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Abstract—Cascading failure in power grids has long been rec-
ognized as a sever security threat to national economy and society,
which happens infrequent but can cause severe consequences. The
causes of cascading phenomena can be extremely complicated
due to the many different and interactive mechanisms such as
transmission overloads, protection equipment failures, transient
instability, voltage collapse, etc. In the literature a number of
vulnerability measures to cascading failures have been proposed
to identify the most critical components in the grid and evaluate
the damages caused by the removal of such recognized compo-
nents from the grid. In this paper we propose a novel power grid
vulnerability measure called the minimum safety time after 1 line
trip, defined based on the stochastic cascading failure model[1].
We compare its performance with several other vulnerability
measures through a set of statistical analysis .

I. INTRODUCTION

The future smart grid will incorporate more intermittent and
volatile renewable generation and include more greater and
sophisticated demand side participation. The system operator
faces constant pressure to handle the generation/load uncer-
tainties and maintain an economic and reliable operation. Un-
der these circumstances, it would ideal to have some effective
vulnerability measure to help recognize the most critical or
stressed part in the grid so that the system operator can monitor
and interpret what is going on in the system accurately,
therefore enhance the system robustness by steering away
from potential cascading threats. In the literature, many such
measures have been proposed, such as high traffic, high flow
increase, high betweenness,[2] [3]. Most of these measures
were defined on the basis of deterministic grid operating con-
ditions and network topology. In [1] we introduced a stochastic
cascading failure models taking into account the statistical
properties of generation/load, from which a novel vulnerability
metric called the expected safety time is defined to evaluate
by average how long a transmission line will stay connected
given current operating conditions and network state. In this
paper, we propose a novel power grid vulnerability measure
called the minimum safety time after 1 line trip,and compare its
performance with three other vulnerability measures through a
statistical numerical analysis based on the stochastic cascading
simulation model of [1].

The rest of the paper is organized as follows: Section II

introduce the power grid model and the stochastic cascading
analysis; Section III gives definitions of the proposed vulner-
ability measure and three other measures we are going to
examine and compare; Section IV presents some numerical
statistical results to compare the performance of all the exam-
ined measure; and Section V concludes the paper.

II. POWER GRID MODEL AND THE STOCHASTIC ANALYSIS
OF CASCADING OVERLOAD VULNERABILITY

A stochastic cascading failure models was introduced in
[1] which incorporates the statistics of the generation and
loads in the grid therefore to derive the statistics of the line
flow process. For the tractability of the problem, we use
the DC power flow approximation to characterize a power
grid network, which is a standard approach widely used in
optimizing flow dispatch and for assessing line overloads [4].
Consider a power grid transmission network with n nodes
interconnected by m transmission lines, the network flow
equation can be written as follows:

P (t) = B′(t)θ(t),
F (t) = diag (yl(t))Aθ(t)

(1)

where P (t) represents the vector of injected real power, θ(t)
the phase angles, and F (t) the flows on the lines. The matrix
B′(t) is defined as

B′(t) = AT diag (yl(t))A, (2)

where yl(t) = sl(t)/xl with xl the line reactance and sl(t)
the line state; sl(t) = 0 if line l is tripped, and sl(t) = 1
otherwise; diag (yl(t)) represents a diagonal matrix with en-
tries of {yl(t), l = 1, 2, · · · ,m}. A := (Al,k)m×n is the
line-node incidence matrix, arbitrarily oriented, defined as:
Al,i = 1; Al,j = −1, if the lth link is from node i to
node j and Al,k = 0, k 6= i, j. The vector of line states,
s(t) = [s1(t), s2(t), · · · , sm(t)]T with sl(t) ∈ {0, 1}, is
defined as the network state.

The operating condition of the grid, represented by the real
power injection P (t) = [G(t)T − L(t)T ]T , where G(t) is
the generation and L(t) is the load portion, assumes to be
a conditionally Gaussian multivariate random process, given
the network state of s(t). The probability density function of
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Fig. 1. The flow process and the line state transition
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Fig. 2. The power injection adjustments to keep the system balanced

{P (t)|s(t)} is, therefore, fully specified giving its conditional
mean and covariance, denoted as follows:

µP (t) =

[
µg(t)
−µl(t)

]
, CP (t) =

[
Σgg(t) Σgl(t)
Σlg(t) Σll(t)

]
. (3)

The time dependence is due to the fact that the random process
is intrinsically non-stationary, e.g., the generation settings in
the power grid are adjusted periodically to balance the loads
during the day. The covariance reflects the uncertainty in
the load/generation settings coming from multiple sources
such as the forecasting deviation, the measurement errors,
and the volatility caused by demand response and renewable
generation.

We can then compute the statistics of line flow process as

µF (t) =
√
yt(Ã

T
t )†µP (t)

CF (t) =
√
yt(Ã

T
t )†CP (t)(Ãt)

†√yt,
(4)

with Ã(t) =
√
y(t)A = USVT and

√
yt = diag{

√
yl(t)}.

Note that during a cascading process, in some cases the grid
network may become disconnected and some necessary power

adjustments have to be made to keep the system balanced. In
this model we assume the primary generation and load controls
in the grid could take a least-squared adjustment within their
capacity limit. Here we use Fig. 2 to illustrate the process: as
indicated by the system’s power flow equation (1), the power
injection vector P (t) needs to stay in R (B′(t)) the range
space of the grid’s B′(t) in order to satisfy the power balance
constraints. Therefore when some line outage(s) in the grid
steers away the range space to R (B′(t+ ∆t)), we need to
project the power injection vector to P (t+ ∆t), back into the
new range space along the shortest path which corresponds to
the least-squared power adjustment.

A line is considered as overloaded if the power flow through
it exceeds the line limit determined by its thermal capacity
or static/dynamic stability conditions, i.e., which is called
the line’s overload threshold, where Fmax

l . Therefore the
normalized overload distance for a line flow can be written
as al =

(
Fmax
l − µFl(t)

)
/σFl(t)

with σFl
=
√
CF (l, l). And

its overload probability can be approximated as ρl(t) ≈ Q(al).
The persistent overload condition may cause a line to trip

shortly, consequently, a transition in the state s(t). Fig.1
illustrates a line flow process for which two kinds of sojourn
intervals can be defined: the overload intervals (when the
flow magnitude stays above its threshold: |Fl(t)| ≥ Fmax

l ),
and the normal-load intervals (when |Fl(t)| ≤ Fmax

l ), which
are associated with an overload and normal-load line-tripping
rate respectively, denoted as λ∗l and λ0l . Obviously λ∗l � λ0l .
Assuming that Fl(t) is Gaussian and differentiable, one can
compute the average level crossing rate (i.e. the expected
number of crossings of the threshold Fmax

l in either direction)
[5] as γl = W

π e
−a2l /2, where W=

√
−R′′Fl

(0)/RFl
(0) is the

equivalent bandwidth.
The probabilistic distribution of crossing intervals and line

states can then be derived by using the Rice’s results on Gaus-
sian random process [6] and compute the expected safety time
for each line to stay connected given current network topology
and operating state. More details of the derivation can be found
in [1]. Given the overload probability ρl of the l-th line, the
level crossing density γl at Fmax

l , and the line tripping rates λ∗l
for an overload line and λ0l caused by random contingencies,
the expected number of crossings after which the lth line finally
gets tripped is κ̄l = [(1 + βl)− (βl − αl)ρl] /(1−αlβl), and
the expected life-time of the line is:

Tl = (κ̄l − 1)/γl + E{∆tl}, (5)

where E{∆tl} is the mean duration of the last in-
terval E{∆tl} =

[
∆T ∗l + ∆T 0

l

]
/(1 − αlβl), with

αl = E
{
p
{
sl
(
tdl (i)

)
= 1
}}

, βl = E {p {sl (tul (i)) = 1}},
∆T ∗l = (1 − αl) [βl + (1− βl)ρl] /λ∗l and ∆T 0

l = (1 −
βl) [1− (1− αl)ρl] /λ0l .

III. DEFINITION OF THE VULNERABILITY MEASURES

In this paper we wish to evaluate and compare the damaging
impacts when some critical line in the grid is lost. First step is
to define an effective measure to recognize such critical lines.



Based on the Markovain-transition cascading failure model
proposed in [1], we define an effective novel vulnerability
measured of the minimum safety time.

A. The Minimum Safety Time

Given a specific operating condition, Tl is a safety metric
for the line, and minl Tl(t0) can be used as a global metric for
the safety of the grid under current network condition, while
the line at greatest risk can be identified as l∗ = arg minl Tl.
If the network transfers from one state to another, however,
the Tl’s all change, because the flows will be redistributed, and
most likely this minimum shrinks further. We wish to examine
how a line-outage contingency affects the system’s minimum
line safety time. That is, with only 1 line tripped, e.g., the k-th
line in the network, to evaluate the minimum safety time of
the remaining system as follows:

min
l
Tl|k = min

l
{Tl| sk(0)=0, si 6=k(0)=1}. (6)

And the corresponding vulnerability measure is to identify the
line whose outage will cause the smallest minl Tl|k.

B. Other Vulnerability Measures

In the literature there are other measures such as high traffic,
high flow increase, and high betweenness, whose definitions
are listed as follows.

1) High Traffic: The criterion of high traffic is to select the
lines which carries the largest flows in the original network.

2) High Flow Increase: The criterion of high flow increase
after tripping is to compute the flow increase after 1 line
tripping by using the line outage distribution factor factor
(LODF) [7] and select the lines tripping which will cause the
largest flow increase in the remaining network.

3) High E-Betweenness: High betweenness is to select
the lines which connects most shortest-paths among all the
possible pairs of nodes in a network. This centrality measure
used to a purely graphic one, i.e., fully dependent on the
network topology. [2] improved this graphic measure by defin-
ing “electrical” distance so as to incorporate the transmission
line impedance into the definition. Henceforth the improved
criterion we name as high E-betweenness.

C. The minimum safety time after one critical line lost

In this paper we used the IEEE 300 bus system to exam-
ine and compare the performance of different vulnerability
measures. The IEEE 300 bus system is synthesized from the
New England power system and has a topology with 300
nodes and 411 links. The initial operating equilibrium and
conditions are taken and derived from the power flow solution
of the system data from [8]. Taking the mean of P (0) as
µP (0) = [G(0)T ,−L(0)T ]T , we set the standard deviation
of the loads as σL = 0.07|L(0)|, but ignore the variance in
G. For simplicity, we assume that the loads and generation
are statistically independent of one other. The line overload
thresholds are set as Fmax = 1.20|F (0)|. Here we take
F (0) as the rational flow distribution under normal operating
conditions and assume that the line capacity allows a 20%

(a) all the lines

(b) the most critical lines

Fig. 3. The minimum safety time after 1 line tripped: the IEEE-300 system

load increase [9]. The overload and normal-load line tripping
rates are set as λ∗ = 1.92 · 10−2Hz and λ0 = 7.70 · 10−11Hz
respectively. Analysis on the load record from realistic power
grids [10] has shown that the load process can be approximated
as a low-pass Gaussian process with an equivalent bandwidth
of W ≈ 10−5Hz. Since the flow process in a grid can be seen
as a linear projection from the load process, we can apply the
equivalent bandwidth W to the flow processes in the grid.

Fig. 3 demonstrates all the minl Tl|k’s after 1-line trip sorted
according to the magnitude. It can be seen that for about 50%
of the lines in the network, if an (n−1) contingency happens,
the system’s minimum safety time will not be noticeably
changed. However, if the 1-line tripping occurs upon the other
portion in the network, the system safety will be worsened
more or less. Most interestingly, there is a set of 22 lines,
denoted as L, in the network that can be classified as extremely
“critical”, under current specific condition. If one line trips, a
second line will trip on average within minutes, which may
indicate an imminent cascading process. Fig. 3 also indicates
the minl Tl|k corresponding to the first most vulnerable 22
lines located by the three other vulnerability measures as
mentioned above. It shows that by utilizing the criterion of
high flow increase after 1 line tripping, one is able to locate 7
out of the 22 “critical” lines in L; by utilizing the criterion of
high traffic, one is also able to locate 7 “critical” lines from
L; while utilizing the criterion of high electrical betweenness,
is most ineffective, only able to capture 2 critical lines from
L.

The analysis in the paper has indicated that the overall
vulnerability of a power grid network in terms of cascading
overload failures depends on the following four factors: (1)



B’(t) incorporates the grid network state 

Fig. 4. The transition of the grid network state in B′(t)

the network condition which includes the connecting topology,
and the line impedances, (2) the line capacities; (3) the
operating condition which includes the generation dispatch and
load settings; and (4) the statistics of the line flows which can
be derived from the statistics of injected power. The criterion
based on the minimum safety time has taken into account of
all four factors therefore it reflects the system vulnerability
with most accuracy. Both the criterion of high flow increase
after 1 trip and of high traffic consider only (1) and (3);
however, the former takes one step further to compute the post-
contingency flow redistribution therefore is able to locate a few
more most critical lines than the latter. In contrast, the criterion
of high electrical betweenness only considers (1) regardless of
specific operating conditions, line capacities, or flow statistics,
hence it is ineffective in locating the critical lines in terms of
vulnerability. At the same time we can say the other criterions
such as high nodal degrees, defined based on only topological
information of power grid networks, will have very limited
ability to locate the really critical components.

IV. SIMULATIONS EXPERIMENTS

We also perform Monte Carlo experiments on the IEEE
300 bus system to evaluate the statistical impacts by using
the Markovian-transition model developed in [1], as shown
in Fig.4. First five most important lines have been identified
by using each of the four vulnerability measures discussed
in section III. Then a Cascading simulations can be started
by tripping one of such lines in the system. Each experiment
is repeated 10 times and the statistical results are aggregated
for each measure to compare the damaging impacts. Fig. 5
shows the mean values of the cumulative line loss and the
resulting load served during the cascading evolution process
where 1 p.u. = 100MW . The red and green dashed lines
in the figure show the half standard deviation range of the
corresponding statistical results. It is found that removal of
these critical lines recognized by the four different measures
will all trigger cascading overload failures in the system, but
with different extents of damages in the system. terms of the
. Table I summarize the average cumulative line outages and
load unserved after the cascading process calms down. The

(a) minl Tl|k

(b) high traffic

(c) high flow increase

(d) high E-betweenness

Fig. 5. The cascading process in the IEEE-300 system triggered by tripping
one of the most critical lines identified the four vulnerability measures as
indicated below each sub-figure: the mean value of line outages and load
served (blue); the range of half standard deviations (red and green).

comparison shows that removal of the lines picked by the
minimum safety time minl Tl|k causes the most severe loss in
the system, about 147 (35.8% of the total) lines outages and
134.3 p.u. load (65% of the total) loss by average; removal of
the lines picked up high E-betweeness causes the least severe
damages among the group, about 103 (25%) line outages and
65.6 p.u. load (31.6% of the total) unserved. The damage
extents cause by the lines specified by high flow increase and
high traffic lie in the middle with the former a little bit heavier
than the latter. These simulation results are consistent with
the analysis regarding the effectiveness of each vulnerability
measure in the last section.



TABLE I
THE AVERAGE LINE OUTAGES AND LOAD UNSERVED IN THE IEEE 300

BUS SYSTEM AFTER CASCADING PROCESS TRIGGERED BY REMOVAL OF
A CRITICAL LINE IDENTIFIED BY DIFFERENT VULNERABILITY MEASURES

measures total line outages total load unserved
(with percentage) (with percentage)

minl Tl|k 147 (35.8%) 134.3(65%)

high traffic 123 (29.9%) 97.4(46.9%)

high flow increase 132 (32.2%) 116.4 (56.0%)

high E-betweenness 103 (25%) 65.6 (31.6%)

V. CONCLUSIONS

In this work we propose a power grid vulnerability measure
called the minimum safety time after 1 line trip, minl Tl|k,
which is defined based on the stochastic cascading-failure
model [1] and compare its performance with three other mea-
sures, i.e., high traffic, high flow increase, high E-betweenness.
It is found that the minl Tl|k is the most effective measure
to recognize the critical lines in a system whose loss may
trigger an imminent cascading process. The reason for its
effectiveness is because the proposed measure has integrated
all the four factors that relates with the grid’s overall vul-
nerability to cascading overload failures, namely the network
condition which includes the connecting topology, and the line
impedances, the line capacities; the operating condition which
includes the generation dispatch and load settings; and the
statistics of the line flows. While the other three only consider
one or two of the listed factors. Simulation experiments
have been performed on the IEEE 300 bus system and the
statistical results also verified the effectiveness comparison of
the vulnerability measures we discussed.
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