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Abstract—Multi-view object classification is a challenging
problem in image retrieval. One common approach is to apply the
visual bag-of-words (BoW) model to all view representations of
each object class and compare them with the representation of the
query image one by one so as to determine the closest view of the
object class. This approach offers good matching performance,
yet it demands a large amount of computation and storage space.
To address these issues, we propose a novel hierarchical BoW
model that provides a concise representation of each object class
with multi-views. When the higher level BoW representation does
not match with that of the query instance, further comparison
can be saved. We can also incorporate similar views to reduce
the storage space. We conduct experiments on a dataset of 3D
object classes, and show that the proposed approach achieves
higher efficiency in terms of lower computational complexity and
storage space while preserving good matching performance.

I. INTRODUCTION

Rapid development of video sharing over the Internet cre-
ates a large number of videos every day. Take YouTube for
example. It was reported in [1] that sixty hours of video had
been uploaded to the site every minute in January 2012, and
there were four billion videos viewed by users on an average
day. It is an essential task to organize or classify tons of
Internet videos automatically online, which will be mostly
helpful to the search of useful videos in the future, especially
in the applications of video surveillance, image/video retrieval,
etc.

One classic method to categorize videos for human is based
on the subject or the content, which makes content-based
video analysis a hot topic. An object is undoubtedly the
most significant component to represent the video content. For
sports video, athletes, balls and the athletic field are essential
objects. For education video, students and classrooms are im-
portant. Without object recognition, no system can understand
video contents automatically. Therefore, object recognition and
classification plays a significant role for intelligent information
processing. The classical problem is to determine whether a
single image contains some pre-specified objects, such as face
or pedestrian recognition.

The traditional tasks of object recognition and classification
include two parts. One is to identify a particular object in
an image from an unknown viewpoint given a few views of
that object for training, which is called “multi-view specific
object recognition”. Later on, researchers attempt to get the
internal relation of object classes from one specific view, like
computer and table, which develops to another task called

Fig. 1. There are three components to comprise the view sphere: angle, scale,
and height.

“single-view object classification”. In this case, the object class
diversity in appearance, shape, or color should be taken into
consideration. For example, some chairs have the back while
others do not, and some chairs have armrest and others do
not. Functionally, a chair is a raised surface used to sit on.
The chair back or armrest is not a required component of a
chair. These variations increase the difficulty in classification.
Over the last decade, many researchers have solved the last two
tasks using a concept called intra-class similarity. To further
reduce the semantic gap between machine and human, the
problem of “multi-view object classification” [2] needs to be
well studied. As shown in Fig.1, there are three elements to
define a view: angle, scale (distance), and height, which form
the view sphere.

Although the viewpoint as well as intra-class variations
exist as illustrated in Fig.2, some common features can still
be found for one object class by a certain technique. The
question is how to get the discriminant common features
for each object class and how to represent these features
effectively. Several successful recognition retrieval systems
have been developed based on powerful local features. As
compared with global features that describe the whole image,
local features pay more attention to local objects and their
patches. Among all local features, SIFT [3] is the most popular
one for object classification and image matching in recent
years since it effectively captures the stable local points for
the object regardless of rotation and scale changes.

We assume that object instances belonging to the same ob-
ject class should have more similar local features than others,



Fig. 2. Illustration of viewpoint and intra-class variations for the cell-phone
class.

which is statistically true to some extent. This assumption
results in the success of the visual bag-of-words (BoW) model.
The BoW model in [4] is a simplifying tool originally used in
text analysis and information retrieval by ignoring the position
of each word. It is a dictionary-based modeling approach,
where each document is treated as a bag that contains some
words from the dictionary. The visual BoW model offers an
effective representation of discriminant local features. In spite
of its popularity, the classic BoW model suffers from several
restrictions. It is far more difficult to define visual words than
textual words, which are ordered combination of 26 letters.
There are numerous patch patterns to represent various kinds
of objects, which make it difficult to determine the visual
vocabulary size. Another problem arises from the ignorance
of the spatial correlation in the word frequency histogram,
which results in unexpected false matches. A number of
approaches [5,6,7,8] have been proposed to solve this problem
by imposing various spatial constraints.

It is difficult to build a model to represent each object class
for all views. Take a car for example. We can see two wheels in
the side of a car, but cannot see them in the front or the back.
For twenty dollars, we cannot see President Andrew Jackson
and the White House at the same time. In other words, it
is impossible to represent all features from different views in
one model since they do not appear concurrently. On the other
hand, it is expensive to make too many models for one object
class even if differences always exist from different views.
According to the structural characteristics of each object class,
we can design a sequence of coarse-to-fine models to repre-
sent one object class to facilitate the hierarchical matching.
Furthermore, for objects with holohedral symmetry like ball,
appearance from all views looks similar. For objects with
bilateral symmetry like bicycle, their left and right views are
almost the same. Based on the view similarity, we can develop
some methods to reduce the number of views for each object
class model.

In addition, some object classes are so distinctive from
others, which makes the complete BoW model representation
wasteful in terms of storage and computation. For object
classes with complex structures, we need more words to repre-

sent them. In contrast, for object classes with basic structures,
we need fewer words and views. These modifications improve
the effectiveness of the object class representation.

The main contributions of this paper include the following.
(1) We propose a hierarchical BoW model to effectively

represent each object class using different levels. This model
produces a compact yet powerful representation for each object
class with a flexible number of levels depending on its shape
and geometric appearance complexity. It largely reduces the
model redundancy of the traditional visual BoW model.

(2) We develop a local-comparison method to build up the
model to decrease the computational cost from O (kn) to
O (kn), where k ≥ 2 is a constant.

(3) We describe a rule to reduce the view redundancy of
each object class according to its view similarity. It efficiently
represents an object class with fewer views.

II. REVIEW OF PREVIOUS WORK

Many researchers attempted to solve the “multi-view object
classification” problem in the last decade. Generally speaking,
there are three main approaches as detailed below.

The first one is to use as many view samples as possible to
model an object class for the whole view sphere. This method
can yield precise models for each object class as long as the
number of views is sufficient, but it is limited to a few discrete
viewpoints in the training process practically. The systems
cannot deal with new viewpoints that have not been trained
before. Thomas [9] built a bucket model to support the general
conditions of viewpoints distributed over the view sphere, and
established links between adjacent views of the same object
class with this concept.

The second one is to establish a 3D representation using
connections from a 2D training set. This approach has little
confidence on images with high angle variation, not to speak
of unseen object even in the same class. Among them, Su
[10] proposed a part-based probabilistic model to learn affine
constraints between object parts. Savarese [11] formed the 3D
object class model by connecting the canonical parts in the
3D space.

The third one is feature resorting on existing 3D models.
It suffers from rendering artifacts and causes large differences
between real images and synthetic models. In [12], patches
were collected from multiple 2D training images and labeled
on an existing 3D CAD model. They utilized the model
views (multi-view specific object) as bridges to connect the
supplemental views (multi-view same class object) to the
model and constructed a codebook by combining all the
mapped features with 3D locations. Liebelt [13] established
a link between 3D geometry and local 2D image appearance
using synthetic CAD models.

Li [14] produced two kinds of models for objects in the
Semantic Robot Vision Challenge in 2007. For objects with
little intra-class variation such as branded items and books, the
model could be simplified by learning. A template matching
could be applied to separate them from others. For general
objects with high intra-class variation such as chair, bag, or



Fig. 3. Illustration of visual BoW establishment, where all features from the
training set are first extracted to construct the visual word vocabulary using
feature clustering, and then, the visual BoW model is built for each testing
instance according to the occurrence of visual words.

computer, we need more training to create a more general
model. To reach a wider range of applications, we focus on
generic object classification in this work.

Here, instead of building complicated 3D appearance model
or connections on spatial restriction, we modify the funda-
mental local feature representation in an efficient way. In
particular, we consider the characteristics of an object class
and determine the object model cost according to its overall
structural complexity. Furthermore, we integrate the shared
features among different views depending on the object ap-
pearance similarity, which will reduce the view redundancy
on the model representation.

III. HIERARCHICAL BOW MODEL

The local features such as the SIFT or STIP descriptors
in a frame describe the regions of interest of an object. The
visual word vocabulary can be established using the k-means
clustering. The centroid of each cluster yields the descriptor
of the region of interest. All centroids comprise the visual
vocabulary.

To describe each frame using the BoW, we count the
occurrence of visual words to form the frequency histogram.
For each local feature, we try to find the most similar word
in the vocabulary. The whole process is shown in Fig. 3.

As compared with the textual vocabulary, it is more difficult
to determine the number of feature words for the visual
vocabulary. We pre-define the number for training empirically.
In the literature, 1000, 2000, or 10000 feature words have
been trained for various visual vocabularies previously. Here,
the problem lies in the determination of the proper number
of feature words suitable for a specific database and the
underlying application.

To solve this problem, we adopt a hierarchical visual
vocabulary [15] that has a scalable size of visual words. There
are totally L levels in this model. The number of words at the
next level is k (k ≥ 2) times of that at the current level. The
parameter k is called the branching factor. Initially, there are
k words at level 1 and there are kl words at level l.

Fig. 4. Illustration of hierarchical visual vocabulary establishment for an
L-level vocabulary. First, all feature descriptors of the training set in the
foreground region are clustered into k groups at the first level. The centroid
of each clustered subgroup represents the corresponding word at that level.
For each subgroup, all children feature descriptors are clustered into k groups
at the second level and there are totally k2 words at level 2. Afterwards, the
same process is recursively applied until the maximum level L is reached.

In words, all training feature descriptors in the foreground
region are clustered into k groups at the first level. The
descriptor centroid of each cluster group represents the corre-
sponding word at that level. Afterwards, the same operation
is recursively applied to subgroups to generate centroids (or
visual words) for each group. The model is determined level
by level, where the maximum level is denoted by L. The
development progress is explained in Fig. 4, where k = 3
and L = 3.

After obtaining all words at all L levels using a hierar-
chical k-means algorithm, the hierarchical BoW models are
established for each view of the object class. For training, we
use a similarity comparison between each key point feature in
the segmented foreground region and each word of that level
in the hierarchical visual vocabulary. It takes time to find the
closest word at each level for each key point feature, especially
when the level number is high. It is however a one-time effort
to train the model. For different instances in the same view
for that object class, we average their feature contributions to
each level of vocabularies.

In order to fairly represent the model for each view, we
borrow a technique from text analysis to adjust the weight
of each word. First, each histogram representation for each
view is normalized to the unit sum. Let v = {v1, v2, · · · , vkl}
be the histogram representation. Its normalized value can be
written as

normv =
v

v1 + v1 + · · · + vkl

(1)

Then, we adopt the term frequency-inverse document fre-
quency (tf*idf) measure, which is defined as

tf ∗ idf (w, d) = tf (w, d) ∗ idf (w) , (2)

where

tf (w, d) =
|{word w in particular document d}|∑

w

∑
d |{word w in particular document d}|

,

(3)



idf (w) = log
|documents|

|{document that contains word w}|
(4)

to adjust the significance of each word. The tf*idf measure
has been widely used in information retrieval and text mining.
It reduces the weight of common words that appear frequently
in most documents. In contrast, it gives a larger weight to less
frequent words in the current document. As a result, it is able
to identify the current document from others. In brief, tf*idf
helps highlight significant words and downplay unimportant
words. We establish the hierarchical BoW model for each view
of each object class based on the above description.

To speed up the classification of the query instance, we
propose a local-comparison method in the hierarchical BoW
model as shown in Fig. 5 (b). For each feature point, if it
belongs to word w at level l, the potential word at level
l + 1 can only be from k choices, from word (w − 1) · k + 1
to word w · k. In the training process, we still apply the
traditional-comparison method, as shown in Fig. 5 (a), to build
an accurate model. Thus we compare each feature point with
all visual words to find the closest one at each level. It takes
a total number of k + k2 + · · · + kL = k

(
1 − kL

)
/ (1 − k)

in comparison. That is also the storage cost for an L-level
hierarchical BoW model with branching factor k. In contrast,
for the local-comparison method, we only need to make k ·L
comparisons for each query instance. When k = 2 and L = 8,
the computation reduced from 510 to 16 by using the local-
comparison method, with a saving of 96.9%. The performance
of these two models will be further compared in Section V.

For the vector comparison between a trained model and the
test query instance, the similarity measure of two models is
defined using the cosine similarity as given below:

Similarity =
〈v1,v2〉
|v1| · |v2|

(5)

where v1 and v2 are normalized model vectors adjusted by
the tf*idf measure. If the similarity value is close to 1, we say
that v1 and v2 belong to the same class.

IV. VIEW REDUCTION

It may be possible to build a simplified object class model
with fewer views by exploiting its inherent symmetry. For each
object, the number of views depends on the complexity of
the object appearance. For a holohedric object such as a ball
or cube box, two or three views are sufficient. For an object
class with bilateral symmetry, at least half of the views can be
saved. For a complicated object without symmetry, we need
more views.

View reduction can be used to remove view redundancy
in an object class. The cosine similarity measure takes the
value from 0 to 1. We partition the values into three intervals
with two thresholds, i.e., Tdown and Tup. When the similarity
value is from 0 to Tdown (not similar), we keep both views
in the model. When the similarity value is from Tdown to Tup

(marginally similar), we merge these two views. Finally, when

(a)

(b)

Fig. 5. Comparison of the traditional-comparison and the local-comparison
methods in a hierarchical BoW model with L levels. The exemplary hierar-
chical BoW model has k = 3 and L = 3. The blue rectangles indicate the
search ranges for each level and the green circles denote the closest word
at that level for the query instance. (a) Each query has to be compared with
all words to find the closest word at each level in the traditional-comparison
method, and (b) each query has only to be compared with local words in the
group to find the closest word at each level in the local-comparison method.

the similarity value is from Tup to 1 (quite similar), we discard
one of the two views.

V. EXPERIMENTS

The experiments in this section are conducted based on
the 3D Object Categories of the Caltech dataset [11], which
consists of ten common object categories, including bike, car,
cell phone, head, iron, monitor, mouse, shoe, stapler, and
toaster as shown in Fig. 6. For each object category, there are
ten object instances with 72 viewpoints, 8 angles, 3 heights,
and 3 scales (distances). The total number of images is around
7000. There are only 48 viewpoints for the car object. All
images are of the bmp format with size around 400*300. All
objects are located in the center of each image.

Since local features in the background will lower the classi-
fication performance, an interactive image segmentation tech-
nique is used as a pre-processing step to extract the foreground
object in both training and testing whenever it is needed.
Then, we can focus on local features inside the foreground
object only. Because most objects are quite different from their
background in the Caltech dataset, this is not a demanding
task.

In a hierarchical BoW model, the larger its branching factor,
the more powerful its modeling capability. However, this is
achieved at an expense of higher complexity. To simplify the
model, we take the branching factor k = 2 in the experi-
ment. Similarly, a larger number of levels, better classification
performance can be achieved but with higher complexity. We
choose L = 12 as the highest level number.



Fig. 6. The Caltech Dataset of 3D Object Categories.

Fig. 7. Computational complexity comparison between the traditional-
comparison method and the local-comparison method that have the same
number of visual words, where the horizontal axis is the level number l of
the hierarchical model and the vertical axis is the number of comparisons.

A. Computational complexity

We compare the computational complexity of visual word
matching using the traditional-comparison method and the
local-comparison method that have the same number of visual
words in Fig. 7. It is clear that the local-comparison method
has a much lower complexity. This is especially obvious when
the hierarchical BoW model has a higher level number.

Furthermore, we use cosine similarity to see the model
difference between these two methods for the same feature
points. As shown in Fig. 8, the average similarity between
these two methods decreases as the level, l, of the hierarchical
BoW increases. When L = 12, the average cosine similarity is
still above 0.7. This indicates that the local-comparison method
still has a good approximation capability with low complexity
even with a high level.

B. Object classification without view reduction

For the training data (10 classes, 10 instances, 72 or
48 views), the classification confusion matrix without view
reduction is shown in Table I (12-level model). The average
accuracy is 94.82%.

For a hierarchical BoW model with a level number lower
than 8, the average accuracy is lower than 60% (e.g., 58.92%
for the 7-level model). However, the level number depends on
the object type. To achieve comparable classification perfor-
mance, some need more levels while others need less. Thus,

Fig. 8. Similarity comparison between the traditional-comparison method
and the local-comparison method as a function of the level number of the
hierarchical BoW model.

we may adopt different level numbers for different models
according to their appearance.

In Table II, we list the average classification accuracy for
each object class using a variable level number, where the
level number ranges from 8 to 12.

As shown in Table II, the performance improvement be-
tween two adjacent levels varies from around 1% to over 10%.
To save the storage cost while maintaining good classification
performance, we adopt the 8-level model for bicycle, the 10-
level model for car and head, the 11-level model for cell, iron,
and shoe, and the 12-level model for monitor, mouse, stapler,
and toaster. Although the classification performance degrades
from 94.82% to 92.72%, the saving of the storage cost is more
than 39.38%.

C. View reduction

It is possible to exploit the symmetry of an object class to
reduce the viewpoint number furthermore. To give an example,
there are 72 views for bicycle and 48 views for car in the
dataset. All views are ordered in different scales, heights,
and angles. We show the similarity matrix between different
views, scales, heights and angles in Fig. 9. The value in the
matrix ranges from 0 to 1, which is calculated using the cosine
similarity. Clearly, all diagonal elements are ones. We use a
gray-level map to represent the cosine similarity from 0 (black)
to 1 (white). The similarity matrix of the bicycle object is
shown in Fig. 9 (a), where view angles 1 and 5 correspond to
the front and the back of the bicycle respectively, and other

TABLE I
THE CLASSIFICATION CONFUSION MATRIX USING A HIERARCHICAL BOW

MODEL WITH 12 LEVELS. (UNIT: %)

Bi. Car Ce. He. Ir. Mn. Mu. Sh. St. To.
Bi. 100 0 0 0 0 0 0 0 0 0
Car 0 98.5 0.2 0 0 0 0.2 0.2 0.4 0.4
Ce. 0 0 97.2 0 0.1 1.0 0.2 0 1.4 0
He. 0 0 0.7 97.9 0 0 0.8 0 0.6 0
Ir. 0 0 0.2 0 96.6 1.2 1.2 0 0.5 0.3
Mn. 0 0.6 1.3 0.2 1.5 82.7 1.9 2.7 7.2 1.9
Mu. 0.3 0.1 0.8 0.1 2.7 1.0 91.3 0.6 2.4 0.7
Sh. 0 0.1 0.4 0.1 0 0.4 0.1 97.4 1.3 0
St. 0 0.1 1.1 0.1 0.6 1.3 2.1 0.3 94.1 0.3
To. 0 0 0.4 0.3 1.4 0.1 1.9 0 1.0 94.0



(a)

(b)

Fig. 9. The similarity matrix of different viewpoints for (a) the bicycle class
and (b) the car class.

angles are side views. Due to the 180-degree symmetry, view
angles 1 and 5 are similar to each other. View angles 2, 3, 4,
6, 7, 8 are similar to each other. The similarity matrix for the
car object is shown in Fig. 9 (b), where view angles 3 and 7
offer the side (the left and the right) view of the car. These
symmetric properties allow view reduction.

D. Object classification with view reduction

Based on view reduction discussed in the above subsection,
we can reduce the size of the hierarchical BoW model. The
classification accuracy and its corresponding saving in view
numbers are shown in Table III.

As mentioned in Section IV, we partition the cosine sim-
ilarity measure into three intervals with two thresholds, i.e.,
Tdown and Tup. From Table III, when Tdown is 0.5 and Tup

is 0.7, more than half of the views are saved while the clas-
sification performance reduces around 10% only. Therefore,
view reduction is an effective method to reduce the model
complexity.

TABLE II
THE AVERAGE CLASSIFICATION PERFORMANCE OF EACH OBJECT CLASS

WITH A VARIABLE LEVEL NUMBER. (UNIT: %)

Level: 12 11 10 9 8
Bicy. 100 100 99.72 99.44 99.58
Car 98.54 97.92 93.96 87.08 77.92
Cell. 97.22 92.08 84.72 75.14 65.00
Head 97.92 96.39 93.19 89.03 82.22
Iron 96.60 93.98 87.19 81.48 76.70

Moni. 82.70 75.53 68.14 60.13 51.05
Mous. 91.30 84.43 74.75 67.04 60.59
Shoe 97.41 92.24 86.35 73.85 66.24
Stap. 94.10 87.64 78.51 67.98 59.97
Toas. 94.03 86.94 73.19 54.86 44.03

VI. CONCLUSIONS

A hierarchical BoW model was proposed to improve the
efficiency of object class representation and facilitate object
classification. We also described ways to reduce model re-
dundancy with a flexible level number and a reduced number
of views. The objective is to maintain a good balance be-
tween classification accuracy and storage/computational cost.
Experimental results were given to demonstrate the superior
performance of the proposed hierarchical BoW model.
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Tdown = 0.7, Tup = 0.8 3.88% 92.50%
Tdown = 0.4, Tup = 0.9 57.33% 75.70%
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