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Abstract—Subpixel-based downsampling is a new downsam-
pling technique which utilizes the fact that each pixel in LCD is
composed of three individually addressable subpixels. Subpixel-
based downsampling can provide higher apparent resolution
than pixel-based downsampling. In this paper we study the
inverse problem of subpixel-based downsampling. We found
that conventional pixel-based super resolution algorithms are
not suitable for subpixel-based downsampled images due to the
special downsampling pattern. In this paper we propose a super
resolution algorithm specially for subpixel-based downsampled
images, which use piecewise autoregressive model to model spatial
correlation of neighboring pixels, and incorporate the special
data degradation term corresponding to the subpixel downsam-
pling pattern. We formulate the super resolution problem as a
constrained least square problem and solve it using Gauss-Seidel
iteration. Experiment results demonstrate the effectiveness of the
proposed algorithm.

I. INTRODUCTION

Downsampling is a common task in image processing. The
simplest way to downsample an image by N times is to select
one pixel out of every N pixels both in horizontal and vertical
direction, named Direct Pixel-based Downsampling (DPD)
(Fig. 1). Many sophisticated adaptive image super resolution
(SR) methods have been proposed for DPD downsampled
images. Soft-decision Adaptive Interpolation (SAI) method
proposed by Zhang and Wu [10] is one of the most successful
ones, in which they model pixel correlation using a piecewise
2-D autoregressive (PAR) model, and recover the HR image
block by block using least square minimization.

An improved downsampling scheme is subpixel-based
downsampling (subpixel-downsampling for short), which uti-
lizes the fact that each pixel on a color LCD is actually com-
posed of individual addressable red, green, and blue subpixel
stripes (Fig. 1). Subpixel-downsampling has gained increasing
attention these days. Existing subpixel-downsampling algo-
rithms include Direct Subpixel Downsampling (DSD) [7] in
which subpixel downsampling is applied only in horizontal di-
rection, and Direct Diagonal Subpixel Downsampling (DDSD)
[3], in which subpixel downsampling is applied diagonally
in a 3 x 3 block (Fig. 1). The abbreviations DPD, DSD
and DDSD are coined in [3]. More sophisticated algorithms
include MMSE-SD [3] and DDSD-FA [4], in which anti-
aliasing filters are applied before subpixel downsampling.
Compared to conventional pixel based downsampling (pixel-
downsampling for short), subpixel-downsampling is more ca-
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pable of preserving fine details of the images, with a cost of
creating color-fringing artifacts in downsampled images [3],
[4].

With the development of subpixel downsampling, an inter-
esting question rises: given a subpixel downsampled image,
can we recover the original HR image? Potential application of
this technology can be low-bitrate image/video compression,
image demosaicing, etc. This technology is not a trivial
extension of conventional pixel-based super resolution. Most
of the existing SR methods cannot apply on subpixel down-
sampled images, due to the special downsampling pattern.
Existing pixel-based SR algorithms are developed under the
assumption that the input small image is obtained by pixel-
downsampling, and they usually only consider super-resolving
luminance component (Y channel) if the input image is a
full color image while the chrominance component (U, V
channels) are interpolated by simple interpolators such as
bicubic. Thus pixel-based SR algorithms are not suitable for
subpixel-downsampled images, because the Y component of
the LR image is no longer a simple down-sized version of
HR Y component, also significant amount of information
is contained in U, V channels and those algorithms cannot
effectively utilize the information.

To overcome the above mentioned problems, we propose
a SR algorithm for subpixel-downsampled images utilizing
the subpixel downsampling characteristic. Unlike conventional
pixel-based SR methods, we super-resolve R, G, B channels
simultaneously. For each channel the pixel correlation is
modeled as a piecewise autoregressive (AR) process as in
[10]. The optimization problem is solved using Gauss-Seidel
iteration as in [8]. Since our method is based on autoregressive
model, we name this method Subpixel based Autoregressive
Super Resolution (SASR).

The rest of the paper is organized as follows. We briefly
review the DDSD algorithm in Section II , and 2-D autore-
gressive model in Section III. We propose our subpixel-based
SR algorithm in Section IV. The experiment results are shown
in Section V. We conclude our work in Section VI.

II. SUBPIXEL BASED IMAGE DOWNSAMPLING

This paper focuses on DDSD for its simplicity and capabil-
ity of maintaining spatial details. Basically DDSD takes RGB
components differently from the three pixels on the diagonal



Ll il
HAH-# nNan-#

Fig. 1: Three main downsampling patterns. Left: DPD; Mid-
dle: DSD; Right: DDSD.
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line of each 3 x 3 block (Fig. 1). Thus DDSD can increase the
apparent resolution both in horizontal and vertical directions.
By changing the data degradation term, our algorithm can
easily adapt to any subpixel-downsampling algorithm.

Figure 2 shows the downsampled images of “tree”. We can
see that compared to DPD, DDSD can preserve more details,
especially on sharp edges, e.g. the long grasses and the tree
branches.

III. IMAGE INTERPOLATION USING AUTOREGRESSIVE
MODEL

Similar as in [10], we model an image as a piecewise
autoregressive (PAR) process

Xi = e Xiot +0; ()
t

where v; is a random perturbation independent of spatial
location ¢ and the image signal X, X, (¢t = 1,2,...,8)
are the first-order neighbors of X;. The PAR coefficient «; is
assumed the same for all pixels in a local window. Let I;, be
the HR image to be estimated by interpolating the observed LR
image I;, which is a downsampled version of the HR image
by a factor of two. Let x; € I; and y; € I, be the pixels
of images I; and I, yior (t = 1,2,...,8) be the neighbors
of pixel location 7 in the HR image. yl(fz (t=1,2,3,4) are
the 8-connected neighbors, and yl(fg t=1,2,3,4) are the 4-
connected neighbors. Note that x; € I; implies z; € I, i.e.
all LR pixels are naturally HR pixels.

We formulate the super resolution problem as a constrained
least square problem as follows.
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where W is a window of HR image Iy; A2 controls the
importance of the horizontal and vertical correlation over
diagonal correlation; Matrix S selects the HR pixels in W
that are also in the LR image lattice.

This optimization problem can be easily solved using
Gauss-Seidel algorithm as in [8]. Basically we solve {a,b}
and y iteratively until convergence (initial value of y can be
obtained by bicubic interpolation):

{G,(n+1)7b(n+1)} = arg migl F(y(n)7a,b), 3)
a,

y(”+1) — argmin F(y7a(n+1)7b(n+1)). 4)
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IV. SUPER RESOLUTION FOR SUBPIXEL-DOWNSAMPLED
IMAGES

The key factor that makes super resolution for subpixel
downsampled image different from ordinary pixel-based super
resolution, is that subpixel downsampled images are always
full color images, and the R, G, B channels have slight
subpixel shift compared to each other. Thus we can no longer
convert the small images into YCbCr and then apply super
resolution on Y channel only while the Cb, Cr channels are
interpolated by simple convolution-based interpolators (such
as bicubic), as done in most pixel-based super resolution
algorithms [6], [9], [5], [2].

Therefore we propose to do the super resolution process in
RGB space. For each separate color channel, we formulate
the problem (2) with a small modification of matrix .S. For
example, the problem for R channel can be written as
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where C"(a",b7) = [C7(a™)", AC5(")"])T is a function of
{a",b"} and
1, if yj is the ith pixel in R channel
Ci; (") = —ay, if y} is the tth diagonal neighbor of y
0, otherwise
(5 is similar to Cy except that Cy; ;(b") = —b] when yj is
the ¢th 4-connected neighbor of ¥;. And
e 1, if y7 is ith LR pixel in R channel
S"(i,5) = ’
0, otherwise
Put all RGB channels together we have
min F(y,a,b
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The optimization problem can be solved by iteratively
solving coefficients {a,b} and HR pixel values y as follows.

where a = (a”, a9

F(y,a,b) =
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(a) original

(b) DPD

(c) DDSD

Fig. 2: Part of downsampled image “tree” by factor of 3.

A. Solving Coefficients

Let u = (u”,u9,u’) be the vector of HR RGB pixels inside
window W, v = (v",v9,v") be the vector of HR RGB pixels
outside window W. Then we have y is the concatenation of u
and v, with necessary re-ordering of elements. To solve {a, b}
we have

{a,b} = arg mian(a, b,y™) = ||lu — Aal|* + A\2||u — Bb||?,

Since a and b are naturally uncoupled, we have

a = argmin|ju— Aa|? = (ATA)"1ATy
b = arg min [|u - Bb|? = (BTB)"'BTu
where A, B are the matrices formed of 8-connected and 4-

of

connected neighboring pixels of u. Basically the ith row

matrix A consists of the 8-connected neighbors ugig,t

1,...,4 of u;. The ith row of matrix B consists of the 4-
Y= 1,...,4 of u;.

connected neighbors ugozv

B. Solving HR pixels

Let x = (27, 29,2%) , S = diag(S",S9,5%), C
diag(C"(a,b),C9(a,b), C*(a,b)). Note at this step now C
is determinant matrix rather than a function of {a,b}, since
for each C°(a,b) = [C¢(a), \C5(b)] we can calculate C§(a)
and C5(b) and estimate A using the fitting errors of a and b
similar to [8], i.e. A2 = ||u — Aal|?/|lu — Aa|*. We treat v as
known variable and only solve u via the following problem

§ = argmin||C(a,b)y|? = argmin || Dyu 4+ Dyvl|?
Yy u

)

where C' = [D,, D], S = [Su, Sy]. D, is a matrix composed
of the columns of C' corresponding to vector u, and D, is a
matrix composed of the other columns of C' corresponding to
vector v. So is S, and S,,. The reason we can substitute S with
S, is that x is only related to u, i.e. the pixels inside window
W. Then the problem can be solved using KKT system [1]:

w] [ DTD, ST 17'[ DIDw
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where v is the Lagrange multiplier. Note what we need to do

is just updating the pixels in vector u and continue to next
iteration.

s.t. Sy=z < Syu==z
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V. EXPERIMENT RESULTS

To evaluate the performance of the proposed algorithm, we
conduct experiments on several commonly used images. Most
of them contain complex textures which are difficult for super
resolution. The LR images are produced by downsampling HR
images using DDSD method, thus LR images are of 1/3 size
of the HR images both horizontally and vertically. Note for
grayscale images, DDSD method will first clone the intensity
value to R, G, B channels and then downsample them.

Table I shows the PSNR comparison for grayscale images
and Table II shows the comparison results for full color im-
ages. Bi-sp means downsampling images using subpixel-based
method DDSD, and upsampling the small images using pixel-
based method bicubic. Similarly SAI-pp means pixel-based
downsampling method nearest neighbor downsampling and
pixel-based algorithm SAI, and so on. SASR is the Subpixel
based Autoregressive Super Resolution that we propose. Note
SAI is designed for upsampling an image with factor of 2, to
apply SAI method with factor of 3 we first interpolate the LR
image to 2 times of original size using SAI, then interpolate
it 1.5 times using bicubic.

We see in Table I that SASR has averagely 4 dB gain over
SAI-sp. SAI-sp results are achieved by applying SAI algorithm
on Y channel only. The UV channels are interpolated by
bicubic convolution. Since both SAI and SASR use same
PAR model, we believe this result supports our argument
that for subpixel-downsampled images, conventional pixel-
based SR algorithms are not suitable. Besides, SASR has
over 1 dB gain over SAI-pp. This result shows the superiority
of subpixel-downsampling algorithms from the other aspect.
Because SASR uses same PAR prior as SAI, the fact that
SASR is better than SAl-pp implies subpixel-downsampled
images contain more information, thus produces better super-
resolved image.

Fig. 3 shows the super-resolved images of grayscale baboon
image. We can see that both SAl-sp and SAI-pp generates
unnatural textures and broken lines. SAI-sp result is slightly
better than SAI-pp at the regions of beard. On the other hand,
SASR method generates much better result. The textures of
hair are much more natural and finer. And the lines of beard
are more continuous.

Table II shows the PSNR results for full color images. We



TABLE I: PSNR (dB) comparison of grayscale images.

Image Bi-sp | Bi-pp | SAI-sp | SAI-pp | SASR
baboon | 22.19 | 21.18 19.93 21.25 22.87
bike 22.07 | 21.35 19.15 21.78 23.33
flower 20.41 | 19.55 17.74 19.58 21.05
lena 30.46 | 30.25 25.92 31.00 32.52
necklace | 19.01 | 18.41 16.12 18.40 19.90
parrot 30.04 | 29.41 26.94 30.10 31.58
building | 21.86 | 21.34 19.30 21.94 23.43
tree 2478 | 24.28 21.77 24.48 25.95
Average | 23.85 | 23.22 20.86 23.57 25.08

TABLE II: PSNR (dB) result comparison of full color images.

Image Bi-sp | Bi-pp | SAI-sp | SAIL-pp | SASR
baboon | 19.98 | 21.20 19.98 21.26 21.49
bike 19.24 | 21.39 19.51 21.81 2191
flower 16.71 | 18.83 16.70 18.87 18.91
lena 26.38 | 30.43 26.55 31.04 31.16
necklace | 16.16 | 18.42 16.16 18.39 18.55
parrot 25.81 | 28.97 26.03 29.49 29.87
building | 19.34 | 21.33 19.96 22.00 22.44
tree 21.58 | 24.15 21.63 24.31 24.46
Average | 20.65 | 23.09 20.81 23.40 23.60

have similar results as grayscale case, except that SASR has
only a slightly higher PSNR than SAI-pp. This is because the
color-fringing artifact is much more severe for color images,
thus SASR recovered image has a relatively lower PSNR.
However if we look at the visual quality shown in Fig. 4,
we can notice that SASR recovered image has better visual
quality, especially at the beard region of baboon.

VI. CONCLUSION

We propose a novel super resolution algorithm for subpixel-
downsampled images. Because of the special characteristics
of subpixel-based downsampling, traditional pixel-based SR
algorithms cannot apply to subpixel-downsampled images. A
special data degradation model has to be designed to fit the real
image downsampling process. We design the data degradation
term in this spirit and use the piecewise AR model as the

(c) SAI-sp (d) SASR

Fig. 3: Super-resolved grayscale baboon images.

(d) SASR

Fig. 4: Super-resolved color baboon images.

pixel correlation model. Experiments show that the proposed
algorithm is effective both in PSNR and visual quality.

This algorithm is a very preliminary result. Our future effort
will be put on utilizing the correlation between R, G, B
channels and designing more sophisticated algorithms.
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