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Abstract—The EEG signals recorded during Brain Computer
Interfaces (BCIs) are naturally represented by multi-way arrays
in spatial, temporal, and frequency domains. In order to effec-
tively extract the underlying components from brain activities
which correspond to the specific mental state, we propose the
higher-order PLS approach to find the latent variables related
to the target labels and then make classification based on
latent variables. To this end, the low-dimensional latent space
can be optimized by using the higher-order SVD on a cross-
product tensor, and the latent variables are considered as shared
components between observed data and target output. The EEG
signals recorded under the P300-type affective BCI paradigm
were used to demonstrate the effectiveness of our new approach.

I. INTRODUCTION

Brain computer interfaces (BCIs) are communication sys-

tems that enable subjects to transmit their intention to com-

puters through decoding of brain activity [1], which can be

used to assist patients with severe neuromuscular disabilities.

The P300 event related potential (ERP), evoked in scalp-

recorded electroencephalography (EEG) by external stimuli,

based spelling machine is one of the most successful BCI

paradigm first introduced by Farwell and Donchin [2]. In

addition, a number of variations of P300-based BCI have been

explored such as an apparent motion and color onset paradigm

[3], the checkerboard paradigm [4] and the auditory oddball

ERP [5]–[7]. We have also investigated the three oddball

BCI paradigms utilizing randomly flashed images of objects,

faces and emotional faces [8]. The subjects were requested

to perform three different mental tasks, i.e., visual attention,

face recognition (identification), emotion discrimination, cor-

responding to three types of images. The main objective was to

find the ERP waveforms elicited by oddball faces or emotional

faces stimuli and whether it is feasible to apply face-related

ERPs for BCI paradigm. In contrast to the classical P300-

based BCI, we investigate the multiple ERP components (e.g.,

VPP, N170, N250 and LPP) modulated by several different

stimuli and mental tasks related to face identity and emotion

recognition.

The analysis of single-trial ERP suffers from the superposi-

tion of task-relevant signals by task-unrelated brain activities,

resulting in a low signal-to-noise (SNR) of the observed

single-trial responses [9]. The strengths and inherent pitfalls

of machine learning algorithms for decoding brain states

have been systematically reviewed in [10]. Several classifi-

cation techniques have demonstrated notable performance for

the P300-based BCI, including stepwise linear discriminant

analysis (SWLDA) support vector machines (SVM). Linear

Discriminant Analysis (LDA) using a linear hyperplane to

separate data from two classes under the assumption of normal

distribution is widely used for BCI designs as it has been

shown to be one of the most efficient classifier, especially for

the P300-based BCI [11]. Although the speed and accuracy of

P300 BCIs have been significantly improved by various signal

processing methods [12], [13], the single-trial classification of

P300 ERP remains a challenging problem due to the trial-

to-trial variability. The method of partial least squares (PLS)

[14] has been been found to be a useful dimension reduction

technique as well as principal component analysis (PCA).

The PLS can be considered as penalized canonical correlation

analysis (CCA), with basically a PCA in the X space and a

PCA in the Y space providing the penalties. The widely used

data analysis tool for classification based on the PLS model are

PLSDA [15] or OPLSDA [16], [17], in which the dependent

variable is chosen to represent the class membership. This

technique was successfully applied in analyzing the microarray

data [18] and metabolomics data [19]. The ERP data for the

BCI are characterized by both spatial and temporal variables,

which are often high dimension and naturally represented as a

higher-order tensor. The corresponding tensor decomposition

methods [20], [21] are more suitable for modeling such data.

In this paper, we introduce a higher-order partial least squares

discriminant analysis (HOPLSDA) method, based on multilin-

ear subspace regression, to extract discriminant features from

multi-way arrays (tensor) representation of multichannel ERPs

and to make classification for single-trial ERP recorded under

our new BCI paradigm.

The rest of paper is organized as follows: Section II

describes the experimental paradigm used for affective BCI

and the preprocessing of the brain data. A new multilinear

discriminant analysis method is described in Section III.

The classification performance and results were presented in

Section IV followed by the conclusion of this study.



II. DATA REQUISITION AND PREPROCESSING

A. Experimental setup

The standard stimuli, employed in the classical P300 speller,

are intensifications (”flashing”) of the characters. The subject

attends to the desired character by silently counting the number

of intensification. When the row or column containing the

character lights up it elicits a P300 wave, which can be

detected from the EEG. To investigate whether face-evoked

potential can also be applied in an oddball BCI paradigm,

stimulation (”flashing”) was made by presenting a picture

of face over the symbols instead of simple intensification

of the letters, the subject’s task was to focus only on the

target stimulus from a stimuli sequence. For each target, two

sequences of stimuli were presented, where each sequence

contained a random series of of nine stimuli (one for each

symbol).

We collected data under three experimental conditions and

three types of pictures, i.e. objects, faces, emotional faces,

served as stimuli, respectively. In condition 1, the subjects

were asked to focus on the target item and count the number

of flashing, instead of highlighting the target arrow, the im-

ages from objects group were shown randomly at each of 9

positions; In condition 2, the images from faces group were

utilized for flashed targets and the subjects were asked to

perform the face recognition tasks when the desired target is

flashed; In condition 3, the images from emotional faces group

were presented as flashed targets and the subjects were asked

to perform emotion discrimination tasks whenever the desired

target is flashed.

B. Preprocessing

We first filtered the signal between 0.1 and 20 Hz and then

extracted the epochs corresponding to each stimulus. To avoid

phase shifts the filter was applied both forward and backward

in time. To ensure a reliable artifact rejection, these epochs

were baseline corrected, after which all trials containing am-

plitudes exceeding +/ − 75μV were removed. The baseline

correction is performed by subtracting the average amplitude

during pre-stimulus interval from the whole epoch.

If we denote each EEG epoch by X ∈ RJ×K with J
channels and K time samples, the dimensionality of the input

data amounts to J × K(e.g., 16 × 256), while the number

of training samples (epochs) is typically rather small, up to

a few hundred samples. Moreover, EEG is contaminated by

various sources of the artifacts or interfering noise, while

task relevant discriminative information is often concentrated

in a low dimensional subspace. Consequently, to avoid the

overfitting of classifier, the dimensionality of the data needs

to be significantly reduced, and informative features have to

be extracted.

III. HIGHER ORDER PARTIAL LEAST SQUARES

DISCRIMINANT ANALYSIS (HOPLSDA)

The features of EEG epoches are typically derived from

spatial, spectral, and temporal domains of raw EEG signals,

while the most classical classifiers are based on 2D matrices

with one dimension of samples and another dimension of

feature vectors. Thus, the features from multi-domains have

to be concatenated, as a result the dimensionality of features

becomes extremely high and spatial structure information has

been destroyed. Therefore, we use multi-way arrays (tensors)

to represent EEG data and apply multilinear discriminant

analysis in tensor space for classification.

The multilinear regression model, termed higher-order par-

tial least squares (HOPLS), operates by modeling independent

data X with a special MSVD (i.e., rank-(1, L2, . . . , LN )

decomposition) while dependent data Y is modeled with rank-

one decomposition. This allows us to find the optimal subspace

approximation of X, in which the independent and dependent

variables share a common set of latent vectors on one specific

mode (i.e., samples mode). For the three-way independent

variables X ∈ RI×J×K and a dependent variable Y ∈ RI×M ,

with the same sample size I , we have

X =
R∑

r=1

Gr ×1 tr ×2 Pr ×3 Qr +ER, (1)

Y =

R∑
r=1

drrtrc
T
r + FR, (2)

where R is the number of latent vectors, tr ∈ RI is the rth

latent vector, Pr ∈ RJ×L2(J � L2),Qr ∈ RK×L3(K � L3)
are loading matrices corresponding to the latent vector tr in

mode-2 and mode-3 respectively. Tensors Gr ∈ R1×L2×L3

are core tensors describing the interaction level between each

latent vector and a set of loading vectors on each mode.

If we define Z = X ×1 Y, the parameters P,Q, c can be

learned by maximizing the objective function

max
c,P,Q

‖Z×1 c
T ×2 P

T ×3 Q
T ‖2,

s. t. PTP = IL2
,QTQ = IL3

and ‖c‖ = 1, (3)

indicating that instead of decomposing X directly, we may

opt to find a rank-(1, L2, L3) tensor decomposition of Z by

keeping only one component in the first mode, and the L2

and L3 components in the other two modes.

Since MSVD is performed by looking for orthogonal co-

ordinate transformations of RI1 , RI2 , . . . , RIN that induce a

particular representation of the higher order tensor [22], the

optimization problem in (3) can be solved by using MSVD on

the N th-order tensor Z. After estimating all the factors P,Q
and c, the core tensor G ∈ R1×L2×L3 with mode-1 size of 1

can be computed as

G = Z×1 c
T ×2 P

T ×3 Q
T . (4)

The latent vector t can be estimated in the least squares sense,

yielding the best approximation of X with given factors P,Q
and core tensor G. Then, upon defining G+

(1) ∈ RL2L3×1

as the Moore-Penrose pseudo-inverse of G(1), the normalized

latent vector t can be calculated as

t = (X×2 P
T ×3 Q

T )(1)H
+
(1), t = t/‖t‖. (5)



The above described procedure finds the first set of pa-

rameters (i.e., r=1) of Pr,Qr and cr which extract the first

common latent vectors of tr. The same procedure can be

carried out repeatedly after deflation of both X and Y until

the appropriate number of components is obtained.

Let X ∈ RI×J×K denotes EEG data with I epochs, J
channels and K time samples, Y ∈ RI×M denote dummy

variables describing group membership of corresponding EEG

epochs M classes. The coding of dummy matrix is represented

as

yim =

{
1, Xi ∈ classm;
0, otherwise.

(6)

Since our goal is to perform dimension reduction and extract

the discriminant features from the higher-order tensor X
according to the class information encoded in Y, HOPLS can

be applied to model such data and extract the common latent

variables T which explains variance of X and Y as much as

possible. In other words, T is considered as the underlying

features in a new tensor subspace, spanned by a set of loading

matrices P,Q, which have the maximum covariance with

the corresponding class labels. Therefore, the latent variables

are the most discriminant features for classification and the

number of latent variables is much smaller than the number

of original features in tensor X. Since HOPLS is specially

suited to deal with a much larger number of variables than

observations and with multicollinearity, which are two of

main problems encountered when analysing ERP data, it is

reasonable to expect that HOPLS should perform well for

discriminant analysis.

IV. RESULTS

Typically the ERP classification has been performed sepa-

rately in the temporal and spatial domain, for instance, classi-

fication on temporal features is to determine which channels

contribute most to the discrimination task, and classification

on spatial features demonstrates which time intervals are most

important. This investigation provides a way to interpret the

spatio-temporal patterns of EEG exploited by the classifier.

Actually, the spatio-temporal features of ERP are concate-

nated for classification resulting in the problem of much

larger variables than samples and difficulties of interpretation

of discriminative patterns in spatial and temporal domains.

Therefore, in this study, HOPLSDA was applied to extract the

most discriminant features based on tensor subspace regression

model followed by classification on relatively small number of

latent features.

As the P300-based BCIs are actually based on the binary

classification of epochs, i.e. target vs. non-target, each epoch

corresponding to the flash of one specific symbol. The epoch

corresponding to the largest classification confidence is con-

sidered as online output of BCI. Therefore, for offline analysis,

we investigated binary classification based on epochs and

evaluated the performance using 5×5-fold cross validation.

Since the number of training samples for target and non-target

are unbalanced, the true positive rate (TPR or sensitivity), false

positive rate (FPR) and true negative rate (TNR or specificity)

provide better evaluation than classification accuracy.
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Fig. 1. 5×5-fold cross-validation performance of HOPLSDA, PLSDA and
PCA with varying number of the latent components

To investigated the discriminant ability of our proposed

HOPLSDA, PLSDA and PCA were also employed for feature

extraction or dimension reduction followed by LDA/SVM

classifier. There are several tuning parameters in HOPLSDA,

which need to learn from the training data, such as number

of latent components and number of loadings in spatial and

temporal mode. Fig. 1 depicts the offline performance of

HOPLSDA, PLSDA, and PCA with varying number of latent

components, illustrating the superiority of HOPLSDA with

respect to discriminant ability as compared to PLSDA and

PCA. The optimal number of latent components are 33 for

HOPLSDA, 17 for PLSDA and 43 for PCA. The optimal

loading number for HOPLSDA is L2 = 4 in the spatial mode

and L3 = 2 in the temporal mode. The data distribution in

the latent variable space, i.e. feature space, are shown in fig.

2. Observe that HOPLSDA is able to find the new tensor

subspace providing the most discriminant features not only for

training data but also for test data. PLSDA also performed well

on the training data but lack of generalization ability on the

test data, which might related to the overfitting problem due

to the small samples-to-feature ratios. It is also interesting that

the direction for minimum within-class covariance is almost

same with the direction for maximum inter-class covariance,

illustrating clearly the power of HOPLS for discriminant

analysis.

Another promising property of HOPLSDA is the meaningful

interpretation of discriminant patterns with regard to spatial

and temporal domains. According to Eq. (1) in HOPLSDA,

Pr and Qr represents the discriminant patterns corresponding

to the rth latent component in spatial and temporal domains,

respectively, providing the plausible neurophysiology inter-

pretation. Fig. 3 shows the spatial and temporal discriminant

patterns with regard to the first latent component. Since Tucker

model is employed in HOPLSDA, the optimal number of

spatial loadings is (L2 = 4) and the number of temporal

loadings (L3 = 2). It is clear that ERP components (e.g.

VPP, N170, N250, LPP) were separated in temporal domains.

For instance, the temporal loading of object stimuli illustrates
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Fig. 2. The feature distribution in latent variables space for HOPLSDA, PLSDA, and PCA. Observe that HOPLSDA provided the most discriminant features
either on training data or on test data, followed by PLSDA which performed well on training data but lack of generalization ability. Both HOPLS and PLSDA
outperformed PCA with respect to discriminant ability.

the most discriminant ability of LPP at 400-800ms and P300

at 200-400ms; the temporal patterns of face stimuli mostly

lies in N170 and N250. For affective face stimuli, it is quite

clear that LPP at 400-800ms is the most important feature,

N170 and P300 also make contribute for classification. The

similar spatial patterns under these three experimental condi-

tions were observed, including centro-parietal and occipitio-

temporal region. These results implies that multiple ERP

components are modulated to some extend by the specific

mental task. ERP components related to visual processing and

emotion processing have been used together, proving the best

classification performance, in the proposed affective paradigm.

V. CONCLUSIONS

In summary, a new tensor-based HOPLS method was ap-

plied for discriminative analysis of ERPs evoked from the

affective BCI paradigm. The proposed approach can not on-

ly extract low-dimensional features by collaborative spatio-

temporal multilinear transformation, but also provides us

meaningful interpretation for the spatial and temporal patterns.

The classification performance illustrated the superiority of

proposed feature extraction framework and further demonstrat-

ed the effectiveness of our affective BCI.
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