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Abstract— This paper proposes a novel data hiding method 
for authenticating binary images through establishing dense 
edge adaptive grids (EAG) for invariantly selecting good data 
carrying pixel locations (DCPL). Our method employs dynamic 
system structure with carefully designed local content adaptive 
processes (CAP) to iteratively trace new contour segments and to 
search for new DCPLs. By maintaining and updating a location 
status map, we re-design the fundamental content adaptive 
switch and a protection mechanism is proposed to preserve the 
local CAPs’ contexts as well as their corresponding outcomes. 
Different from existing contour-based methods, our method 
addresses a key interference issue and has unprecedentedly 
demonstrated to invariantly select a same sequence of DCPLs for 
an arbitrary binary host image and its marked versions for our 
contour-tracing based hiding method. Comparison also shows 
that our method achieves better trade-off between large capacity 
and good perceptional quality as compared with several prior 
works for representative binary text and cartoon images.  

I. INTRODUCTION 

Data hiding is the art of concealing a secret message into an 
innocent-looking host media by incurring the least 
perceptional distortion. With fast proliferation of digital 
multimedia, numerous data hiding schemes have been 
proposed for various media entities including images [1, 3-15], 
audio [1], video [1] and electronic inks [2].  

This paper discusses data hiding for authenticating binary 
images. A binary image requires only 1 bit per pixel as 
compared 24 bits per color pixel. The small storage 
requirement makes binary images ideal for digitizing, 
processing, transmitting and archiving large amount of daily 
documents whose contents are typically black and white in 
nature. As digital images can be easily altered electronically 
nowadays with no visible traces left, a security concern arises 
on how to verify their integrity and how to detect malicious 
tampering on all types of images including binary images. 

Several early works [8-9, 11-14] have described similar 
hybrid authentication systems by integrating data hiding and 
public-key cryptographic techniques. The idea is to divide a 
host image into two regions: the quasi-image region R1 and a 
region R2 of scattered embeddable locations using a data 
hiding technique as shown in Fig. 1. A cryptographic image 
hash computed based on the region R1 (sometimes together 
with certain user payload data, e.g. a logo) is embedded by 
modifying the R2 region to generate the secure marked image. 

The marked image visually resembles the host image with 
little noticeable distortions. Upon verification, the marked 
image is re-divided into the identical R1 and R2 regions. The 
secret message is then extracted from R2, decrypted and 
compared with re-computed image hash on R1 for image 
integrity verification or alteration localization. Compared with 
several other authentication schemes, e.g. [4], the hybrid 
scheme is advantageous for its high level of security, which is 
assured by the modern cryptography. However, a remarkable 
challenge to realize the hybrid authentication system for 
binary images lies in the data hiding technique, i.e. how to 
invariantly locate a large number of good data carrying pixel 
locations (DCPL) in the R2 region and, at the same time, 
ensuring the least visual discrepancies on the marked images. 
This paper addresses this challenge by proposing a new edge-
based data hiding framework, which is demonstrated to select 
more the best-quality embeddable locations corresponding to 
-shape patterns than the conventional pattern-based methods. 

Moreover as a contour-tracing based method, our embedding 
and extraction processes are robust to edge noises and are 
applicable to secure arbitrary binary host images.  

Among the existing binary data hiding methods, Low et al. 
[3] manipulated the space between lines and words for 
copyright protection on binary text images. Mei et al. [10] 
matched 100 pairs of 5-pixel long interchangeable contour 
patterns to hide data in text images. Wu and Liu [4] ranked 
the priority for flipping each pixel by measuring its 
“flippability” score based on smoothness and connectivity 
criterion in 33 patterns. Random shuffling was suggested to 
evenly redistribute the flippable pixels and to enhance the 
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Figure 1.  Block diagram of the embedding (a) and extraction (b) 



security. By dividing the shuffled image into blocks, each 
block embeds a secret bit by enforcing its odd/even feature of 
the block. Similarly, Pan et al. [5] selected the 44 
embeddable superblocks, each for hiding a secret bit, by 
analyzing patterns of their 33 sub-blocks. Tseng et al. [6] 
proposed a matrix embedding based stegnographic scheme, 
which achieves large capacity at the expense of relatively 
poor visual quality on the flipped pixels. Yang and Kot [8] 
suggested three connectivity preserving criteria for selecting 
good embeddable blocks. Various block division schemes 
including the different block sizes, interlacing or non-
interlacing were investigated. In [9], Yang et al. further used 
interlaced morphological wavelet transform for tracking the 
shifted edges. Based on 22 blocks, double processing and 
orthogonal embedding techniques are employed to yield large 
hiding capacity without substantially degrading visual quality 
of marked images as compared with [8]. 

In this paper, we propose a pixel-wise data hiding method 
for the hybrid authentication system. As shown Fig. 1, its core 
engine invariantly selects a large number of good DCPLs in 
both embedding and extraction. This is achieved through 
establishing dense edge-adaptive grid (EAG) along the object 
contours, i.e. through tracing 3-pixel long contour segments. 
Our study shows that the EAG more efficiently selects the 
good DCPLs associated with the best rated “-shape” patterns 

[4, 8, 15] than several existing block-based methods [4, 5, 8]. 
It is worthwhile to note that our proposal uniquely addresses a 
key challenge that the embedding changes can easily interfere 

with the local content adaptive processes (CAP) and result in 
errors in re-discovering the DCPLs and errors in the 
extraction. Using our redesigned content adaptive switches 
and a novel protection mechanism with carefully designed 
CAPs, comparison shows our method works well for arbitrary 
binary images with a good trade-off between capacity and 
perceptional quality. 

II. PROPOSED ALGORITHM 

Fig. 2 shows the flow graph of the core engine, consisting 
of three main components, a contour tracer, content-adaptive 
processes (CAP) and a protector. Contour tracer traverses the 
entire image to establish the EAG, i.e. to search for new 
contour starting locations and to trace a new contour segment 
(CS) iteratively. Three CAPs are designed to make local 
content-adaptive processing, where CAP 1 and CAP 2 are 
associated with the contour tracer and CAP 3 determines the 
embeddability of a current processing CS. The protector 
protects the context of a CAP for preserving the same 
outcomes being achieved in the marked image. 

A. Contour Tracer and CAPs 

As detailed in Fig. 2, during the initialization, we initialize 
an accessorial status map for all locations and a stack. The 
location status map is used to keep track of the current 
processing statuses while searching for new DCPLs. Initially, 
we set the status for each location as “0” indicating that the 
pixel has not been processed and is in an “unprotected” status. 

 

Figure 2. Flow graph of our selection engine for Data Carrying Pixel Locations (DCPL), where the content adaptive processing (CAP) blocks are highlighted 
with bold lines 

 
Figure 3. Chain code definition [16] 

Figure 4. Two pairs of interchangeable contour segment patterns (CSP). 
CSPs that differ by rotation and tracing direction are not shown 



The stack is used to keep track of the context to be protected 
due to the CAPs. We initialize an empty stack.  

After initialization, our contour tracer starts with scanning 
for a starting contour pixel in a pre-defined sequence. For 
each pixel, CAP 1 is applied to check its validity of being a 
starting contour pixel with three possible outcomes T{0,+1,-
1}, where “0”, “+1” and “-1” indicates “not valid”, “valid 
with counter clockwise (CCW) tracing” and “valid with 
clockwise (CW) tracing”, respectively. We use the radio 
sweep tracing algorithm and only a black pixel location from 
which, a second contour pixel in its 33 neighborhood can be 
traced based on CCW or CW, is determined as a valid contour 
pixel. Once such a pixel is found, we temporarily suspend the 
scanning at this pixel location L and use CAP 2 (radio sweep 
algorithm) to trace a new contour segment originated from L. 
Using a fixed-length segmentation, once three consecutive 
black pixels are traced, we output them as one current 
processing contour segment (CPCS). This CPCS can be 
represented as  = {d0, d1, t, S}, where d0, d1 {0, 1, …, 7} 
denote the transitions, in terms of chain codes (Fig. 3), from 
the first contour pixel to the second, and from the second to 
the third, respectively. t {+1,-1} denotes either CCW or CW 
tracing direction and S is the ending pixel location of . For 
each CPCS, we apply CAP 3 to determine its embeddability, 
where an embeddable CPCS contributes one DCPL. Our CAP 
3 requires an embeddable CPCS to belong to one of the four 
pattern types in Fig. 4, with the following equation 

 1 2 mod8 1 or 7d d    (1) 

being satisfied. Also, flipping the embeddable pixel (as 
highlighted with dotted circles in Fig. 4) would not violate our 
protector’s rules (see Sec. 2.3) and cause its dual CPCS not 
traceable using the same contour tracing algorithm. 

After the CPCS is processed, our contour tracer moves to 
its ending location and starts there tracing a new contour 
segment. This process iterates until the current contour ends. 
At this moment, the previously suspended scanning is 
restarted from the next scanning location to search for new 
contour starting pixel locations and new contour segments. 
The entire process ends either when the required number of 
DCPLs is recorded or when the entire input image is scanned. 

B. Design of CAP Switch 

One key challenge for contour-based binary data hiding is 
that contour tracing involves tremendous amount of local 

content-dependant processing. Outcomes of these processes 
depend on image content and can be easily interfered by the 
embedding changes so that the sequence of DCPLs selected 
from a host image in the embedding cannot be rediscovered 
exactly in its marked version, particularly for binary host 
images with noises present near the edge pixels. This can 
cause undesired extraction errors and failures of the hybrid 
authentication. Current contour-based hiding methods, e.g. the 
work in [10], demands relatively clean object contour of the 
text and may not work for practical binary images, whose 
edges or part of the image region is mixed with substantial 
amount of noises. 

To address this challenge, we observe that each CAP 
process is actually comprised of many similar fundamental 
CAP switches. As shown in Fig. 5(a), this switch checks 
whether p (the current pixel value at the location L of the 
input image) is unequal to a target value x with two different 
output paths corresponding to Yes and No. This CAP switch is 
the most fundamental and it can be shown that other more 
complex switch can be implemented as a combination of this 
basic type of switch. We have redesigned this CAP switch as 
shown in Fig. 5 (b). The new switch first checks whether the 
current status a of location L is equal to 2 (being quarantined). 
If yes, regardless of the actual p, b is assigned as 0 (black 
pixel) for the subsequent comparison with x. Otherwise, b is 
assigned the actual value of p for the comparison. In the later 
case, we also record (L, 1) into the protector’s stack, for 
updating location L to a target status of 1 at a later time. The 
redesigned switch allows us quarantining a newly selected 
DCPL by CAP 3 so that change of its current pixel value does 
not affect other local CAPs. Also, it protects the context of 
this CAP switch, i.e. the location whose pixel value has been 
checked for making a flow-control decision.  

C. Protector 

We design a protector to preserve all previous CAPs’ 
context and to facilitate the processing efficiency. As 
mentioned earlier, this is achieved by keeping track of an 
accessorial status map for all locations and a stack. For each 
location L, we define three possible statues A(L){0, 1, 2}. 
Locations with Status 0 are currently unprotected and all pixel 
locations are assigned as “unprotected” during the 
initialization (Fig. 2). Locations with Status 1 are currently 
protected; therefore, they are not allowed to be selected as 
new DCPLs to incur possible embedding changes in the 
future processing. But we still allow them being traced as new 
contour pixels. Locations with Status 2 are currently 

 
(a) (b)

Figure 5. A content adaptive processing (CAP) unit in (a) and our re-design in (b) for protecting each CP unit from being affected by the embedding changes,
where p{0,1} is the pixel’s value at location L of the input image, a is current status of the pixel and b is temporary variable 



quarantined meaning these locations can be neither selected as 
a new DCPL nor traced as a new contour pixel. The locations 
subject to possible future pixel changes, e.g. a newly selected 
DCPL, shall be assigned to a “quarantined” status. We use the 
stack to dynamically keep track of the context of a CAP and 
their targeted protection statuses. An empty stack is initialized 
at the beginning. 

In the two “Protection” blocks in Fig. 2, the accumulated 
records in the stack (due to our switch design in Fig. 5(b) and 
due to the DCPL selection by CAP 3 in Fig. 2.) are read out. 
For each record (Location: L, Targeted status: n) in the stack, 

we perform a status update by setting ( ) max( , ( ))A L n A L


, 

where ( )A L


 is the status of L before this update. Note that  

( ) ( )A L A L


is always satisfied implying that status of a 

location cannot be lowered. We empty the stack after each 
“protection” block for the subsequent CAP.  

In Fig. 2, protection is performed immediately after a CAP 
to ensure that no DCPL will be selected from its context in the 
subsequent processing because only an unprotected location, 
i.e. with a status 0, can be selected as a new DCPL according 
to our aforementioned CAP 3. This ensures that each CAP 
can be performed invariantly in the extraction with the same 
outcome. 

III. EXPERIMENTAL RESULTS 

To validate the invariance of our EAG in selecting the 
DPCLs for arbitrary host images and their marked versions, 
we synthetically generated 100 binary images of 512512 
containing random noises. Fig. 6 shows a cropped portion of 
such noise image. From the image, we can see that there 
exists no dominant object contour and the interference 
between nearby contours are significant. Using each of the 
100 images as a host image, we discover its DCPLs with our 
engine in Fig. 2 and embed random secret message of about 
4800 bits by enforcing the DCPLs’ pixel values to be same as 
the secret bits. We then re-identify the DPCLs from the 
marked image and extract the secret message. Through 
comparison, we find that for all 100 cases, a same sequence of 

DCPLs is re-selected from the marked image as those from its 
host image to have correct extraction of the secret message. 
Our successful embedding and extraction for these extremely 
noisy binary host images with no clear object contours also 
show that our design ensures the embedding changes do not 
affect our re-discovery of the same sequence of DCPLs in the 
extraction. To the best of our knowledge, this is the first 
demonstration that our contour-tracing based data hiding 
method can work on such extremely noisy binary host images. 
Though practically we do not perform data hiding on such 
images with no meaningful visual information, the 
experimental outcomes suggest that our proposed method 
would work well for all types of contours and our 
embedding/extraction mechanism would not be affected by 
the interfering noises. 

We have successfully tested our data hiding method over 
hundreds of practical bi-level images. A subset of about 200 
such images is shared at https://sites.google.com/site/sstarcao/. 
Table 1 shows a comparison with several other relevant data 
hiding methods using three representative images, i.e. Chinese 
text, English text and Cartoon host images. All these methods 
can be applied to the hybrid authentication. The results show 
that our method achieves the least perceptional distortion per 
flipping measured in Edge Line Segment Similarity (ELSS) 
[15] since our method selects mostly the best rated hiding 
locations, i.e. centers of -shape patterns [4, 8, 15], as 

illustrated in Fig. 4. Note that we choose the ELSS/per 
flipping to measure the visual quality because the marked 
images using different hiding algorithms have been embedded 
with different amount of secret bits with different number of 
alterations. Though Yang’s interlaced 44 block method 
(IB4), i.e. state-of-the-art block-based method, has 
comparable capacity with ours for generic data hiding, it 
experiences an average drop of 25.7% in capacity when used 
for hybrid authentication, as some embeddable locations must 
be deselected to avoid parity attacks [9]. Also our average 
ELSS distortion per flipping is 30% lower than IB4. Another 
contour-based method, Mei et al. [10], achieves comparable 
low ELSS distortion per flipping as ours, but their hiding 
capacity is only 54% of our achieved capacity. From the 
results, we can see that our method has achieved better trade-
off between the large hiding capacity and good visual quality. 

The processing of our proposed algorithm is fairly efficient. 
For a full-capacity embedding case, our algorithm takes MN 
operations to scan through the entire host image in one pass, 
where M and N denote the number of rows and columns in the 
host image, respectively. The basic contour tracing operation 
will be performed for about B times, where B denotes the 
number of black boundary pixels. In our current 
implementation in C++, it takes only about 3.510-2 second to 
complete embedding 4060 bits in a French Text image of 
512512 pixels with a common 2.53-GHz Duo CPU. For an 
A4-Page of binary “English text” image scanned in 300 dot 
per inch (DPI) with a size of 24793507, our algorithm takes 
about 0.36 second to embed 30391 secret bits. These suggest 
that our algorithm is efficient for practical use. 

Figure 6. An image of random noises. The image is enlarged so that each 
pixel can be seen clearly. 



IV. CONCLUSION 

In this paper, we proposed to establish dense edge-adaptive 
grid to efficiently select good data carrying pixel locations 
(DCPL). Through designing a novel protection scheme with 
our carefully re-designed content-adaptive process (CAP) 
switch, our dynamic system addressed an interference issue 
between the embedding changes and the CAP outcomes. 
Experimentally, we demonstrated that our contour-based 
method invariantly selected the DCPLs from arbitrary binary 
host images, e.g. random noise images, and their marked 
versions. Our method well fits the region-separation 
requirement for state-of-the-art hybrid authentication systems. 
For such hybrid authentication, our method offered 25.7% 
capacity improvement and 30.0% reduction of the distortion 
over the existing interlaced 4×4 block (IB4) scheme. 
Therefore, our method achieved a better trade-off between 
large data hiding capacity and good perceptional quality than 
the prior binary data hiding schemes. 

Along this avenue, our future work will prove that the 
proposed algorithm and framework invariantly selects DPCLs 
from arbitrary binary host images. 
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