Hs+ n (1)

where y is an Nr×1 signal vector received by the receive

antennas, H is an Nr×Nt channel matrix following the spatial

channel model (SCM), and n is a noise vector whose elements

are independent circularly symmetric complex Gaussian ran-

dom variables with mean zero and variance σ2. If we let⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

yR =
[
ReT (y) ImT (y)

]T
;

HR =

[
Re(H) −Im(H)
Im(H) Re(H)

]
;

nR =
[
ReT (n) ImT (n)

]T
,

(2)

the complex-valued system model given in (1) can be writ-

ten in a real-valued form as yR = HRx + nR, where x
is a real-valued transmission vector, x ∈ X2Nt , and X
is the set of symbols in the real-valued constellation, e.g.

X = {−3,−1, 1, 3} in the case of 16QAM. In this paper,

we let 2Nt = 2Nr = N for convenience. The objective

of MIMO detection is to find a vector xML, such that its

transformed vector HRx has the minimum Euclidean distance

to the received vector yR, i.e.,

xML = arg min
x∈XN

‖yR −HRx‖22 (3)

Let p = H−1
R yR, e = p− x, and HT

RHR = RTR, where R
is an upper triangular matrix, the ith element of e is ei. Also,

we set Q as an upper triangular matrix, where Qi,i = R2
i,i,

Qi,j = Ri,j/Ri,i, an i = 1, 2, ..., N , j = i + 1, i + 2, ..., N .

Eq. (3) can be rewritten as

xML = arg min
x∈XN

‖HR(p− x)‖22

= arg min
x∈XN

N∑
i=1

Qi,i

(
ei +

N∑
j=i+1

Qi,jej

)2

= arg min
x∈XN

N∑
i=1

Di

(4)

where Di = Qi,i

(
ei +

∑N
j=i+1 Qi,jej

)2

is the metric incre-

ment of the ith dimension.

Soft-output WPE K-best algorithm is one of breadth-first

search algorithms. The detector keeps all the K best survivors

as a candidate list, and the LLR of the bit ci is calculated

according to Eq.(5) if there is no priori information:

LLR(ci|y) = log
P [ci = 1|y]
P [ci = 0|y] (5)

With Max-log approximation [2], Eq.(5) can be written as

LLR(ci|y)

≈ min
x∈L0

i

{
‖yR −HRx‖22

σ2

}
− min

x∈L1
i

{
‖yR −HRx‖22

σ2

}
(6)

where L0
i and L1

i represent all vectors with the bit ci being

0 and 1, respectively. If we call the vector which has the

minimum metric as ML hypothesis and the vectors which

have at least one different bit from the ML hypothesis as

counter-hypotheses, then the LLR value is the difference

between the metric of the ML hypothesis and that of the

counter-hypothesis. However, in the soft-output WPE K-best

algorithm, if K is not large enough, we may find sometimes

all the candidates have the same bit at a certain position, which

is called missing counter-hypotheses problem. Now we can’t

calculate the LLR values using Eq. (6). An improved LLR

approximation algorithm will be proposed to solve this issue.

III. LOW-COMPLEXITY SOFT-OUTPUT WPE K-BEST

ALGORITHM

WPE K-best algorithm expands the search tree using WPE

method. When cooperating with accurate SE enumeration

order, WPE method can decrease the complexity of K-best

algorithm (see [4] for more details). In order to further reduce

the complexity of WPE K-best algorithm, we propose a look-

up table method to determine the SE enumeration order and an

improved LLR approximation method, which are elaborated in

Section III-A and Section III-B, respectively.

A. Determination of Accurate SE Enumeration Order

We can express the metric increment at the ith layer as

Di = Qi,i

⎛
⎝pi +

N∑
j=i+1

Qi,jej − x

⎞
⎠

2

= Qi,i(Si − x)
2

(7)



TABLE I
SE ENUMERATION ORDER TABLE FOR 16QAM

-3 -1 1 3
-1 -3 1 3
-1 1 -3 3
1 -1 3 -3
1 3 -1 -3
3 1 -1 -3

where Si = pi +
∑N

j=i+1 Qi,jej is called extension center

similar to [15], it is easy to find that the metric increment Di

is determined by the distance between Si and x. In order to

extend the node which has the minimum metric increment

firstly, we need to find the constellation point x which is

nearest to Si. So, the accurate SE enumeration order is to sort

the constellation points by their distance to Si ascendingly,

and a table similar to [16] is used to store the possible SE

enumeration order. Let the real-valued constellation set of M-

QAM be expressed as

Ω = {−(
√
M − 1),−(

√
M − 3), . . . ,−1,

1, 3, . . . ,
√
M − 3,

√
M − 1}, (8)

the row number for lookup table can be calculated using Eq.

(9), where �.� denotes the ceiling function. Taking 16QAM

as the typical example, Eq.(9) can be simplified as Eq.(10)

as follows, and the accurate SE enumeration order is given in

Table I, where

rni =

⎧⎨
⎩

1, if Si ≤ −√
M + 2;

2(
√
M − 1), if Si ≥

√
M − 2;

�Si�+ (
√
M − 1), otherwise.

(9)

This new method can be used in all M-QAM modulations,

and the row number is easy to determine with two comparison

operations at most. Therefore, the proposed method has a low-

er complexity than the algorithm in [15]. The SE enumeration

order determined in [16] is inaccurate due to the inaccuracy of

ZF solution. However, the SE enumeration order determined

by the proposed method is accurate and can guarantee that the

metric increment changes from small to large.

rni =

⎧⎨
⎩

1, if Si ≤ −2;
6, if Si ≥ 2;
�Si�+ 3, otherwise.

(10)

B. Proposed LLR Approximation Algorithm

If K is not large enough, soft-output WPE K-best algorithm

may suffer from missing counter-hypotheses problem when

calculating the LLR values after the tree search. We don’t

know the accurate metric of the missing counter-hypothesis,

but we can get the metric of the bit flipping vector by flipping

the desired bit of ML hypothesis. Because there is correlation

between signal layers, there will most likely exist a better

candidate satisfying the bit requirement [9]. So we define the

metric of the bit flipping vector as the upper bound of the

metric of the missing counter-hypothesis. Different from other

works, this paper firstly considers the metric threshold of the

TABLE II
AN IMPROVED LLR APPROXIMATION ALGORITHM

Step 1: Getting the bit flipping vector by flipping the desired
bit of the ML hypothesis, and calculating the metric of the bit
flipping vector, expressed as γ.

Step 2: If γ > γK , we can select a metric γs between γK and

γ randomly, let LLR(ci|y) =
{

(γ1 − γs)
/
σ2, cML

i = 0
(γs − γ1)

/
σ2, cML

i = 1
.

Step 3: If γ ≤ γK , though this condition happens with low

probability, let LLR(ci|y) =
{

(γ1 − γ)
/
σ2, cML

i = 0
(γ − γ1)

/
σ2, cML

i = 1
.

Step 4: For all LLR, if LLR > 6, then let LLR = 6; If
LLR < −6, then let LLR = −6.

missing counter-hypothesis, and then approximates the LLR

by making use of the determined threshold.

We can use the steps in Table II to approximate the LLR

values. Suppose the metrics of K best candidate vectors which

can get from tree search are γ1, γ2, . . . , γK from small to large,

and the metric of the bit flipping vector is γ. If γ > γK ,

we consider the metric of the missing counter-hypothesis is

between γ and γK , so we select a metric γs between γ and

γK randomly as the metric of the missing counter-hypothesis.

If γ ≤ γK , though this condition happens with low probability,

we use γ as the metric of the missing counter-hypothesis. As

we may overestimate the metrics of all the counter-hypotheses,

we clip all the LLR values at a magnitude of ±6.

Although the proposed LLR approximation method can

not determine the accurate metrics of the missing counter-

hypotheses, this method considers the metric thresholds of the

missing counter-hypotheses. Compared to other methods, this

approximation method can achieve better performance.

C. Calculation of the Metric for the Bit Flipping Vector

As the bit flipping vector only has one symbol different from

the vector of ML hypothesis, we can use the following low-

complexity scheme to calculate the metric of the bit flipping

vector. The metric of a vector x can be expressed as

‖yR −HRx‖22 =
N∑
i=1

⎛
⎝yRi −

N∑
j=1

HRi,jxj

⎞
⎠

2

. (11)

To reduce the complexity of calculating the bit flipping vector,

we first calculate matrix H′ and vector A using ML hypothesis

vector xML =
[
x1 x2 · · · xN

]T
. H′ is an N×N

matrix and A is an N×1 vector

H ′
i,j = HRi,jxj , (12)

Ai =
∑N

j=1
HRi,jxj , (13)

where i = 1, 2, · · · , N, j = 1, 2, · · · , N . If the bit flipping

vector is x′
ML =

[
x1 x′

2 · · · xN

]T
. We can calculate



the metric of the bit flipping vector using Eq. (14), as

γ′ =
N∑
i=1

(
yRi −Ai +H ′

i,2 −HRi,2x
′
2

)2
. (14)

By making use of the relation between ML vector and the bit

flipping vector, the complexity of calculating the metric of the

bit flipping vector is little.

IV. COMPLEXITY ANALYSIS

The computational complexity of MIMO detectors includes

metric computation, LLR approximation and sorting opera-

tions. The computational complexity is measured using the

number of real-valued operations, such as addition and mul-

tiplication. Sorting complexity is measured by the number

of compare operations, and bubble sort algorithm is adopted

for its fixed complexity. To select m smallest numbers out

of n candidates, if m < n, bubble sort algorithm needs

(2n−m− 1)m/2 compare operations; if m = n, the number

of compare operations is (n−1)n/2. The cost of one compare

operation is similar to one addition operation. So we add

the number of compare operations to the number of addition

operations.

In this paper, we use BLER to measure the performance

of coded MIMO systems. We compare the performance and

complexity of three LLR approximation algorithms. The first

algorithm uses the difference between the largest metric and

the smallest metric to approximate the LLR values, we call it

DLS method [7]. The second algorithm assigns a predefined

clipping value, such as +6 and -6, as the approximated LLR.

The third method is the proposed LLR approximation algorith-

m that will be referred to as random selection (RS) method,

which randomly selects a metric below the determined metric

threshold as the approximated metric of missing counter-

hypothesis.

The complexity of clipping method is equal to the com-

plexity of DLS method, as when calculating the LLR values,

both these two methods don’t need extra complexity. But

the proposed RS method need to calculate the metrics of bit

flipping vectors. However, the extra complexity of RS method

is low by making use of the relation between ML vector and

the bit flipping vectors. And different from calculating the

metrics during the tree-search process, calculating the metrics

of the bit flipping vectors doesn’t need sorting operations.

By applying the metric threshold of the missing counter-

hypotheses, RS LLR approximation method can achieve better

approximated performance. Then WPE K-best algorithm with

RS method need a smaller K value than other methods when

achieving the same BLER performance. From Section V, we

can see the proposed RS LLR approximation algorithm has

a lower complexity than other LLR approximation methods

without BLER performance degradation.

V. SIMULATION EVALUATIONS

In this paper, a coded MIMO system is considered and the

simulation parameters are given in Table III. The detector runs

only once, i.e. we do not employ iterative detection-decoding.

TABLE III
SIMULATION PARAMETERS

Number of transmit/receive antennas 8/8
Modulation type 16QAM
Channel model SCM (six path)

Propagation scenario Urban micro
Base/mobile station arrangement 10λ/ 0.5λ spacing

Channel estimation Ideal
Channel coding/decoding Turbo (1/3 rate)/Max-log-Map

1 2 3 4 5 6 7 8

10−2

10−1

100

Eb/N0 [dB]

B
LE

R

DLS,K=20
clipping,K=20
RS,K=15

Fig. 2. BLER of clipping, DLS and RS methods when K=15 and 20

All the algorithms compared in this paper employ a sorted QR

decomposition for preprocessing.

Fig. 2 shows the BLER performance comparison of WPE

K-best algorithm with clipping, DLS and RS LLR approx-

imation methods when K=15 and 20. As the phenomenon

of missing counter-hypothesis happens randomly, we compare

the complexity of different LLR approximation algorithms in

a statistic way. The number of additions and multiplications

at different Eb/N0 are compared in Fig. 3 and Fig. 4,

respectively. From Fig. 2, it is seen that clipping approximation

method has better BLER performance than DLS method for

the same K=20. The proposed RS approximation algorithm

with K = 15 achieves better BLER performance than other

two approximation algorithms with K = 20. The complexity

comparison at this performance is recorded in Table IV

(Eb/N0=5dB). From Table IV, we can see RS method with

K=15 leads to a reduction of 22.56% addition operations and

1.04% multiplication operations compared to clipping or DLS

approximation methods with K=20.

Fig. 5 shows the BLER of clipping, DLS and RS LLR

approximation methods when K=15, 20 and 30. Compared

to clipping method with K=30, RS approximation algorithm

with K = 15 has a performance loss less than 0.2dB, however,

RS method leads to a reduction of 58.95% addition operations

and 31.54% multiplication operations as showed in Table IV.

From Fig. 5, it is seen that the proposed RS approximation

method with K=20 has the best BLER performance. Com-

pared to clipping or DLS approximation methods with K=30,

RS method with K=20 has a reduction of 41.17% addition

operations and 16.13% multiplication operations. Finally, we

conclude that the proposed RS LLR approximation algorithm

can both reduce the complexity of WPE K-best algorithm and
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Fig. 3. The number of additions in WPE K-best algorithm with different LLR
approximation algorithms
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Fig. 4. The number of multiplications in WPE K-best algorithm with different
LLR approximation algorithms

improve the BLER performance.

VI. CONCLUSIONS

In this paper, an improved LLR approximation algorith-

m was proposed to solve the problem of missing counter-

hypotheses. Moreover, we also used a look-up table method to

determine the SE enumeration order, which can further reduce

the computational complexity of WPE K-best algorithm for

MIMO detection. From simulation results, we can see that

the proposed LLR approximation algorithm can improve the

BLER performance of soft-output WPE K-best algorithm and

decrease the computational complexity at the same time, thus

easing the implementation of MIMO detectors towards green

communications. Furthermore, this improved LLR approxima-

tion algorithm can be applied to other MIMO detectors which

use a candidate list to calculate the LLR values, such as M

algorithm and semi-definite relaxation algorithm.
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