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Abstract—Future Smart Grid systems will intelligently monitor
and control energy flows in order to improve the efficiency
and reliability of power delivery. The monitoring and control
require low-delay, highly reliable, two-way communications be-
tween customers, local utilities and regional utilities. Narrowband
powerline communication (NB-PLC) systems operating in the 3–
500 kHz band have been standardized to enable these two-way
communication links. In NB-PLC systems, additive non-Gaussian
noise/interference is primary limitation to the communication
performance. From field trials, the dominant source of this
non-Gaussian noise/interference is cyclostationary. In this paper,
we address the problem of cyclostationary noise mitigation
in NB-PLC systems and other orthogonal frequency division
multiplexing (OFDM) systems. The contributions of this paper
include developing a parametric noise estimation algorithm based
on switching linear autoregressive (AR) process, and a simple
adaptive noise whitening approach that can be immediately
integrated into the conventional OFDM transceiver structure to
improve its performance. In our simulations, the proposed noise
whitening method achieves up to 3dB SNR gain over conventional
OFDM systems at SNRs higher than -3dB.

I. INTRODUCTION

The electrical grid today has evolved to a new paradigm,
the Smart Grid. Compared to traditional grids that carry one-
way flow of power from generators to customers, the Smart
Grid uses two-way flows of energy and information to create
an intelligent energy delivery network. Various technologies
have emerged to facilitate data communication throughout the
grid, and in particular between local utilities and customers.
Applications of such “last mile” communications include
smart metering and real-time energy management. Powerline
communications (PLC) over the medium-voltage (MV) and
low-voltage (LV) lines have been attractive as a no-new-wire
solution to the last mile communications. Recently there has
been a lot of interest in developing high data rate narrowband
(NB) PLC systems, which operate in the 3–500 kHz band to
provide data rates up to 800 kbps. These systems generally
employ orthogonal frequency division multiplexing (OFDM)
to combat multi-path frequency selective channels. Examples
of OFDM-based NB PLC systems are specified in the industry-
developed standards PRIME and G3, and recent international
standards ITU-T G.hnem and IEEE P1901.2.

Despite of its costless deployment, the power lines, origi-
nally designed for electricity transfer, is a hostile environment
for data communication systems. Powerline noise is one of
the primary impairments for NB PLC systems. Typical noise
sources include electronic devices connected to the supply

Fig. 1. A noise trace captured at a low voltage field site. The noise exhibits
cyclostationary features both in time and frequency domain.

network (e.g. microwave oven, brush motors, light dimmers
and other devices with switching modes) and nonlinear circuits
in switching power supplies and sillicon-controlled rectifiers.
The aggregated noise deviates significantly from the general
assumption of additive white Gaussian noise (AWGN).

Recent study has shown that the dominant component of
the additive noise in NB PLC is so-called synchronous cy-
clostationary noise [1][2][6]. Such noise exhibits periodically
varying statistics, with the period synchronous to half the AC
cycle (Fig. 1). The periodic bursts of noise can reach as high
as 30dB above the noise floor, which lowers the signal-to-
noise ratio (SNR) over a significant portion of the spectrum
during 10–50% of the period. In OFDM-based PLC systems,
the presence of cyclostationary noise dramatically decreases
the achievable data rate, since reliable transmission is limited
to those subcarriers and temporal durations with relatively
good SNR. Therefore, in this work we seek to mitigate
cyclostationary noise by exploiting the noise structure.

Various models have been proposed to characterize the
temporal and spectral structures of cyclostationary noise in NB
PLC. [1] captures the temporal variation of noise power by a
white Gaussian process with periodically evolving variance,
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Fig. 2. An linear periodically time-varying system model for cyclostationary
noise in NB PLC.

i.e. nk ∼ N (0, σ2
k), where σ2

k is a periodic function of
a parametric form. The temporal correlation, or frequency
selective spectrum, of the noise is introduced by passing nk
through a linear time-invariant (LTI) filter, where a constant
spectral shape during the entire period is assumed. In order to
better describe the spectral variation within a period, a more
general noise model based on linear periodically time-varying
(LPTV) systems is proposed in [2] (Fig. 2), and has been
accepted to IEEE P1901.2 standard [6]. The model partitions
each period into M segments. Noise within each segment is
assumed to be a stationary Gaussian process, whose temporal
correlation is defined by an LTI spectral shaping filter. More
specifically, let Si and {h(i)τ } denote the set of discrete time
instances and the filter’s impulse response in the i-th segment
of a period, the cyclostationary noise can be generated from
the AWGN input vk ∼ N (0, 1) by

nk =

M∑
i=1

1k∈Si

∑
τ

h(i)τ vk−τ . (1)

In this paper, we address the problem of cyclostation-
ary noise mitigation in OFDM-based NB PLC systems. To
make the parameter estimation more tractable, we further
parameterize the LTI impulse responses {h(i)τ }Mi=1 by au-
toregressive (AR) filters, and hence the LPTV system by
periodically switching AR process. The switching states and
AR parameters are then estimated from the observed noise
trace by Bayesian learning. Based on the estimated switching
AR model, we develop a pre-filtering method that mitigates
cyclostationary noise by spectral whitening.

II. MODEL PARAMETERIZATION

Injected by nonlinear electrical circuits, cyclostationary
noise in NB PLC is essentially a nonlinear random vibra-
tion that has also been widely observed in mechanical and
biological systems (e.g. rotating motors, brain waves, etc.).
Such vibrations in continuous time are generally modeled
by nonlinear differential equations. In discrete time, various
time series models have been proposed [3][4] to capture
the complex nonlinear behaviors. In particular, nonlinear AR
processes, i.e. AR processes with time-varying coefficients,
have been attractive, since parameter estimation can usually
be transformed into a linear regression problem.

In this section, we propose using a periodically switching
AR process with AWGN input as an approximation to the
cyclostationary noise model in (1). A periodically switching

AR process is an AR process whose coefficients switch among
a set of possible states periodically, i.e.

nk =

R∑
τ=1

a(zk)τ nk−τ + b(zk)vk, vk ∼ N (0, 1) (2)

where zk ∈ {1, 2, · · · ,M} is the perioidic state sequence, and
{a(i)τ , b(i)} are the AR coefficients corresponding to the i-th
state. Compare (2) to (1), we simply approximate the each
of the M LTI filters {h(i)τ }∞τ=−∞ by a linear AR filter with
R + 1 parameters {a(i)τ , b(i)}. The approximation simplifies
parameter estimation from the observed noise trace, since
conditioned on the state sequence, estimation of {a(i)τ , b(i)}
converts to a set of standard linear regression problems. As
demonstrated in our simulation results, the AR approximation
closely matches the noise model in (1).

III. PARAMETER ESTIMATION

Since data transmission in NB PLC is bursty, the receiver
can listen to the cyclostationary noise when the transmitter
is silent. One can identify the switching AR model from
one period (half the AC cycle) of noise samples. The model
identification problem includes estimating the number of states
M , the state sequence {zk}, the filter order R, and the filter
coefficients corresponding to each state. In certain special
cases, the number of states and the state sequence might be
inferable by visually inspecting the spectrogram such as the
one in Fig. 1. In most situations, where visual inspection easily
produces ambiguity, the assumption that the number of states
is known and fixed has to be relaxed.

A Bayesian nonparametric inference framework has been
developed in [5] to estimate switching AR models with
unknown number of states. The inference assumes that the
evolution of the state sequence follows a hidden Markov model
(HMM), which is a valid assumption if only one period of
noise is considered. The HMM is endowed with an infinite
state space and hence defined by an infinite-dimensional
transition probability matrix, i.e.

zk|zk−1 ∼ πzk−1
, (3)

where πi is an infinite-dimensional vector of transition prob-
abilities, whose j-th element is πij = P (zk = j|zk−1 = i).

A sticky hierarchical Dirichlet process (HDP) prior is im-
posed on the set of transition probability measures {Gi}∞i=1.
Gi is a discrete probability measure with an infinite collection
of atoms

Gi =

∞∑
j=1

πijδθj , i = 1, · · · ,∞ (4)

where θj , {a(i)1 , · · · , a(i)R , b(i)} denotes the AR parameters
of state j, and δθ∗ , 1θ=θ∗ . The sticky HDP prior provides a
distribution of the set {Gi}∞i=1. The weights in each Gi, i.e. πi,
are independently sampled via a stick-breaking construction,
denoted by πi ∼ GEM(α+ κ),

πij = βj

j−1∏
l=1

(1− βl), βj ∼ Beta(1, α+ κ). (5)



All Gi’s share the same support {θj}∞j=1, which are drawn
from a global Dirichlet process, i.e.

G0 =

∞∑
j=1

λjδθj (6)

λ =
αω + κδi
α+ κ

(7)

where δi is a vector of all zeros except for a one in its i-
th element, and ω ∼ GEM(γ). {θj}∞j=1 are drawn from a
inverse-Wishart matrix-normal prior

a(j) ∼ MN (M,V,K)

(b(j))2 ∼ IW(n0, S0), (8)

with MN (M,V,K) denoting a matrix-normal distribution
with mean matrix M and left and right covariances K−1 and
V , and IW(n0, S0) an inverse-Wishart prior with n0 degress
of freedom and scale matrix S0.

The HDP is useful in inferring the number of states that are
supported by observations, due to its clustering properties that
encourage sparsity of the vector πi [5]. The sticky parameter
κ ∈ [0, 1] is used to increase the probabilities of self-transitions
over those of inter-state switches.

Given the sticky HDP-HMM prior defined in (4)–(8), a
Gibbs sampler is used to infer the HMM transition proba-
bilities {πi}, the state sequence z1:T , and the AR parameters
{a(i)1 , · · · , a(i)R , b(i)} from the observations n1:T , where T is
the number of samples in half the AC cycle. In particular, the
Gibbs sampler iterates between the following two steps [5]:
• Sampling AR parameters. Conditioned on the state se-

quence z1:T and the observations n1:T , the estimation
of AR parameters can be converted to M different
linear regression problems, where M is the cardinality
of z1:T . Therefore, the AR parameters corresponding
to the M states can be sampled from the posterior
densities P (a(i), b(i)|nSi), which can be derived taking
into account of the MNIW prior.

• Block sampling z1:T . A truncated approximation to the
HDP is used and z1:T is jointly sampled using a variant
of the forward-backward message passing algorithm.

IV. CYCLOSTATIONARY NOISE WHITENING

Upon estimating the periodically switching AR model, two
adaptive filters can be designed and inserted at the OFDM
transmitter and receiver, respectively, to whiten the cyclosta-
tionary noise during data transmission (Fig. 3). For simplicity,
we assume that the data is transmitted through a flat channel.

The filter at the receiver side (RX filter in Fig. 3) is a
periodically switching moving average (MA) noise whitening
filter,

yk = rk −
R∑
τ=1

a(zk)τ rk−i, (9)

where rk denotes the received signal in time domain before
cyclic prefix (CP) removal. Note that rk = sk + nk. The RX
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Fig. 3. An OFDM transmitter and receiver block diagram, with two adaptive
cyclostationary noise mitigation filters.

filter effectively transforms the cyclostationary noise compo-
nent nk in the received signal to an AWGN with time-varying
standard deviation b(zk). On the other hand, the RX filter
introduces unwanted distortion to the transmitted signal sk.
To compensate for this, the same periodically switching AR
filter as in (2) is added at the transmitter side,

sk =

R∑
τ=1

a(zk)τ sk−τ + xk, (10)

where xk is the time domain OFDM signal after CP insertion.
With the additional TX and RX filters, and assuming unit

channel gain, the received signal before CP removal can be
expressed as

yk = xk + b(zk)vk, (11)

where vk is AWGN. The OFDM receiver then continues with
standard detection stages as if only AWGN were present.

V. SIMULATION RESULTS

The application of the proposed methods to OFDM-based
NB PLC systems highly depends on the accuracy of the
estimated switching AR model, which further decomposes
into two sub-problems: how well the switching AR model
can approximate the original LPTV system model, and how
accurately the switching AR model can be inferred by non-
parametric Bayesian learning. The latter problem has been
addressed by the capability of nonparametric Bayesian learn-
ing as demonstrated in [5]. To illustrate the former problem,
we generate multiple periods of cyclostationary noise from
an AWGN sequence using the model in (1) and the spectral
shapes in [2]. A switching AR model is identified from
one period of the noise trace by nonparametric Bayesian
learning, where an order-6 AR filter is employed in all states.
Based on the estimated switching AR model, we synthesize
a cyclostationary noise trace from the same AWGN input
sequence. The synthesized noise is compared to the original
noise in both time domain and frequency domain in Fig. 4
and Fig. 5. The spectral and temporal traces of synthesized
noise samples resemble those of the original noise, showing
the closeness of the estimated switching AR model to the
original LPTV system model. To further illustrate the accuracy
of the estimated switching AR model, we apply the noise
whitening filter, i.e. a filter as in (9), to the original noise. The
Lilliefors test for normality over the whitened noise shows
that it fits a normal distribution at a significance level of 0.01.
Moreover, the autocorrelation of the whitened noise (Fig. 6)



Fig. 4. Cyclostationary noise generated from the LPTV system model.

Fig. 5. Cyclostationary noise synthesized from the switching AR model.

highly concentrates around the origin, indicating the whiteness
of the noise.

To evaluate the performance of the proposed noise whiten-
ing filters, we simulate an OFDM system with 256 subcarriers.
The data are QPSK modulated, and a length-30 cyclic prefix
is added to each OFDM symbol. For simplicity purposes, we
assume a frequency-flat channel, and a trace of cyclostationary
noise generated from the LPTV system model is added to
the transmitted signal. We simulate the conventional OFDM
system and the one with our proposed noise whitening filters.
The performance (in terms of symbol error rate) of both
systems are plotted and compared in Fig. 7, where minimum
SNR is defined as signal to maximum noise power ratio. We
observe that our proposed method outperforms the conven-
tional system at SNRs larger than -3dB. Within this range,
our noise whitening approach is able to achieves up to 3dB
SNR gains. The performance of the proposed noise whitening
filter, however, deteriorates at lower SNRs. In such regimes,
advanced detection algorithms that take into account of the
estimated noise statistics may need to be invoked.
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Fig. 6. Autocorrelation of the whitened noise.
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Fig. 7. Symbol error rate of OFDM systems with/without proposed noise
mitigation method in the presence of cyclostationary noise.

VI. CONCLUSION

This paper proposes a periodically switching AR model for
simplifying the estimation and mitigation of cyclostationary
noise in narrowband powerline communication systems. A
nonparametric Bayesian learning algorithm is applied to esti-
mate the switching AR model from observed noise sequence.
Based on the estimated model, we present a simple adaptive
noise whitening approach that can be immediately integrated
into conventional OFDM systems.
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