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Abstract—In this paper, we propose a mixture structure of
the linear and kernel adaptive fiilters for improving the con-
vergence characteristics of the kernel normalized least mean
square (KLMS) adaptive algorithm. The proposed method is
based on the concept of the affine constrained mixture structure
for the linear normalized LMS adaptive filters which uses the
more than two adaptive filters concurrently. We derive the
proposed structure, and its implementation method. We confirm
the effectiveness of the proposed method through the computer
simulations.

I. INTRODUCTION

In this paper, we propose a mixture structure of a linear
and a kernel adaptive filters which improve the convergence
characteristics of the kernel adaptive filter.

Linear adaptive filters have been used in a variety of appli-
cations, e.g., echo or noise canceler, equalization in wireless
communication channels, and so on. Besides, there are a lot
of theoretical analyses on their behavior and characteristics[1],
[2]. Recently, as an extension of the linear counterparts, kernel
adaptive filters have been proposed that enable us to adaptively
identify non-linear systems[3], and are expected to be used
in applications such as non-linear channel equalization for
improving the convergence properties[4].

Kernel adaptive filters are derived by applying the kernel
method to linear adaptive filters, and several algorithms were
proposed, i.e., the kernel recursive least squares (KRLS)[4],
the kernel least mean square (KLMS)[5], the kernel normal-
ized LMS (KNLMS)[6], the kernel ERLS-DCD[7] algorithms,
and so forth. It is shown by those researches that the kernel
algorithms could provide better convergence characteristics
than the linear ones under some conditions[3], [6]. However,
theoretical analysis of those kernel algorithms are not devel-
oped enough to predict the behavior of them in the actual
applications.

In addition, the kernel algorithms require some settings
which do not exist in their linear counterparts, namely, the
kernel functions, the kernel parameters, the parameter for
sparseness etc. The selection of them affect the performance
of the algorithms and unsuitable selection would degrade the
convergence characteristics of the kernel algorithms to almost
same as those of linear algorithms as confirmed in this paper.

In this paper, we propose a mixture structure of a kernel
and a linear adaptive filters for improving the convergence
characteristics of the kernel adaptive filters. The proposed
method could be regarded as an extension of the mixture

structure for the linear adaptive filters[8], [9]. However, the
proposed method employs a kernel and a linear adaptive filters
instead of multiple linear filters. This feature enables us to
identify wider class of systems including linear and non-linear
ones using the proposed method. The outputs of the two filters
will be mixed by the mixing equation. The ratio of mixing
will be automatically adjusted by adaptively controlling the
value of a parameter, the mixing parameter. We confirm the
convergence characteristics of the proposed method when
applied to non-linear system identification problems.

II. PREPARATION

Here, we briefly review the conventional kernel adaptive
filters[3], [6].

A. Kernel method

First, the input signal x(n) is transformed into a high-
dimensional feature space F by the transformation Φ(x).
Then, the output signal of the adaptive filter is expressed as

f (xn) = ΦT (xn)wn (1)

where wn and xn are filter coefficient vector of the adaptive
filter, and tap-input vector at time n respectively. Also, T
shows the transpose of a vector as usual, and ΦT (x) shows
the transpose of the transformed vector. We defined wn and
xn as

wn = [w0, . . . , wM−1], (2)
xn = [x(n), . . . , x(n−M + 1)] (3)

where wi, x(n) and M show the i-th coefficient of the filter
at time n, the input sample at n and the length of the filter
respectively.

In order to apply the kernel method, we assume that the
filter vector wn can be expressed as a linear combination of
m vectors Φ(yj) as

wn =

m∑
j=1

αjΦ
(
yj

)
. (4)

The vectors yj are subset of x` (` = 0, 1, . . . , n− 1) and αj

is the weight corresponding to yj . Then, the output in (1) is
expressed[3] as

f (xn) =
m∑
j=1

(
ΦT (x)Φ

(
yj

))
αj . (5)



Let us define the vector αn as αn = [α1, . . . , αm]
T . In the

kernel adaptive filter, αn is regarded as the coefficient vector
of the adaptive filter instead of wn. A lot of algorithms are
derived[6], [5], [10] to estimate the optimum α based on the
linear adaptive algorithms.

In those algorithms, the inner product ΦT (x(n))Φ(yj) in
Eq. (5) is obtained via the the kernel function. A kernel
function k (·, ·) is given as

∀a,b ∈ X κ (a, b) = ΦT (a)Φ (b) (6)

and is used to calculate the inner product in the space F [3].
The Gaussian kernel defined as below is widely used in

kernel adaptive filtering and, in this paper, we also assume
that the Gaussian kernel is used:

κ (a, b) = exp
(
−ζ ‖a− b‖2

)
(7)

where ‖·‖ show the Euclidean norm and ζ is the kernel
parameter.

B. Kernel normalized LMS algorithm

The conventional linear adaptive algorithm could be used for
updating the filter coefficients αn, and several algorithms are
proposed so far, e.g., the kernel RLS[4], the kernel LMS[5],
the kernel NLMS[6], the kernel ERLS-DCD[7] and so forth.

Although the proposed method is not restricted with the
selection of the adaptive algorithm, we will use the kernel
normalized LMS (KNLMS) algorithm in the following. Here,
we briefly review the algorithm[6].

First, we rewrite Eq. (5) as

f (xn) =


Φ(xn)

T
Φ(y1)

Φ (xn)
T
Φ(y2)

...
Φ(xn)

T
Φ(ym)


T

αn =


κ (xn,y1)
κ (xn,y2)

...
κ (xn,ym)


T

αn

(8)
= hnαn (9)

where we defined hn as hn = [κ (xn,y1) , . . . , κ (xn,ym)]
T．

Then, the filter αn can be updated using a linear adaptive
algorithm by regarding hn as the input vectors to αn.

Here, we define the matrix D which is consisting of the
vectors [y1, . . . ,ym] as

D =
[
y1 . . . ym

]
(10)

and D is called the dictionary. The vectors stored in the
dictionary D are m (m ≤ n) input vectors of the previous
time, i.e., x` where m is a variable determined by the
algorithm below.

Let us denote D at time n by Dn. Then, Dn and hn are

updated according to the following pseudo algorithm:

Initialization
D1 = y1 = x1

h1 = k (x1,y1)

α1 = 0 , m = 1

for n = 2, 3, · · ·
if max

j=1,...,m
|k
(
xn,yj

)
| > γ0 (11)

Dn = Dn−1

hn =
[
k (xn,y1) · · · k (xn,ym)

]T
(12)

else
m = m+ 1

Dn = Dn−1 ∪ {xn}

hn =
[
k (xn,y1) · · · k (xn,ym)

]T
(13)

end if
end for

In Eq. (11), γ0 is a threshold in the range 0 < γ0 < 1 and
its value is determined according to the sparseness of the
signal[6]. According to the condition Eq. (11), xn will be
stored in Dn as a new training vector.

Then, the filter coefficients vector αn will be updated by
the following equation:

αn+1 = αn + µα
d(n)− hnαn

δ + ||hn||2
hn (14)

where µα is the normalized step-size parameter in the range
0 < µα < 2 and δ is a stabilized parameter to prevent the
divergence of the algorithm when ||hn||2 is zero.

C. Convergence characteristics of kernel adaptive filters and
selection of parameter

Although the kernel adaptive filters are expected to improve
the convergence characteristics of the learning of the non-
linear unknown systems, under some conditions, the conver-
gence characteristics would be degraded compared to those
of the linear filters. Here, we show some examples of such
situations based on the computer simulations.

In Figs 1, 2, and 3, we show the comparison of the conver-
gence characteristics of the linear NLMS and the kernel NLMS
filters. In these simulations, we apply the adaptive filters to the
system identification and forward prediction problems[6]. The
conditions of the simulations are shown in Table I and Table
II respectively.

From these results, we could see that the convergence
characteristics of the kernel adaptive filters vary depending on
the environments, and in some cases, the linear adaptive filters
could provide comparative, or better in some sense (e.g., better
initial convergence etc), characteristics with the kernel ones.
Namely, in Fig 2, the KNLMS provides better characteristics
with the filter length M = 2. However, on the other hand,
by increasing M to M = 5, the NLMS provides comparative
convergence characteristics with those of the KNLMS.



Other than the number of filter coefficients, there are
two parameters in KNLMS which affects the convergence
characteristics, i.e., the kernel parameter ζ of Eq. (7) and
the threshold parameter γ0 of Eq. (11). Although there are
some theoretical analyses of the kernel adaptive filters[11],
the effects of those parameters in the algorithms are not
clearly analyzed. Besides, we could not see before applying
the adaptive filters that if the unknown system could not
be sufficiently modeled by the linear adaptive filters and
would require kernel adaptation. Hence, we need an adjustable
system which automatically select the appropriate adaptive
filter according to the environments to broaden the applicable
areas of kernel adaptive filters.

In this paper, we will consider a mixture structure of a kernel
and a linear adaptive filters.

Fig. 1. Comparison of convergence characteristics of the NLMS, KNLMS

TABLE I
THE CONDITIONS OF THE COMPUTER SIMULATIONS. THE RESULTS ARE

SHOWN IN FIG. 1. WE APPLIED THE ADAPTIVE FILTERS TO THE
NON-LINEAR DYNAMICAL SYSTEM[6] WHOSE INPUT-OUTPUT RELATION

IS GIVEN AS THE EQUATION BELOW. un WAS SAMPLED FROM A GAUSSIAN
PROCESS OF ZERO-MEAN.

Filter length M 5
Desired System {

lvn = 1.1 exp(−|vn−1|) + un

dn = v2n

Kernel function exp(−0.13||a, b||)
γ0 of Eq. (11) 0.90

Normalized step size 1.0 for NLMS and KNLMS
Additive noise White Gaussian process of SNR=40[dB]

Ensemble average 30

III. PROPOSED METHOD

Here, we describe the proposed method. The proposed
method is an extension of the mixture structure for the two
or more linear adaptive filters[8], [9]. The proposed structure
consists of a kernel and a linear adaptive filters.

A. Structure of the proposed method

In Fig. 4, the structure of the proposed method is shown. The
structure is composed of two adaptive filters, i.e., a kernel and

Fig. 2. Comparison of convergence characteristics of the NLMS, KNLMS
applied to forward prediction problem[6]. The length of the adaptive filter
was M = 2. The conditions of the simulation are shown in Table II.

Fig. 3. Comparison of convergence characteristics of the NLMS, KNLMS
applied to forward predication problem[6]. The conditions of the simulation
are the same as those of Fig. 2 except the filter length M was M = 5, and
are shown in Table II.

a linear adaptive filters. Note that, in this paper, we assume that
the linear adaptive filters is updated using the normalized LMS
algorithm, and on the other hand, the kernel using the kernel
NLMS algorithm[6]. However, the proposed method does not
require specific algorithms to be used, and the selection here
is only for simplicity of the description.

TABLE II
THE CONDITIONS OF THE COMPUTER SIMULATIONS. THE RESULTS ARE

SHOWN IN FIG. 1. WE APPLIED THE ADAPTIVE FILTERS TO A LINEAR
SYSTEM WHOSE COEFFICIENTS WERE DESIGNED USING THE REMEZ

ALGORITHM AND THE INPUT SIGNAL WAS THE WHITE GAUSSIAN PROCESS
WITH ZERO MEAN.

Filter length M 2 (Fig. 2) or 5 (Fig. 3)
Forward Prediction

xn =
(
0.8− 0.5 exp

(
−x−2

n−1

))
xn−1

−
(
0.3 + 0.9 exp

(
−x2

n−1

))
xn−2

+0.1 sin (xn−1π)

Kernel function exp(−3.73||a, b||)
γ0 of Eq. (11) 0.90

Normalized step size 1.0 for NLMS and KNLMS
Additive noise White Gaussian process of SNR=40[dB]

Ensemble average 30



Fig. 4. Structure of the proposed method.

In this structure, there are two error signals eL(n) and eK(n),
and are defined as

eL(n) = d(n)− yL(n) (15)
eK(n) = d(n)− yK(n) (16)

where yL(n) and yK(n) are the output of the linear and the
kernel adaptive filters respectively. We use the subscripts L and
K to indicate that the variable is of the linear or the kernel
adaptive filters respectively.

Let us define the filter coefficients vectors as

wL = [wL,0(n), . . . , wL,M−1(n)], (17)
wK = [wK,0(n), . . . , wK,M−1(n)]. (18)

Besides, the output signals yL(n) and yK(n) are given as

yL(n) =

M−1∑
i=0

wL,i(n)x(n− i) = wT
L x(n) (19)

yK(n) =
M−1∑
i=0

wK,i(n)Φ(x(n− i))

=
m∑
j=1

κ(x,yj)αj = hnαn (20)

respectively. Note that, for the kernel adaptive filters, we
estimate the vector αn instead of wK.

B. The mixture structure

As depicted in Fig. 4, the output signals yL(n) and yK(n)
are mixed according to the mixture equation to produce the
overall output y(n) of the system.

For producing y(n), we select here the following simplest
equation[8] as

y(n) = λ(n)yL(n) + [1− λ(n)]yK(n). (21)

where λ(n) is called as the mixing parameter, and its value
should be in the range 0 ≤ λ(n) ≤ 1s. By adjusting the value
of the mixing parameter the principal filter will be selected,
namely, by letting λ(n) as λ(n) = 0, the kernel filter will be
selected, and λ(n) = 1 the linear filter will do.

According to the applied environments, we should adap-
tively adjust the value of the mixing parameter λ(n). By
comparing the equations (19) and (20), we could see that

the length of the coefficients of the filters wL and αn are
different, and more over, the length of αn would increase as
n. Therefore, we can not use the update equation based on the
estimation of the variation of the filter coefficients.

We consider, hence, the update of λ(n) based on the outputs
of the filters. In this paper, we propose the following equation
to update the parameter λ(n):

λ(n) = λ(n− 1) + µλ[yL(n)− yK(n)] (22)

where µλ is the step size parameter to control the convergence
of λ(n). Moreover, we limit the value of λ(n) in the range
{0 ≤ λ(n) ≤ 1} as

if λ(n) > 1: λ(n) = 1 (23)
else ifλ(n) < 0: λ(n) = 0. (24)

Besides, there is a freedom of selecting the initial value of
λ(0). We suggest to choose λ(0) to be λ(0) = 1 so that
the linear filter will be selected at the first stage of the
adaptation because the performance of the linear filter is more
controllable than the kernel one so that we can predict the
initial behavior of the system. Note that, however, in our
simulations, we confirmed the performance of the proposed
method does not depend on the selection of the initial value.

IV. SIMULATION RESULTS

Finally, we show the results of computer simulations to
confirm the validity of the proposed method.

A. System identification

First, we show the results of applying the adaptive filters
to the system identification problems. The conditions of the
simulations are shown in Table III and the results are shown
in Fig. 5. We compared the NLMS, the KNLMS, and the
proposed method in terms of the mean squared errors (MSEs).

From the figure, we can confirm that the proposed method
successfully select the KNLMS algorithm which provides the
better convergence characteristics under the conditions. Note
that we confirmed that the characteristics were not affected by
the selection of the initial value of λ(0).

TABLE III
THE CONDITIONS OF THE COMPUTER SIMULATIONS SHOWN IN FIG. 5. un

WAS A GAUSSIAN DISTRIBUTION OF ZERO-MEAN.

Filter length M 5
System Identification {

lvn = 1.1 exp(−|vn−1|) + un

dn = v2n

Kernel function exp(−0.13||a, b||)
γ0 of Eq. (11) 0.90

Normalized step size 1.0 for NLMS and KNLMS
Additive noise White Gaussian process of SNR=40[dB]

Ensemble average 30



Fig. 5. Comparison of convergence characteristics of the NLMS, the KNLMS,
and the proposed algorithms.

B. Forward prediction

Next, we show the results of forward prediction. The
conditions of the simulations are shown in Table IV. As
in the previous simulation, we compared the convergence
characteristics of the NLMS, the KNLMS, and the proposed
method in terms of the MSEs. The results are shown in Fig.
6.

TABLE IV
THE CONDITIONS OF THE COMPUTER SIMULATIONS SHOWN IN FIG. 6.

Filter length M 2
Desired System

xn =
(
0.8− 0.5 exp

(
−x−2

n−1

))
xn−1

−
(
0.3 + 0.9 exp

(
−x2

n−1

))
xn−2

+0.1 sin (xn−1π)

Kernel function exp(−3.73||a, b||)
γ0 of Eq. (11) 0.90

Normalized step size 1.0 for NLMS and KNLMS
Additive noise White Gaussian process of SNR=40[dB]

Ensemble average 30

From the figure, we could confirm that the proposed method
could select the correct output signal, and therefore, the
convergence characteristics would be better than that of the
solo use of the NLMS, or the KNLMS. Namely, at the
initial state, the output of the NLMS was selected to improve
the characteristics, and then switch to that of the KNLMS
gradually as n increases.

C. Non-stationary forward prediction

Finally, we applied the proposed method to a non-stationary
environment to investigate its tracking property. The conditions
of the simulation are shown in Table V and the results are
shown in Fig. 7. Note that we changed the equation to produce
the signal at time n = 100 to simulate the non-stationary
environments.

By comparing the convergence characterstics of the linear
and the kernel filters, we notice that the linear filter provides
better characteristics in some time interval, and in the other,
the kernel one does.

Fig. 6. Comparison of convergence characteristics of the NLMS, conventional
KNLMS, and the proposed algorithms. The proposed method improved the
initial convergence of the KNLMS and simultaneously maintain the lower
excess MSE.

Under these conditions, we could see that the proposed
method could select the filter which provides better MSE at
each time n. Hence, it provides lower MSE in all the time
interval in this simulation.

TABLE V
THE CONDITIONS OF THE COMPUTER SIMULATIONS SHOWN IN FIG. 7.

Filter length M 2
Forward prediction Time: n < 100

xn =
(
−0.5 exp

(
−x−2

n−1

))
xn−1

−
(
0.9 exp

(
−x2

n−1

))
xn−2

+0.5 sin (xn−1π)

Time: n >= 100

xn =
(
0.8− 0.5 exp

(
−x−2

n−1

))
xn−1

−
(
0.3 + 0.9 exp

(
−x2

n−1

))
xn−2

+0.1 sin (xn−1π)

Kernel function exp(−3.73||a, b||)
γ0 of Eq. (11) 0.90

Normalized step size 1.0 for NLMS and KNLMS
Additive noise White Gaussian process of SNR=40[dB]

Ensemble average 30

V. CONCLUSION

In this paper, we proposed a mixture structure of a kernel
adaptive filters for improving the convergence characteristics.
The proposed method is consisting of a kernel and a linear
adaptive filters. Their outputs are combined by a mixture
equation to produce the output of the whole system. By
adaptively adjusting the value of the mixture parameter of
the equation, the system will select the appropriate filter
to generate better convergence characteristics. Through the
computer simulations, we showed that, by using the proposed
method, we can improve the convergence characteristics of
the kernel adaptive filter both in stationary and non-stationary
environments.



Fig. 7. Comparison of convergence characteristics of the NLMS, the KNLMS,
and the proposed algorithms. The proposed method improved the characteris-
tics of the KNLMS between n = 100 to 200 where the NLMS outperforms
the conventional KNLMS.
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