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Abstract—We present a new method of predicting the visually
salient locations in an image. The basic idea is to use the sparse
coding coefficients as features and find a way to reconstruct the
sparse features into a saliency map. In the training phase, we
use the images and the corresponding fixation values to train a
feature-based dictionary for sparse coding as well as a fixation-
based dictionary for converting the sparse coefficients into a
saliency map. In the test phase, given a new image, we can
get its sparse coding from the feature-based dictionary and then
estimate the saliency map using the fixation-based dictionary. We
evaluate our results on two datasets with the shuffled AUC score
and show that our method is effective in deriving the saliency
map from sparse coding information.

I. INTRODUCTION

The human visual system can process enormous visual
data instantly. Many computational models try to achieve
such capabilities in different ways. Among various visual
mechanisms the visual saliency is a key component and can
be used as a prior for other components to provide an efficient
approximate solution to more difficult problems. For example,
the information of visual saliency can be used for image
segmentation [6], foreground-background separation [15], ob-
ject detection [5], and image compression [9]. Furthermore,
saliency detection has been applied to image processing tasks
such as content-aware image resizing [2], decolorization [1],
or photo collage [17]. The results of visual saliency detection
can also be employed in designing the layout of advertisement
or filling the missing object parts [18]. Computational saliency
with respect to the human fixation is a central issue for these
applications.

Various algorithms have been presented to produce saliency
maps of images, e.g. [4], [8], [10], [11], [12]. Typically, most
saliency detection methods attempt to find rules for combining
low-level information in an image. They may be based on
the study of the human visual system to figure out the rules.
In addition, some learning-based methods treat the saliency
detection problem as a classification or regression problem, in
which training data are required to learn the mapping from
image features to saliency levels.

Itti et al. [10] propose a bottom-up way to generate saliency
maps. Their method fuses several image features, such as
color, orientation, and intensity, to obtain the resulting saliency
map. The Graph Based Visual Saliency (GBVS) model pro-
posed by Harel et al. [8] is also a bottom-up approach that
uses graph and dissimilarly measure to construct the saliency
model. The idea of “Information Maximization” proposed by
Bruce and Tsotsos [4] is based on the information theory,
which implies that the more common a word appears, the

fewer digits are needed to represent the word. Their method
computes Shannon’s self-information by — log p(x), where z
is the information of an image. We use this idea in our method
to extract color and edge-orientation features.

Learning-based methods usually take the saliency detection
problem as a classification or regression task. For example,
Judd et al. [11] consider various kinds of features, including
high-level features like face detection and horizon-line detec-
tion, as well as low-level features like color and orientation.
The ‘ground-truth’ fixations are treated as labels, and a support
vector machine classification model can be trained to predict if
a location is salient or not according to the high- and low-level
features.

Another possible way to derive the saliency map is applying
graphical models. Yang et al. [19] present a conditional ran-
dom field (CRF) model to describe the relation between the la-
bel (indicating the importance) and the underlying neighboring
pixels. They also use the sparse coding technique to compute
the pre-trained features, and then update the parameters of
the CRF model and the dictionary iteratively. After learning,
they can use the dictionary and the CRF model to generate
the saliency map of a test image. We also use a pre-trained
dictionary to compute the sparse coding of an input image,
and then take the sparse coefficients as features to generate
the saliency map.

The goal of this paper is to study visual saliency and to
find a better way of deriving saliency information. Our method
can be considered a new kind of learning-based method with
a bottom-up procedure. We seek to fuse the sparse coding
coefficients into a saliency map using linear mapping. A major
issue with such an approach is that if we learn the mapping and
the dictionary separately, the dictionary would only correspond
to the image features without taking account of the fixation
information. In our approach, we model the image features
and the fixation information jointly. The dictionary of image
features would be actively updated when a different mapping
from sparse coding to fixation is learned, and the mapping
would also be updated when the sparse coding is changed after
the dictionary being updated. We will demonstrate that training
the image feature dictionary with the fixation information
would achieve better accuracy of saliency prediction.

II. PROBLEM FORMULATION

Given an image, we are interested in predicting the prob-
ability of human fixation at each pixel. We try to find a
general saliency representation so that we can transform
image contents represented by sparse-coding coefficients into



a saliency map. It is well known that natural images can be
sparsely represented by a set of localized and oriented filters.
Recent research in pattern recognition and image processing
has demonstrated that sparse coding is an effective method to
represent an image.

Suppose that a local area in an image is represented as a
vector x consisting of image features. Given a learned dictio-
nary D with n words of the same dimension as vector x, we
may convert the vector x into its sparse-coding representation
a by solving the following ¢;-norm minimization problem:

o’ = arg Hég{;llDa*X|l2+/\l\alll, (1)
where || - ||; denotes the ¢;-norm and ) is a regularization
parameter to decide the sparsity.

In addition to the sparse coding dictionary of image features,
we include the saliency map to formulate a sparse coding
learning problem described in the next section.

III. LEARNING THE SPARSE CODING DICTIONARY

Given an image 1), we extract an m-dimensional feature
vector y( " from an 7 x - pixel patch p§ ) at each pixel location
j in I®). We formulate the following dictionary learning
problem:
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is the sparse coding coefficients of 'y,
corresponding to D and D, f Y is the fixation value of
pixel j in image I, and 1s a parameter to control the
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Since D and D share the same coefficients the o ;> we can
simplify (2) as follows:
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Therefore, we can use existing dictionary learning and sparse
coding algorithms to solve (3). We apply the least angle
regress (LARS) algorithm [7] implemented in the SPArse
Modeling Software (SPAMS) [14] (http://spams-devel.gforge.
inria.fr/) to do the sparse decomposition and generate the
sparse coding o. In practice, we train the dictionaries with
SPAMS toolkit using the sparsity mode considering both ;-
norm and l>-norm of a:
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An overview of the training algorithm is illustrated in Fig. 1.
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IV. COMPUTING LOCAL AND GLOBAL FEATURES

To generate meaningful saliency maps, we consider both
local and global features in our model. Local features char-
acterize the distinctiveness of a patch in comparison with its
neighbors, while global features represent the rarity of a patch
with respect to all patches in the image. We need to normalize
the values of all features before training. The features used in
our method are described as follows.

A. Dense SIFT

SIFT [13] is widely used in computer vision for computing
local features. The SIFT descriptor calculates the statistics of
gradient orientations in a local region. In out model we use the
dense-SIFT program in the VLFeat toolkit [16]. Dense-SIFT
generates SIFT features at a pixel with given window size
and step length. We compute the SIFT features in a 10 x 10
window and sample points with step length equal to 5 pixels.
Since the dimension of original SIFT features is high, we use
PCA to reduced its dimension to speed up the evaluation. We
make the ¢o-norm of the SIFT feature of each patch to be 1 so
that it would not dominate the whole optimization problem.

B. Global Color Distribution

Color histogram is a common feature in visual saliency
research. We propose a global color feature that represents
the color uniqueness of a patch within the whole image. This
idea is inspired by the global saliency score proposed by Borji
and Itti [3]. We quantize the RGB space into bins, and each
pixel is cast into one of the bins according to its color. We
compute the color distribution with respect to the color bins,
and use the color distribution to derive the global color feature
¢§z) of each pixel j in image IV by the following formula:
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where /\fj(l) is the neighborhood of pixel j in image I(¥), and
P(ck) is the likelihood of observing color ¢ in the image
according to the color distribution. In our experiments, we
quantize each channel into 8 levels and thus we have totally
512 bins in the RGB space.

C. Global Gabor Filter Response

The global Gabor filter response is obtained in a similar
way as the global color distribution. We apply the Gabor
filters of different orientations and different scales to each
image. We then quantize the response values of each Gabor
filter and transform them into a probability distribution. With
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Fig. 1. The workflow of dictionary training

the distributions derived from different Gabor filters, we can

generate global Gabor filter response ¢§i) of each pixel j in

image 1():
== 3" Slog Pgl)), ©)
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where g,gi) is the tth Gabor filter response of image I("),

and P(gfili)) is the probability for pixel £ having the Go-
bar filter response g,gl). In our experiments, we use the
Gabor filter toolkit implemented by Petkov and Wieling
(http://matlabserver.cs.rug.nl/) to generate 3-scale filters with

{8, 8,4} orientations.

V. DATASETS

In this work, we use two datasets to evaluate our method.

¢ MIT dataset [11]:
This dataset contains 1,003 images of various sizes. The
images are collected from Flickr and LabelMe, and the
fixation data are obtained from the eye tracking results
of 15 subjects. The dataset is available at http://people.
csail.mit.edu/tjudd/WherePeopleLook/.

o Toronto dataset [4]:
This dataset contains 120 images of a size of 511 x 681
pixels, capturing indoor and outdoor scenes. The fixation
data are collected from 20 subjects. The dataset can be
downloaded from http://www-sop.inria.fr/members/Neil.
Bruce/.

With the two datasets, we are able to train the dictionaries

using one dataset and perform the tests on the other dataset.

The experimental results shown in the following sections are
all obtained under this protocol.

VI. EVALUATION

We use shuffled AUC [20] instead of AUC (Area Under
Curve) [4] to evaluate the performance because the AUC
method would favor central Gaussian bias. The AUC is
calculated by treating the saliency map as a classifier. It takes
the fixations as the positive data and randomly choose the
negative data from the rest areas of the image. By setting
different thresholds to the saliency map, we obtain different
performances of the classifier associated with the saliency
map. The resulting false positive and true positive rates yield
an ROC (Receiver Operating Characteristic) curve, and we
may compute the area under curve as a measure of the overall
quality of the saliency map. Instead of uniformly choosing
negative data from all locations in the image, shuffled AUC
introduces the shuffled map as a source for generating negative
data. The shuffled map is created by piling up all the fixation
maps of the training data except the positive one. (See Fig. 2
for examples of shuffled maps.) The evaluation method is im-
plemented by Borji and Itti [3], and the MATLAB code can be
obtained from https://sites.google.com/site/saliencyevaluation/
evaluation-measures.

A. Predicting Saliency

After we obtain the feature-based dictionary D and the
fixation-based dictionary D, we may use them to predict the
saliency map of a new input image. Given a test image I,
we first extract the features y. We use LARS decomposition
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Fig. 2. The shuffled maps of the two datasets.
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Fig. 3. The workflow of estimating the saliency map of a test image: The
features extracted from the image are transformed into sparse coding by the
dictionary. Then by fusing the sparse coding, we can obtain the predicted
saliency map.

to find the sparse coding coefficients v with respect to the
feature-based dictionary D. With the sparse coding coefficients
o, we can reconstruct the saliency map by multiplying the
pre-trained fixation-based dicttionary D and the sparse coding
coefficients «x to approximate the saliency map. The workflow
of testing is shown in Fig. 3.

B. Features Selection

We include three types of features in our method. In Table I
we show the results of using different feature combinations.
We also compare our method with the approaches of Harel et
al. [8] and Itti et al. [10]. ‘Center’ means taking the simple
Gaussian blob as a saliency map. From the table, we can see
that using only the intensity information (‘Gray Only’) or SIFT
features (‘SIFT Only’) cannot achieve comparable scores to
those generated from the combined features. In addition, our
method achieve higher scores than both the GBVS method
proposed by Harel et al. [8] and the method of Itti et al. [10].

C. Different Weights between Features and Fixation Values

The correlation between features and fixation is controlled
by the parameter 3. We evaluate the effects of changing the
value of 5 and show their corresponding shuffled AUC scores
in Table II.

TABLE 1
SHUFFLED AUC SCORES OF DIFFERENT METHODS AND DIFFERENT
FEATURE COMBINATIONS.

Center | GBVS | Itti ef al. | Gray SIFT Ours
[8] [10] Only Only All
MIT 0.5420 | 0.6582 | 0.6735 0.5746 | 0.5723 | 0.6796
Toronto | 0.5094 | 0.6292 | 0.6557 0.5669 | 0.5730 | 0.6940
TABLE II

THE SHUFFLED AUC SCORES WITH DIFFERENT 3 VALUES.

=1 =5 |B=10|5=23| =46
MIT 0.6235 | n/a n/a n/a n/a
Toronto | 0.6422 | 0.6526 | 0.6233 | 0.6287 | 0.6108
B8=0.005|8=001]8=01|5=025|5=0.5
MIT n/a 0.6796 n/a n/a 0.6706
Toronto | 0.6906 0.6940 0.6913 | 0.6886 0.6898

The results shown in Table II suggest that smaller 5 values
might yield higher shuffled AUC scores. What is interesting is
that if we intuitively consider an equitable training preference
for both feature-based and fixation-based dictionaries, the
weight of fixation should be higher. However, no increase in
the shuffled AUC score is observed when we increase the value
of 5. A possible explanation to this situation is that during the
testing phase we compute the sparse coding coefficients only
from the image features because we do not have the fixation
information during testing. Therefore, emphasizing too much
on fixation during training would result in larger errors on
features, and it would make the feature-based dictionary lose
its generalization power. Fig. 4 shows some examples of the
resulting saliency maps using different 5 values.

D. Comparison: Training Dictionaries Separately

We are also interested in the difference between training the
feature-based dictionary D and the fixation-based dictionary D
separately or jointly. We compare the shuffled AUC scores of
these two methodologies and examine whether our assumption
that training the two dictionaries jointly would be better is
true or not. The comparison is shown in Table III. We can see
that training the dictionaries D and D separately performs
worse than our proposed method in which the dictionaries are
trained jointly. Although the difference is small, the result still
demonstrates that training with image features and fixations



Fig. 4. Two sets of results obtained by setting different 3 values. From top to
bottom in each column: the original image, the ‘ground-truth’ saliency map
derived from the fixation data, the resulting saliency map with 8 = 0.01, the
resulting saliency map with 3 = 1, the resulting saliency map with 8 = 46.

together can preserve more information.

TABLE III .
THE RESULTS OF TRAINING THE DICTIONARIES D AND D JOINTLY OR
SEPARATELY.

Separately trained
0.6790
0.6885

Jointly trained, 8 = 0.5
0.6880
0.6940

MIT
Toronto

VII. DISCUSSIONS

This paper presented a new method of estimating the
saliency map by training dictionaries of image features and
fixations. Through the experiments, we find that our method
performs comparably well as previous saliency detection meth-
ods. Nevertheless, several issues are worth further investiga-
tions. First, the features using in our method are too specific.
Although we have considered different types of features with
global and local properties, there exist some other types of

features that might be useful. For example, the position of
each pixel can be used to indicate if the saliency values are
stronger at some specific areas.

Another issue that we need to address is the run-time of
our program. We use LARS decomposition in the SPAMS
toolkits to train dictionaries and to extract sparse coding
coefficients, and the whole process takes a lot of time to run
through all the images in the dataset. It would take about
one minute to obtain the sparse coding of one image under
our current implementation. We may try to find other efficient
decomposition tools to improve the run-time in the future.

In sum, we have proposed a new learning-based method
for saliency detection and have shown that it achieves good
performance in predicting the location of fixation. Future
research may focus on new feature extraction and sparse
decomposition methods to efficiently and accurately reproduce
the human fixation.
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