
Load Disaggregation Using Harmonic Analysis and
Regularized Optimization

Jerry T. Chiang∗ Tianzhu Zhang∗ Binbin Chen∗ and Yih-Chun Hu†
∗ Advanced Digital Sciences Center, Singapore

E-mail: {jerry.chiang, tz.zhang, binbin.chen}@adsc.com.sg
† University of Illinois at Urbana–Champaign, Urbana, IL, U.S.A.

E-mail: yihchun@illinois.edu

Abstract—In this paper, we present a load disaggregation tech-
nique that uses regularized optimization together with harmonic
frequency signatures of appliances. The benefits of our technique
are twofold: 1) The regularized optimization is faster than integer
programming; and 2) The harmonic frequency signatures allow
us to disaggregate the loads using as few as 10 cycles (equaling as
little as 200 milliseconds) of samples, instead of having to wait for
state changes from appliances or weekly usage pattern to emerge.
We test our proposed technique in proof-of-concept experiments
and show that our technique returns accurate disaggregation
results.

I. INTRODUCTION

With the rising cost and the pollution associated with fossil
fuel, the safety concern of nuclear energy, and the inefficiency
or inaccessibility of renewable energy sources, many govern-
mental and private entities are focusing on reducing energy
consumption in order to avert large-scale energy crisis. The
United States Annual Energy Report estimates that the resi-
dential and commercial sectors (as opposed to the industrial
sector) in the United States together account for over 70%
of the total electricity consumption [1]. The Electric Power
Research Institute further estimates that, if given the activity
data of each household appliance, the residential sector can
reduce its electrical consumption by 12% [2].

While it may be infeasible to install an activity monitor
in each and every one of today’s appliances, a smart-meter
can reliably measure the total (aggregated) consumption of
a household. Prior work has proposed to disaggregate the
consumption measurements to obtain activity data of indi-
vidual appliances [3], [4]: Load disaggregation is the task of
measuring the aggregate power usage of multiple electric loads
(e.g. all appliances in a household) over time, and determining
the usage activity of the individual loads.

Hart describes several possible methods to derive the sig-
nature of each electric load, and subsequently use the load
signatures to identify load activities [3]. In particular, Hart
noted that the amount of real and reactive power consumed
by each appliance in its steady state may differ greatly and
can be used as its signature.
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For example, in their steady states, an incandescent light
bulb and an ice maker both consume around 250 watts of
real power; the prior being a resistive load consumes nearly
0 reactive power while the latter consumes almost 200 volt-
amperes of reactive power. When two electric loads are active,
their power consumptions sum up; i.e. if both the light bulb
and the ice maker are on, they would together consume a total
of 500 watts of real power, and 200 volt-amperes of reactive
power.

By searching all possible subsets of appliances, one can
then determine the subset of appliances that are most likely
active. However, the search space grows exponentially with
the number of appliances, and an exhaustive search over all
subsets is infeasible when many appliances are present. Prior
studies suggest monitoring the power usage over time, and
when there is a change in consumption, since the change
is likely incurred by the state change of few appliances, the
search space can be reduced significantly [3], [4]. While prior
studies demonstrate that identification based on consumption
change is computationally feasible and accurate, it comes at
the expense of having to wait for a state change. If an appliance
is never turned off (e.g. a security camera), we cannot identify
it from the total electricity usage.

Hart notes that an electric load that is not purely resistive
is likely to produce an assortment of harmonic currents; thus
each appliance may have a unique harmonic frequency signa-
ture. In this paper, we explore using the harmonic frequency
signatures of loads for disaggregation without having to wait
for any consumption changes. The central idea of our protocol
is to use regularized optimization to determine the appliance
state vector, a vector whose kth entry is a binary number
indicating the activity state (“on” or “off”) of the kth appliance.

The rest of this paper is organized as follows: Section II
presents our system model and our proposed disaggregation
technique. We evaluate the proposed technique in Section III.
We then provide a collection of related prior studies and
conclude in Section IV and Section V, respectively.

II. PROPOSED DISAGGREGATION TECHNIQUE

A. System Assumptions

We assume there is no phase-shift between any pair of
frequency-domain current measurements. Since a phase-shift



in frequency-domain corresponds to a time-shift in the time-
domain, this assumption is equivalent to assuming that any
pair of time-domain current measurements are aligned in time,
which is a standard assumption in prior disaggregation studies.

We also assume that the voltage is periodic with a period
equaling the inverse of the operating frequency. If the voltage
is aperiodic, then the electric current consumption most likely
would also be aperiodic, and the harmonic current signature
cannot reflect the steady state behavior of an appliance.

B. Definition and Problem Statement
In this section we define the terminologies and symbols used

in this paper. Let N be the set of appliances, and |N | = K. Let
ck(t) be the time-domain electric current measurement of the
kth appliance, and let cK(t) denote the aggregated time-domain
electric current measurement when only the set of appliances
in K ⊆ 2N are on. Without any time-offsets, Kirchoff’s current
law states that: cK(t) =

∑
k∈K ck(t).

Let Ck(f) be the fast Fourier transform (FFT) of ck(t):
Ck(f) = F{ck(t)}. Since the FFT is linear,

CK(f) =
∑
k∈K

Ck(f).

The harmonic signature of an appliance Hk(f) is then
a function of the frequency-domain representation of the
current measurement: Hk(f) = g(Ck(f)). In our paper,
we let g(·) be a sampling function that keeps F samples
(corresponding to frequencies f1, · · · , fF ), and then takes the
real part and concatenated with the imaginary part. The output
of g is a 2F × 1 real vector that takes the form: Hk(f) =
[Re (Ck(f1)| · · · |Ck(fF )) |Im (Ck(f1)| · · · |Ck(fF ))]

T ,
where | represents concatenation.
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Fig. 1. Time-domain and frequency-domain representations of a load’s current
consumption

For example, if the measured time-domain current con-
sumption of an appliance (c(t)) is as shown in Fig. 1(a),
it’s corresponding frequency-domain representation (C(f)) is
shown in Fig. 1(b). Let F = 3, and f1 = 50 Hz, f2 = 150 Hz,
and f3 = 450 Hz, then the signature H(f) equals to:
[65747, 65283, 326, 56140, 46682, 39856]T .

Since g(·), like the FFT, is a linear function,

HK(f) = g(CK(f)) = g

(∑
k∈K

Ck(f)

)
=
∑
k∈K

g(Ck(f)) =
∑
k∈K

Hk(f).

Let Ik∈K be an indicator function that equals to 1 when
the kth load is on, and 0 when it is off. We define a K × 1
appliance state vector S by equating it’s kth element to Ik∈K.
We can then rewrite

HK(f) = [H1(f)|H2(f)| · · · |HK(f)]S.

The goal of disaggregation is then to correctly identify S.

C. Proposed Disaggregation Technique

It is standard to assume the subset of appliances most
likely to be on is the subset of appliances that minimizes the
difference between the measured aggregate electric current
consumption and the sum of the current signatures of the
subset of appliances. For a collection of on-off appliances,
the disaggregation task is thus inherently a binary integer
programming problem [8]:

Find K∗,

which minimizes E =

∥∥∥∥∥cK(t)− ∑
k∈K∗

ck(t)

∥∥∥∥∥ .
However, we would like to avoid integer programming since
its complexity is generally exponential to the number of
appliances aggregated.

We can approximate the solution using linear programming;
however, there is generally not a unique solution, and the
returned result may contain a large number of elements being
neither 0 nor 1. To counter this drawback, we borrow the
concept from sparse optimization and adds a regularizer to our
objective function of the linear program that penalizes every
non-zero element of the result. Depending on the weight of
the penalty, the regularized optimization balances between the
sparsity of the result (i.e. the number of appliances on) and
the error. We then formulate our optimization as:

min λ||Ŝ||1 + ||E||1
subject to HA(f) = [H1(f)|H2(f)| · · · |HK(f)]Ŝ + E

0 ≤ Ŝ ≤ 1,

where Ŝ is our estimate of S, E is the error in estimation,
HA(f) is the harmonic signature of the aggregated measure-
ment (i.e. a corrupted version of HK), and λ is the weight of
the L1 regularizer.

Since the L1-norm regularizer penalizes every non-zero
element of Ŝ, the regularizer penalizes complicated solutions
that uses multiple bases to fit a solution for which one basis
would suffice. The regularizer thus tends to drive the solution
(Ŝ) to the boundary of the solution space. Since in our
formulation, an appliance is either on or off, we restrict the
boundary space to {0, 1}K , and the vertices form the space of
desired solutions. We solve the above optimization problem
using existing solver in the community1 [5].

1http://web.eecs.umich.edu/˜honglak/softwares/nips06-sparsecoding.htm



Fig. 2. Experimental setup including Veris current sensor, Z1 mote, and how
we connect the loads

III. EVALUATION

A. Methodology
As a proof-of-concept, we show how our protocol can be

used to disaggregate appliances. We use a Veris split-core
current sensor to transform the measured electric current into
a voltage potential. We then use a Zolertia Z1 mote to digitize
the voltage reading and send the reading to the computer. The
Z1 mote can only measure positive voltage.

We perform two independent experiments. In the first ex-
periment, we use three appliances that have similar power
consumptions: a lamp, a fan, and a computer monitor. Similar
power consumptions yield signatures that are not likely to
shadow each other, and we expect our protocol to perform
well. We also offset the voltage output of the Veris sensor so
the Z1 mote is able to digitize the entire current waveform. In
the second experiment, we consider a more adverse environ-
ment where one of the three appliances consumes significantly
more power than others, and thus the signature of the powerful
appliance is likely to shadow the signatures of other appli-
ances. We also perform this experiment using only the half-
wave rectified readings. Fig. 2 shows our experimental setup.

For our experiment, we first obtain the harmonic signature
of each appliance by sampling its electric current 750 times at
around 3400 hertz (corresponding to around 220 milliseconds
of data). Fig. 3 and Fig. 4 show the electric current consump-
tions of each appliance in time-domain in the first and second
experiments, respectively.

The time-domain representation is then transformed using
FFT into the frequency-domain representation. We then sam-
ple the current’s frequency representation at multiples of the
electricity operating frequency (in Singapore, the operating
frequency is 50 hertz; in the United States, 60 hertz). We
perform our experiments in Singapore, sampling up to 10
harmonics in the frequency-domain, corresponding to using
the harmonic currents at f1 = 50 Hz, f2 = 100 Hz, · · · , f10 =
500 Hz. Since our sampling rate is at 3400 hertz, we can
easily obtain the tenth harmonic without any aliasing. We let
λ = 105, and perform 20 and 5 rounds of experiments for the
first and second experiments, respectively.

B. Evaluation Results
For the rth round of the ith experiment, we obtain an Ŝi,r,

each entry of which is between 0 and 1 with 0 indicating the

TABLE I
S1 , AVERAGE OF Ŝ1 OVER 20 ROUNDS, AND SUM OF DECISIONS OVER 20

ROUNDS. THE L COLUMN DENOTES WHETHER THE LAMP IS ON; THE F
COLUMN, FAN; AND THE M COLUMN, COMPUTER MONITOR.

L F M E
[

L̂
]

E
[

F̂
]

E
[

M̂
] ∑

ÎL
∑

ÎF
∑

ÎM

0 1 1 0.019 0.799 0.968 0 20 20
1 0 1 0.891 0.030 0.974 20 0 20
1 1 0 0.945 0.749 0.072 20 20 0
1 1 1 0.917 0.831 0.952 20 20 20

TABLE II
S2 , AVERAGE OF Ŝ2 OVER 5 ROUNDS, AND SUM OF DECISIONS OVER 5
ROUNDS. THE H COLUMN DENOTES WHETHER THE HAIR DRYER IS ON;

THE F COLUMN, FAN; AND THE W COLUMN, WATER HEATER.

H F W E
[

Ĥ
]

E
[

F̂
]

E
[

Ŵ
] ∑

ÎH
∑

ÎF
∑

ÎW

0 1 1 0.008 0.974 0.94 0 5 5
1 0 1 1 0 0.958 5 0 5
1 1 0 0.862 1 0 5 5 0
1 1 1 0.98 0.2 0.848 5 1 5

“off” state and 1 indicating the “on” state. An entry that is
close to 1 can be construed as likely to be on, and vice versa.
We average the Ŝi,r over the rounds for each K where |K| > 1
(i.e., more than one appliance is on), and present the results
in Table I and Table II. We also impose the decision rule that
an appliance is “on” if its entry in the state vector is greater
than 0.25.

The disaggregation result of the first experiment is very
accurate. An “off” appliance results in less than 0.08 in the
average disaggregation estimate, and is never determined to
be on. An “on” appliance results in higher than 0.74 in the
average estimate, and is always determined to be on.

In the second experiment, we see that our protocol has
its limitations: Since the water heater consumes a lot more
power than the fan (see Fig. 4), its presence has a significant
impact on the disaggregation performance. In particular, when
all three appliances are on, the average estimated appliance
state of the fan is only 0.2 (state correctly identified only one-
out-of-five times). Besides this setting, all other cells of the
table show that our technique returns accurate disaggregation
results: an “off” appliance results in less than 0.1 in the
average disaggregation estimate, and is never determined to
be on; and an “on” appliance results in 0.8 or higher in the
average estimate and is never determined to be off.

IV. RELATED WORK

The research community has put in significant effort over
the last two decades on load disaggregation.

Hart’s study presents numerous techniques in disaggrega-
tion [3]. Sultanem independently propose similar concepts [4].
Gupta et al. use a Universal Software Radio Platform to show
that an appliance can generate much high-frequency electro-
magnetic interference (between 36 kilohertz to 500 kilohertz)
that can also be used as part of the appliance’s harmonic
frequency signature [6].

Researchers have also sought to disaggregate loads using
transient information. Leeb et al. proposed that when an
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(c) Computer Monitor
Fig. 3. Time-domain representation of each appliance’s electric current consumption in our first experiment
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Fig. 4. Time-domain representation of each appliance’s electric current consumption in our second experiment

appliance switches on, its transient behavior is much different
from its steady state behavior and presents another avenue of
obtaining appliance signatures [7].

High resolution analysis using high resolution aggregate
usage and not relying on appliance state changes promises to
return disaggregation results faster than waiting for load profile
changes. Suzuki et al. uses time-domain per-cycle data as the
basis of formulating an integer programming optimization,
the solution to which is the appliance state vector [8]. Our
proposed technique is different in that our harmonic frequency
signature is significantly smaller in size than the time-domain
data, and our formulation of regularized optimization is able to
further reduce the computation complexity compared to integer
programming.

Some researchers have also adopted novel signal process-
ing techniques for load disaggregation purpose. In particular,
Kolter et al. propose using discriminative sparse coding to
disaggregate loads using week-long time-domain load usage
patterns [9]. Our proposed protocol differs from the work by
Kolter et al. in that we do not try to identify any usage patterns,
and thus we can reach the disaggregation result without having
to collect weeks of aggregation data.

V. CONCLUSION

In this paper, we present a load disaggregation technique
that uses regularized optimization together with harmonic
frequency signatures of appliances. The benefits of our tech-
nique are twofold: 1) The regularized optimization allows
us to perform the optimization faster; and 2) The harmonic
frequency signatures allow us to disaggregate the loads using
as few as 10 cycles (equaling to less than a quarter of a second)

of samples, instead of having to wait for state changes from
appliances or weekly usage pattern to emerge. We test our
proposed technique in a proof-of-concept experiment and show
that our technique returns accurate disaggregation results.
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