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Abstract—The design of high quality yet real-time image
interpolation has become increasingly important for digital TV
SoC, as the size of flat-panel display has been steadily increased
. This paper aims to develop a real-time image interpolation
algorithm that can achieve the high-ratio image scaling with
sharp and natural edges. Comparing with conventional image
interpolation approaches that often suffer from either image
blurring/jagged problem or high computational cost, this paper
proposes a high-efficient edge directional image interpolation
approach that support multiple interpolation directions and
hence can well preserve the detail and edges. Experimental
result shows that the proposed image interpolation algorithm
is able to achieve high quality at the high image scaling ratio
while only incurring very low computational cost. And the VLSI
architecture of proposed image interpolation is also presented.

I. INTRODUCTION

Technology and practice of digital TV are now entering

one of the most rapidly changing eras in its history, covering

UHD-TV (Ultra High Definition TV), Smart TV, 3D-TV, and

many other concepts [1]. One trend in TV technology is to

support UHD (4K-TV: 4,096 pixels × 2,160 pixels; 8K-TV:

7,680 pixels × 4,320 pixels). During the past decade, the size

of flat-panel display has been steadily increased from SDTV to

HDTV, and we may see the pervasive use of 4K*2K panel in

the very near future. However, the size of video source is not

increased at the same pace as the display panel does. This has

made it become increasingly important to design high quality

image interpolation to display video sources with various size

on the same large size panels.

Image interpolation plays an important role in image pro-

cessing domain, and has been used in digital TV, digital

camera and many other applications for image enlargement

and local image zooming. The most commonly used image

interpolation methods include nearest-neighbor interpolation,

linear interpolation and cubic convolution interpolation [2].

However, image artifacts like blurring or zigzag on edge may

occur when these interpolation methods are used. Therefore,

more advanced interpolation methods have been proposed

to improve the quality of interpolated image [3-16]. These

interpolation methods are mainly based on explicit or im-

plicit detection of local image features, and employ different

interpolation function to different image region. One of the

most well know and widely used algorithms is called new

edge-directed interpolation (NEDI) [5], which performs good

subjective quality by estimating and using local covariance

coefficients to adapt the following interpolation. Many other

works have been proposed to further improve the quality

and computational efficiency of NEDI methods [6], [8], [11],

[14]. However, the real-time implementation of NEDI-based

methods seems infeasible even for Graphic Processing Unit

(GPU) platform.

This paper proposes an efficient edge-based adaptive image

interpolation for real-time digital TV application. The basic

idea is to leverage advanced edge detection to decide whether

the interpolating pixel is an edge pixel or non-edge pixel, then

interpolate the edge pixel and non-edge pixel with different

interpolation functions. With regarding to edge detection algo-

rithm, we propose an improved Canny edge detection, which is

able to guarantee the accuracy and precision with significantly

reduced computational complexity. And we continue to use

conventional bicubic method to interpolate the non-edge pix-

els. While for the edge pixels, we adaptively employ bicubic or

bilinear function in the square or parallelogram interpolation

kernel, according to the detected edge direction. Simulation

results demonstrate that, compared with conventional or other

edge-based interpolation methods, the proposed adaptive inter-

polation outperforms at both objective and subjective quality.

Moreover, an VLSI architecture design and its hardware cost

is also presented, to further demonstrate the computational

efficiency of proposed method.

The rest of this paper is organized as follows: Section

II briefly discusses the background of image interpolation.

Section III describes the proposed edge based adaptive image

interpolation algorithm. Section IV gives the VLSI archi-

tecture. The experimental results are presented in Section

V. Finally, we summarize the contributions of this paper in

Section VI.

II. IMAGE INTERPOLATION OVERVIEW

As image interpolation is an important technique for video

processing systems, various image interpolation methods have

been proposed to achieve high-ratio and detail-preserving

image scaling. Previous image interpolation methods can be

roughly divided into two main categories: (1) Conventional

linear interpolation methods that use constant convolution

kernels for the entire image, and the value of each new pixel

is obtained by computing a linear combination of the values

of the original neighboring pixels. (2) Non-linear interpolation

methods that are usually based on explicit or implicit detection

of local image features, and different interpolation functions

are adaptively applied according to the detected local features.



Conventional linear interpolation methods include nearest

neighbor interpolation, bilinear interpolation, bicubic interpo-

lation [2] and many other improved algorithms [7], [10]. These

methods are computational efficient and hardware friendly,

especially the bicubic interpolation (fitting a cubic function

on the 16 closest neighbors) provides visually good images.

However, these interpolation methods tends to smooth the

detail and only keep low frequency content in the processed

image. As they are not able to enhance the high frequencies

or preserve the edges equally well, they may produce some

annoying visual problems, such as aliasing, blurring or other

artifact.

Non-linear methods tends to solve the problems introduced

by linear interpolation. One of the most well known non-

linear algorithms is called NEDI, which use the covariant

geometric regularity to achieve high quality image scaling [5].

Many works have been proposed to further improve the quality

and efficiency of NEDI method. However, these NEDI-based

methods [5], [6], [8], [11], [14] are restricted to an scaling

ratio of 2n, where n is an integer. More important, this kind

of methods inevitably incur high computational cost, and are

difficult to realize real-time implementation for digital TV

application.

Therefore, realistic high quality is not the only issue to

be considered in choosing an image interpolation, the com-

putational efficiency of the methods should also be taken

into account, especially in the case of real-time applications.

Ref. [3], [15], [16] present several relatively less complex non-

linear interpolation, which detect the edge pixels and their edge

directions first, then interpolate non-edge pixels with conven-

tional linear interpolation method, while interpolate the edge

pixels along the detected edge direction with the neighboring

pixels. Their basic processing flow can be summarized and

illustrated in Fig. 1. This kind of edge directed non-linear

image interpolation methods is able to provide decent quality

with the reasonable computational cost for hardware design,

and hence is what we mainly concern in this paper.

Edge pixel 
detection

Conventional interpolation 
for non-edge pixel

Edge directional 
interpolation for edge pixel

Original image

Interpolated image

Fig. 1. Basic processing flow of edge directional image interpolation.

III. PROPOSED ADAPTIVE IMAGE INTERPOLATION

ALGORITHM

This section presents our proposed edge directed adap-

tive image interpolation algorithm, where the key idea is to

leverage more advanced edge detection method to classify

edge pixels from other pixels, and further adaptively apply

different interpolation functions to both edge and non-edge

pixels according to their edge directions.

A. Improved Canny Edge Detection

Edge detection is the most critical component for edge

directed image interpolation. Previous edge detection methods

often use relatively simple approaches that often provide low

accuracy and very few edge directions, e.g. sobel operator, as

more advanced edge detection tends to dramatically increase

computational requirement and hence complicate the hardware

design. However, this tends to seriously limit the quality of

following interpolation procedure, as edge directional interpo-

lation depends on the accuracy and precision of edge detection.

Canny edge detection seems to be an competitive candidate

[4]. However, the conventional Canny detection uses double

thresholding algorithm to detect and link edges, hence in-

evitably incurs computationally intensive iterative operations.

In this paper, we propose an improved Canny edge detection

method that can guarantee the accuracy and precision of

detected edge while still maintain reasonable computational

and hardware complexity.
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Fig. 2. Flow chart of improved Canny edge detection algorithm.

The flow chart of proposed edge detection algorithm is

illustrated in Fig. 2. In general, the proposed algorithm follows

the conventional Canny edge detection, which first smoothes



the image with a Gaussian filter, then computes the gradient

magnitude and orientation using approximations of partial

derivatives, thins edges by applying Non-Maximal Suppres-

sion (NMS), and finally detects edges with threshold compar-

ison. Compared with conventional Canny edge detection, the

proposed edge detection algorithm improves at the following

three major part:

• The single thresholding is applied instead of double

thresholding algorithm, to avoid the computational com-

plexity and hardware design challenge incurred by iter-

ative calculation of double thresholding in conventional

Canny algorithm.

• In contrast to conventional Canny algorithm that assigns

the edge direction at any angle, the proposed edge de-

tection separates the edge direction into eight different

direction regions by using edge direction classification.

• To compensate the detection noise introduced by single

thresholding, we further propose to leverage edge direc-

tion filtering to detect the edge pixels more precise and

only reserve the regular and confidential edge.

As shown in Fig. 3, the detected edge directions are

separated into eight different direction regions. And these

direction regions are further classified into three different edge

direction classes. The reason to further classify edge direction

regions is that different edge direction class will require utterly

different interpolation function as explained in the following

subsection. We note that all the selected angle of edge direction

in proposed edge direction region can be located in the pixel

array, therefore the following edge directed interpolation can

be completed with existing pixels in the original image.
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Fig. 3. Edge region and edge direction classification.

Although single thresholding is able to dramatically reduce

the computational complexity, it tends to introduce detection

noise that may have a negative impact on the following

interpolation operation and hence incur unacceptable artifact.

To avoid this kind of artifact, we propose to use edge direction

filtering to compensate the single thresholding, as illustrated

in Fig. 2. The edge direction filtering can be explained as

follows: Let pi represents the interpolating pixel and P(m,n)

represents one of the neighboring 16 original pixels that are

close to pixel pi, as shown in Fig. 4. If the number of edge

pixels in the pixel array is larger than threshold edge and the

majority of edge pixels belonging to the same direction region,

we set the interpolating pixel pi as edge pixel; otherwise, the

interpolating pixel pi is set as non-edge pixel, even though it

has been detected as edge pixel after single threshold edge

detection.

P(1,1) P(1,2) P(1,3) P(1,4)

P(2,1) P(2,2) P(2,3) P(2,4)

P(3,1) P(3,2) P(3,3) P(3,4)

P(4,1) P(4,2) P(4,3) P(4,4)

pi

Fig. 4. Pixel array for edge direction filtering.

B. Edge-Directed Interpolation

Due to the improved Canny edge detection described in the

above subsection, pixels in the overall image can be classified

into two major categories: edge and non-edge pixels. The in-

terpolation function of non-edge pixels seems simple, as it just

follows the conventional cubic convolution methods. However,

the interpolation functions of edge pixels vary according to the

edge direction of each individual pixels.

For the pixels of which edge directions belong to Class I,
the interpolation function is the same as conventional bicubic

interpolation, as the edge direction is either horizontal or

vertical. As shown in Fig. 5, Let pi represent the interpolated

pixel, P (i+m, j+n) represent the original pixel participated in

the interpolation, m and n stand for the horizontal and vertical

indexes to the referenced original pixel P (i, j), respectively.

The bicubic interpolation function can be represented as

follows.

pi(x, y) =
2∑

m=−1

2∑

n=−1

P (i+m, j + n) ∗ Cm+1(Δh) ∗ Cn+1(Δv).
(1)

Where C0(u) = (u3+2×u2−u)/2, C1(u) = (3×u3+5×u2+
2)/2, C2(u) = (−3×u3+4×u2+u)/2, C3(u) = (u3−u2)/2,

Δh = x− xi and Δv = y − yj .

We can see that the interpolated pixel is calculated by

using the 16 neighboring pixels, and Δh and Δv represent

the horizontal and vertical distances between the interpolated

and reference pixels. The shape of interpolation kernel is

square, consisted of 16 neighboring pixels. Hence, in this

paper, we refer this kind of interpolation to as square-bicubic

interpolation. And the square-bicubic interpolation is just the

same as what we use in conventional bicubic interpolation.

For the interpolating pixels belonging to Class II&III, we

can not continue to use the square-bicubic interpolation, as
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Fig. 5. Example of square-bicubic interpolation for pixels belonging to Class
I.

do not interpolate along the edge direction may cause jagged

or zigzagging artifacts. Instead, we leverage a parallelogram

interpolation kernel to well preserve the edge regions. Take

Class II for example, the parallelogram interpolation kernel

is quite similar to its square interpolation counterpart, except

that the interpolated pixel is generated by using the 16

neighboring pixels in the adjacent parallelogram, as shown

in Fig. 6. In this paper, we refer it to as parallelogram-bicubic

interpolation. And its interpolation function can be calculated

as the following equation.

pi(x, y) =
∑

P (i+m,j+n)∈Φ

P (i+m, j + n) ∗ Cm+n+1(Δh) ∗ Cn+1(Δv′).

(2)

Where Φ is defined as the pixel set that contains all the pixels

belonging to the parallelogram kernel. C0(u), C1(u), C2(u)
and C3(u) are defined the same as Equ. 1. And Δh and

Δv′ represent the normalized horizontal and vertical distances

between the interpolated and reference pixels.

Δh = (x− xi) + (y − yj)/ tan θ

Δv′ = Δv ∗ sin θ = ((y − yj)/ sin θ) ∗ sin θ = y − yj
(3)
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Fig. 6. Example of parallelogram-bicubic interpolation for pixels belonging
to Class II.

For the interpolating pixel belonging to Class III, if we

continue to use parallelogram-bicubic interpolation, the hard-

ware cost of interpolation design tends to be significantly

increased. As the direction angle is large and bicubic inter-

polation requires at least 4 pixels along the direction, the

required memory storage will be doubled. Therefore, we use

parallelogram-bilinear interpolation for pixels belonging to

Class III, as shown in Fig. 7. The interpolating pixel is

generated by using the neighboring 4 pixels in the adjacent

parallelogram region. And the interpolation function can be

calculated by the following equation.

pi(x, y) =

(1−Δv)(1−Δh′)P (i, j) + (1−Δv)Δh′P (i+ 1, j − 2)+

Δv(1−Δh′)P (i, j + 1) + ΔvΔh′P (i+ 1, j − 1).
(4)

Where Δh′ and Δv represent the normalized horizontal and

vertical distances between the interpolated and the reference

pixels, and are defined as follows.

Δh′ = Δh ∗ cos θ = ((x− xi)/ cos θ) ∗ cos θ = x− xi

Δv = (y − yj) + (x− xi) ∗ tan θ
(5)
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Fig. 7. Example of parallelogram-bilinear interpolation for pixels belonging
to Class III.

The adaptive use of square-bicubic, parallelogram-bicubic

and parallelogram-bilinear kernels in interpolation algorithm,

according to the detected edge direction, can significantly

improve the interpolation quality of edge regions. Moreover,

the computational complexity and hardware design cost has

not be dramatically increased in the meanwhile. This is very

important for real-time implementation and the following

VLSI architecture design.

IV. VLSI ARCHITECTURE

Compared with conventional non-linear interpolation meth-

ods that often involve iterative calculation and require high

computational capability, the proposed method is friendly for

hardware design. Fig. 8 shows the the VLSI architecture design

of proposed edge-based adaptive interpolation algorithm. It

includes the color space conversion (CSC), the input and

output sync controller, the improved Canny edge detector, the

image interpolation and on-chip line buffer memories. Due

to the algorithm optimization, the proposed VLSI architecture

only employs four on-chip line buffer memories to realize the

adaptive multi-kernel bicubic/bilinear interpolation.
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Fig. 8. VLSI architecture of proposed edge-based adaptive image interpola-
tion.

We further implement the VLSI architecture of proposed

method to a Xilinx FPGA of Virtex5 XC5VLX330-2. Accord-

ing to the synthesis result, the proposed adaptive interpolation

design takes about 36% slice LUT (76,048 LUTs) and 2,772

KB BlockRAM. The critical path delay is 3.1 ns, which means

the maximum data rate can reach up to 300MHz. As the

cell-based ASIC implementation is significantly faster than

FPGA, the proposed design will certainly be able to seamlessly

support the real-time video display processing application

including HDTV and 4K-TV.

V. EXPERIMENTAL RESULT

To evaluate the proposed algorithm, we use an image

database of 10 natural images selected from morgueFile

online archive (http://morguefile.com). All images are sub-

ject to the license agreement available at the Web page

http://morguefile.com/archive/terms.php. Selected files were

RGB color images with a depth of 8 bits per channel. During

the upscaling proces, these images are converted to YUV color

space, and the interpolation coefficients are computed on the

image brightness and are used for all the YUV channels.

We performed both subjective and objective tests in order to

compare quantitatively the quality of the images created with

different methods.

The objective test compares images obtained by down-

sampling the original images and then enlarging them with

different methods. And we use peak signal noise ratio (PSNR)

as the objective comparison metric. The proposed edge-based

adaptive interpolation is compared with both well known linear

methods, i.e. Bilinear and Bicubic [2], and nonlinear methods,

i.e. NEDI [5]. Table I shows the PSNR comparison results

among the proposed and reference methods. We can see that

the PSNR of proposed interpolation method outperforms the

other three methods, and is even better than NEDI.

It should be noted that methods with high PSNR are not

necessarily corresponding to better visually perceived qual-

ity. The major purpose of proposed algorithm is to achieve

real-time interpolation and to have better subjective quality.

Therefore, we further compare the subjective quality between

TABLE I
PSNR COMPARISON AMONG DIFFERENT METHODS.

Images Bilinear Bicubic NEDI Proposed

Zebra 27.71 29.00 29.15 29.16

Butterfly1 29.90 30.89 30.13 30.48

Parrot 29.57 30.14 29.87 30.18

Newspaper 25.78 26.27 26.08 26.09

Greenery 24.54 25.00 24.99 25.14

Crayon 29.38 30.32 30.09 30.81

Eagle 30.80 31.27 31.54 31.50

Butterfly2 33.07 34.08 33.03 34.56

Sunflower 36.53 37.73 37.15 38.41

Ballon 40.28 41.58 41.26 42.23

(a) Bilinear (b) Bicubic

(c) NEDI (d) Proposed

Fig. 9. Subjective comparison of “Flower” image.

proposed and reference methods over the selected 10 natural

images. Fig. 9 and 10 show two examples of simulation

results. We can conclude that the perceived quality of proposed

adaptive interpolation is much better than Bilinear and Bicubic

methods, especially for the edge and detail regions. And, it

has also achieve the comparable subjective quality to NEDI

methods, while the computational complexity is significantly

reduced. More important, the proposed interpolation algorithm

can further effectively avoid the ‘cartoon’ artifact incurred by

NEDI, as shown in Fig. 10.

VI. CONCLUSIONS

This paper proposes an edge-based adaptive image interpo-

lation algorithm for real-time digital TV application. The pro-

posed method exploits an improved Canny method to enable

the robust and precise edge detection with relatively much low-

ered computational cost. Furthermore, we adaptively employ

the square-bicubic, parallelogram-bicubic and parallelogram-

bilinear interpolation according to the detected edge direction,

to prevent from the jagged or zigzagging edge. Compared with

conventional real-time edge directed interpolation methods, the

proposed method can achieve the sharper and more natural



(a) Bilinear (b) Bicubic

(c) NEDI (d) Proposed

Fig. 10. Subjective comparison of “Newspaper” image.

edges after image upscaling with reasonable computational

complexity.
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