Repeating Segment Detection in Songs using Audio
Fingerprint Matching

Regunathan Radhakrishnan* and Wenyu Jiang®
* Dolby Laboratories Inc, San Francisco, USA
E-mail: regu.r@dolby.com
t Institute for Infocomm Research, Singapore
E-mail: wjiang@i2r.a-star.edu.sg

Abstract—' We propose an efficient repeating segment detec-
tion approach that doesn’t require computation of the distance
matrix for the whole song. The proposed framework first extracts
audio fingerprints for the whole song. Then,for each time step
in the song we perform a query to match a sequence of M
fingerprint codewords against the fingerprints of the rest of the
song. In order to find a match for the first fingerprint query,
a search tree data structure is built with the fingerprints of
the rest of the song. For subsequent fingerprint queries for the
rest of the song, the matching process dynamically updates the
search tree data structure to exclude the M fingerprint codewords
corresponding to each time step. For each matching segment, we
record the time offset from the query segment. Following the
matching process for the whole song, we compute the histogram
of the number of matching segments for each offset. The peaks
in this histogram correspond to offsets at which matches were
found more often than others and can be used to pick out a set
of repeating segments.

I. INTRODUCTION

Popular music often consists of repeating segments that
can be thought of as audio thumbnails. These segments
are potentially good representative segments for the whole
song and often referred to as chorus segments. Automatically
detecting these segments can help in the browsing of music
collections by allowing an end-user to listen only to the chorus
segments of one song to the next. Chorus playback facilitates
instant recognition and identification of the songs for browsing
of known songs and assessment of liking or disliking for
unknown songs.

Past work on repeating pattern detection and music structure
analysis in general can be divided into the following two
different approaches.[1],[2],[3],[4].[5]

o In the “clustering approach” the songs are segmented
into different sections by using clustering techniques. The
underlying assumption is that the different sections (such
as verse, chorus) of a song share certain properties that
discriminates these parts from the other parts.

o The “pattern matching approach” (also denoted as se-
quence approach) relies on the assumption that the chorus
is a repetitive section in a song. Repetitive sections are
identified by matching the different sections of the song
with each other.

1T This work was completed when Dr. Wenyu Jiang was with Dolby
Laboratories Inc

The pattern matching approaches described in the literature
first represent the whole song as a sequence of features
extracted from N frames of the audio signal. Then, a full
distance matrix is computed, which contains the distance of
all combinations of all N frames of the audio signal. The
computation of this matrix is computationally expensive, since
the distance needs to be computed for all N72 combinations.

The repeating pattern detection framework that we propose
in this paper follows the pattern matching approach but doesn’t
require computation of the the distance matrix for the whole
song. The proposed framework first extracts audio fingerprints
for the whole song. Then,for each time step in the song
we perform a query to match a sequence of M fingerprint
codewords against the fingerprints of the rest of the song. In
order to find a match for the first fingerprint query, a search
tree data structure is built with the fingerprints of the rest of
the song. For subsequent fingerprint queries for the rest of the
song, the matching process dynamically updates the search
tree data structure to exclude the M fingerprint codewords
corresponding to each time step. For each matching segment,
we record its time offset from the query segment. Following
the matching process for the whole song, we compute the
histogram of the number of matching segments for each offset.
The peaks in this histogram correspond to offsets at which
matches were found more often than others and can be used
to pick out a set of repeating segments.

The rest of the paper is organized as follows. In the next
section, we describe the proposed repeating pattern detection
framework based on audio fingerprint matching. In section 3,
we present experimental results illustrating the efficiency of
the proposed framework.

II. PROPOSED FRAMEWORK

Figure 1 below illustrates the three main stages of the pro-
posed framework to detect repeating segments in a song. Input
audio is first represented as a sequence of audio fingerprints.
Then, for each time step short sequences of fingerprints are
queried against the rest of the fingerprints of the song. The best
matching sequence is found using a 256-ary tree based search
algorithm. Finally, the matching results are analyzed to detect
repeating segments of the song. In the following subsections,
we describe each of the three processing blocks in detail.

Input song

Audio
Fingerprint
Generation

Query short
segments using
ree-based search|

Matching-BER,
Matching-offset

Detect candidate
repeating segments

i

Qutput detected segments

Fig. 1. Proposed Framework for Repeating Segments Detection

A. Audio Fingerprint Extraction

The goal of audio fingerprint extraction is to create a com-
pact bitstream representation of the underlying content that
can serve as an identifier. In general, audio fingerprints are de-
signed to be robust against a lot of signal processing operations
including audio coding, Dynamic Range Compression (DRC),
equalization etc. However, for finding repeating segments in
the same song, the robustness requirements of generated audio
fingerprints can be relaxed as the matching is done within the
same song. The usual attacks on an audio fingerprinting system
are absent in the context of this application. In the rest of this
section, we describe the audio fingerprint extraction method
designed for this application.

The audio fingerprint extraction is based on a coarse spec-
trogram representation. First, we downmix the audio to mono
signal and downsample it to 16khz . Then, we divide it into
overlapping chunks and create a spectrogram from each of the
chunks. Finally, we create a coarse spectrogram by averaging
along both time and frequency. This operation provides ro-
bustness against small changes in the spectrogram along time
and frequency. Note that the coarse spectrogram created could
choose to emphasize certain parts of the spectrum more than
others.

The input audio is first divided into chunks of duration
T.n = 2 seconds with a step size of T, = 16 ms. For each
chunk of audio data (X.,) we compute a spectrogram with
certain time resolution (128 samples or 8 ms) and frequency
resolution (256 sample FFT). Then, we tile the computed
spectrogram X, with time-frequency blocks. Finally, we sum
up the magnitude of the spectrum within each of the time-
frequency blocks to obtain a coarse representation of the
spectrogram. Let us represent the spectrogram by S. We obtain
a coarse representation (Q) of S by averaging the magnitude
of frequency coefficients in time-frequency blocks of size
Wy x W;. Here, Wy is the size of block along frequency
and W, is the size of block along time. Let F be the number
of blocks along frequency axis and T be the number of blocks
along time axis and hence Q is of size (F' x T).

Finally, we create a low-dimensional representation of a
coarse spectrogram (Q) of the input audio frame by projecting
the spectrogram onto pseudo-random vectors, which can be
thought of as basis vectors. We generate K pseudo-random
vectors each with the same dimensions as the matrix, Q
(F x T). The matrix entries are uniformly distributed random
variables in [0, 1]. The state of the random number generator
is set based on a key. Let us denote these random vectors by
Py, P,, ... Pg each of dimension F' xT'. We compute the mean
of matrix P; and subtract it from each matrix element in P;
(# = 1,2...K). Then, the matrix Q is projected onto these K
random vectors to generate Hj, projected values. Using the
median of these projections (Hy) as a threshold, we generate
K hash bits for the matrix Q. We generate a hash bit 1 for
k" hash bit if the projection Hy, is greater than the threshold.
Otherwise, we generate a hash bit of 0. In our implementation,
K = 24. Therefore, we generate 24 fingerprint bits every
16 ms of the audio. A sequence of these 24 bit fingerprint
codewords is then used as an identifier for that particular chunk
of audio that it represents.

B. Audio Fingerprint Matching

The goal of the fingerprint matching block is to quickly
identify offsets/lags at which repeating segments appear in a
song. For every 0.64s of the input song, a sequence of 488
24-bit fingerprint codewords corresponding to “8s of audio
is used as a query. The matching algorithm finds the best
match for this sequence of bits from the rest of the song. For
instance, at the current time step t = 0 a sequence of fingerprint
codewords corresponding to 8s of audio is used as a query. The
best matching sequence of bits is found from the database of
fingerprint bits. Since we expect the repeating chorus duration
to be at least 10s and do not expect the chorus to repeat one
after the other consecutively, the database doesn’t include the
sequence of the fingerprint bits corresponding to ("20s) 19.2
seconds starting from the current time step. For the next time
step, t = 0.64, the fingerprints corresponding to 0.64s to 8.64s
is used as a query and the section of the song corresponding to
(19.2s to 19.84s) is removed from the database and the section
corresponding to the previous time step (0 to 0.64s) is added to
the database. At each time step, the database is updated and a
search is performed to find the best matching sequence of bits
for a sequence of query fingerprints, as illustrated in Figure 2.
For each search, the following two results are recorded:

« the offset at which the best matching segment is found

o the hamming distance between the query and the best

matching sequence from the database

The search itself is performed efficiently using a 256-ary
tree data structure that finds approximate nearest neighbors in
high-dimensional binary spaces [6].

1) Tree Data Structure based Matching: A fingerprint is a
sequence of codewords with a specified length, or in essence,
a binary sequence (of 488%*24 = 11712 bit long in this
paper). Therefore, the best match to a query fingerprint is
defined as the reference fingerprint with the smallest Hamming
distance to the query fingerprint. Since Hamming distance is

8s Matching offsat(t)

B Matching BER(t)
-T ", (hamming distance between
query & best match)

.
1923 Fingerprints in DB

Query
fingerprints

‘ 1i\g 54 Matching offset(t)
\ \ Ny
Quary "
firgerprints Fingerprints in DB Matching BER(t)

Fig. 2. Fingerprint Matching

the number of differing bits between two binary sequences,
finding the best match becomes nearest neighbor (NN) search
where each dimension is binary. The number of bits, i.e., the
number of dimensions of a fingerprint is usually high (11712
bits in our case), and this makes NN search challenging. We
implement a tree-based search structure proposed in [6], where
the tree is 256-ary, i.e., each level = 1 byte, and its depth is the
same as a fingerprint (488%24/8 = 1464 levels). Each reference
fingerprint is inserted into the tree at 16ms stepping.

The search is implemented as a form of depth-first tree
traversal starting from the root, and to reduce time complexity,
at each (byte) level the branches are sorted by their Ham-
ming distance (only on this level) to the query fingerprint’s
corresponding byte, and lowest Hamming distance branches
are traversed first. In addition, a heuristic function is used to
estimate how likely a branch will lead to leaf node whose
Hamming distance will be lower than the best match so far,
and traversal will continue only if the estimate is favorable.
These time complexity saving measures are from [6].

In addition, we significantly reduced space complexity of
such a search tree, by using codeword pointers whenever there
is only one reference fingerprint underneath some intermediate
node, or whenever more than one reference fingerprint have
more than one byte of data in common, both of which are
used in tree nodes referred to as compressed nodes. This is
illustrated in Figure 3(a). Although [6] describes the former
case as a “compressed node”, there was no suggestion of use
of codeword pointers and would presumably be less memory
efficient. We estimate the use of codeword pointers provided
about 90% savings in memory usage.

The search tree is updated with two main operations:
insertion and deletion of a reference fingerprint. To facilitate
the use of codeword pointers, both operations are passed
with the codeword pointer of the beginning of the reference
fingerprint, i.e., using the pass-by-reference instead of pass-by-
value calling convention. There are two kinds of tree nodes:
a sparse node (a normal node with a list of branches) and a
compressed node (which has only one branch underneath for

24-bit codeword
. in hexadecimal
Note:every node will reach leaf level, p
butfor brevity only the compressed /
nodeis shown so. /
— Raw stream
Codeword poeinter of

fingerprint
codewords
487 codewordsvirtually represented
using codeword pointer

apou passaidwo)

Leaflevel

(a) Compressed node with codeword pointer in a

256-ary search tree

l \ Raw stream
of

Newdy inserted
V8 | fingerprint diverges after
X {and is followed by 2)

__leaflevel _
\ fingerprint
*Compressed node created \\) codewords
for newly inserted fingerprint. \

+Note the split & creation of
compressed node for old
fingerprint.

“Brovn lines are codeword
pointers.

n" Z

(b) A compressed node being split during insertion

Fig. 3. Search tree structure and update process

multiple levels and has a corresponding codeword pointer). A
leaf node is always defined to be a compressed node.

During insertion, the to-be-inserted fingerprint is traversed
one level (byte) at a time, to follow the tree structure. If it
has a byte value at some level that is not present in the tree,
the tree is added with a new branch consisting of this byte
value, and the new branch would point to a newly created
compressed node whose codeword pointer points to the to-be-
inserted fingerprint plus its current traversal level. Although
the definition of sparse and compressed nodes are simple,
insertion and deletion are not so trivial. For example, a new
branch may be added in the middle of a compressed node,
instead of in a sparse node, and this would require splitting
the compressed node into a shorter compressed node, a single
branch to a subsequent sparse node with two branches (one
branch to the latter half of the old compressed node, the other
to the new compressed node), and the new compressed node.
This is illustrated in Figure 3(b), and note how the original
codeword pointer is still kept at the new upper compressed
node after the split.

During deletion, the to-be-deleted fingerprint is also tra-
versed one level (byte) at a time, to follow the tree structure. If
it exists in the tree, it can eventually be found at a compressed
node (whether leaf level or not), by comparing the compressed
node’s codeword pointer to the passed-in codeword pointer.

Fig. 4. Fingerprint Matching Vs Similarity Matrix based Approaches

If they match, and if this codeword pointer has been used
in several levels of compressed nodes, then an alternative
codeword pointer (from underneath the affected compressed
node) must be found to replace it at each of its occurrences.
In the right part of Figure 3, if fingerprint corresponding to XY
is to be deleted, then the upper compressed node’s codeword
pointer must be updated with e.g. the codeword pointer of
fingerprint XZ (and adjusted to its corresponding offset).

In short, the codeword pointer based tree structure provides
significant memory savings, but requires fairly complex code
to properly implement insertion and deletion.

C. Detection of significant offsets

The fingerprint matching block returns the offset of the
best-matching segment in a song for every 0.64s in the song.
In order to relate the proposed fingerprint matching based
approach to similarity (distance) matrix based approaches,
refer to Figure 4. Note that repeating patterns in the song
appear as parallel lines off the diagonal in the similarity matrix.
The proposed fingerprint matching based approach doesn’t
compute the full similarity matrix but uses a efficient tree-
based search data structure to find the best match and time
offset of the match for each query point. Furthermore, the
fingerprint query can be efficiently executed for a song on the
order of several minutes. However, it becomes computationally
expensive to compute similarity matrix based on audio frame
features from a song of similar length.

In this block, we determine a number of significant offsets
by computing a histogram based on all offsets obtained in the
previous matching step. As can be seen from the off-diagonal
lines in the similarity matrix, neighboring time points within
a repeating segment tend to have the same matching offset.
Therefore, we first detect a set of offsets where there are
significant number of matches by computing a histogram of
number of matches for each offset value. Figure 5 shows an
example of this histogram. The significant offsets are offsets at
which there are a significant number of matches and manifest
as peaks in this histogram.

Finally, the start times and end times of the repeating

o - o - ad e
N © kS w @ ~

number of best matches

o

. . .
40 60 80 100 120 140 160 180
offset

n
S

Fig. 5. Histogram of offsets

Manually labels (serving as ground truth)
| !
Detected : L

Chorus Chorus | |

Correctly
detected

[
;Lcd

Fig. 6. F Measure Computation

segments correspond to sections of the song where the best
matching offsets are equal to one of the significant offsets.

III. EXPERIMENTAL RESULTS
A. Objective Performance

We collected a total of 95 popular songs and manually
labelled the start and end times of the repeating segments that
are at least 12 seconds long. Then, we analyze each of the
95 songs using the proposed framework and record the start
and end times of the detected repeating segments. We use F-
measure as an objective measure to quantify how good the
detected repeating segments are.

The F-measure is a common performance measure for
detection tasks. It is used in the context of chorus extraction
work in [3][4]. The F-measure corresponds to the amount of
overlap of two different segments. For our task it specifies
the overlap between the detected repeating segment and the
manually labeled repeating segment (serving as ground truth).
The F-measure is defined as the harmonic mean of the recall
rate R and the precision rate P and is given by F' = % (see
Figure 6). Here R denotes the recall rate and is given by the
ratio of the correctly detected length to the correct part (i.e
R = LLcd , thus it reaches its maximum value if the detected
segmenct fully covers the correct segment (and even exceeds
it). The precision rate (P = %C:) denotes the ratio of the
correctly detected segment and the detected segment, thus it
reaches its maximum if the detected segment does not exceed
the range of the correct segment.

Histgram F R: R: 0.7608 P:0.7247 Mean:0.72196 Median:0.7594
30

100
I 075
[F>05
 —)
& [L

All songs (35 songs)
Percent

Fig. 7. Distribution of F-Measure for the set of Detected Repeating Segments
from the 95 popular songs

Figure 7 shows the distribution of the F-measure values for
the detected repeating segments from the 95 songs. The mean
F-measure for this database of songs is 0.72196.

IV. CONCLUSIONS & FUTURE WORK

We proposed an efficient repeating segment detection ap-
proach that doesn’t require computation of the distance matrix
for the whole song. The proposed framework first extracts
audio fingerprints for the whole song. Then, for each time
step in the song we perform a query to match a sequence of
M fingerprint codewords against the fingerprints of the rest of
the song. In order to find a match for the first fingerprint query,
a search tree data structure is built with the fingerprints of the
rest of the song. For subsequent fingerprint queries for the
rest of the song, the matching process dynamically updates
the search tree data structure to exclude the M fingerprint
codewords corresponding to each time step. For each matching
segment, we record the time offset from the query segment.
Following the matching process for the whole song, we
compute the histogram of the number of matching segments
for each offset. The peaks in this histogram correspond to
offsets at which matches were found more often than others
and can be used to pick out a set of repeating segments.

REFERENCES

[1] Bartsch M. A, Wakefield G. H., “To catch a chorus: Using chroma-
based representations for audio thumbnailing,”in Proceedings of the IEEE
Workshop on Applications of Signal Processing to Audio and Acoustics.
New Paltz, NY, 2001.

[2] Bartsch, M.A.; Wakefield, G.H.; “Audio thumbnailing of popular music
using chroma-based representation,” IEEE Transactions on Multimedia,
Volume: 7 , Issue: 1, Publication Year: 2005 , Page(s): 96 104

[3] Goto, M.; “A chorus section detection method for musical audio signals
and its application to a music listening station,” IEEE Transactions
on Audio, Speech, and Language Processing Volume: 14 , Issue: 5 ,
Publication Year: 2006 , Page(s): 1783 1794

[4] Eronen A; “Signal Processing Methods for Audio Classification and
Music content analysis,” Phd Thesis, Tampere university of technology,
2009

[5] Paulus, J.; Klapuri, A.; “ Music Structure Analysis Using a Probabilistic
Fitness Measure and a Greedy Search Algorithm,” IEEE Transactions
on Audio, Speech, and Language Processing Volume: 17 , Issue: 6 ;
Publication Year: 2009 , Page(s): 1159 1170

[6] Miller, Matthew L.; Rodriguez, Manuel Acevedo; Cox, Ingemar J.;
“Audio Fingerprinting: Nearest Neighbor Search in High Dimensional
Binary Spaces,” Journal of VLSI Signal Processing Volume: 41, Number:
3, Publication Year: 2005, Page(s): 285-291

