
EAG: Edge Adaptive Grid Data Hiding for Binary
Image Authentication

Hong Cao† and Alex C. Kot*
†Institute for Infocomm Research, A*STAR, Singapore

E-mail: hcao@i2r.a-star.edu.sg Tel: +65-64082157
*Nanyang Technological University, Singapore
E-mail: eackot@ntu.edu.sg Tel: +65-67904946

Abstract— This paper proposes a novel data hiding method
for authenticating binary images through establishing dense
edge adaptive grids (EAG) for invariantly selecting good data
carrying pixel locations (DCPL). Our method employs dynamic
system structure with carefully designed local content adaptive
processes (CAP) to iteratively trace new contour segments and to
search for new DCPLs. By maintaining and updating a location
status map, we re-design the fundamental content adaptive
switch and a protection mechanism is proposed to preserve the
local CAPs’ contexts as well as their corresponding outcomes.
Different from existing contour-based methods, our method
addresses a key interference issue and has unprecedentedly
demonstrated to invariantly select a same sequence of DCPLs for
an arbitrary binary host image and its marked versions for our
contour-tracing based hiding method. Comparison also shows
that our method achieves better trade-off between large capacity
and good perceptional quality as compared with several prior
works for representative binary text and cartoon images.

I. INTRODUCTION

Data hiding is the art of concealing a secret message into an
innocent-looking host media by incurring the least
perceptional distortion. With fast proliferation of digital
multimedia, numerous data hiding schemes have been
proposed for various media entities including images [1, 3-15],
audio [1], video [1] and electronic inks [2].

This paper discusses data hiding for authenticating binary
images. A binary image requires only 1 bit per pixel as
compared 24 bits per color pixel. The small storage
requirement makes binary images ideal for digitizing,
processing, transmitting and archiving large amount of daily
documents whose contents are typically black and white in
nature. As digital images can be easily altered electronically
nowadays with no visible traces left, a security concern arises
on how to verify their integrity and how to detect malicious
tampering on all types of images including binary images.

Several early works [8-9, 11-14] have described similar
hybrid authentication systems by integrating data hiding and
public-key cryptographic techniques. The idea is to divide a
host image into two regions: the quasi-image region R1 and a
region R2 of scattered embeddable locations using a data
hiding technique as shown in Fig. 1. A cryptographic image
hash computed based on the region R1 (sometimes together
with certain user payload data, e.g. a logo) is embedded by
modifying the R2 region to generate the secure marked image.

The marked image visually resembles the host image with
little noticeable distortions. Upon verification, the marked
image is re-divided into the identical R1 and R2 regions. The
secret message is then extracted from R2, decrypted and
compared with re-computed image hash on R1 for image
integrity verification or alteration localization. Compared with
several other authentication schemes, e.g. [4], the hybrid
scheme is advantageous for its high level of security, which is
assured by the modern cryptography. However, a remarkable
challenge to realize the hybrid authentication system for
binary images lies in the data hiding technique, i.e. how to
invariantly locate a large number of good data carrying pixel
locations (DCPL) in the R2 region and, at the same time,
ensuring the least visual discrepancies on the marked images.
This paper addresses this challenge by proposing a new edge-
based data hiding framework, which is demonstrated to select
more the best-quality embeddable locations corresponding to
-shape patterns than the conventional pattern-based methods.

Moreover as a contour-tracing based method, our embedding
and extraction processes are robust to edge noises and are
applicable to secure arbitrary binary host images.

Among the existing binary data hiding methods, Low et al.
[3] manipulated the space between lines and words for
copyright protection on binary text images. Mei et al. [10]
matched 100 pairs of 5-pixel long interchangeable contour
patterns to hide data in text images. Wu and Liu [4] ranked
the priority for flipping each pixel by measuring its
“flippability” score based on smoothness and connectivity
criterion in 33 patterns. Random shuffling was suggested to
evenly redistribute the flippable pixels and to enhance the

(a)

(b)

Figure 1. Block diagram of the embedding (a) and extraction (b)

security. By dividing the shuffled image into blocks, each
block embeds a secret bit by enforcing its odd/even feature of
the block. Similarly, Pan et al. [5] selected the 44
embeddable superblocks, each for hiding a secret bit, by
analyzing patterns of their 33 sub-blocks. Tseng et al. [6]
proposed a matrix embedding based stegnographic scheme,
which achieves large capacity at the expense of relatively
poor visual quality on the flipped pixels. Yang and Kot [8]
suggested three connectivity preserving criteria for selecting
good embeddable blocks. Various block division schemes
including the different block sizes, interlacing or non-
interlacing were investigated. In [9], Yang et al. further used
interlaced morphological wavelet transform for tracking the
shifted edges. Based on 22 blocks, double processing and
orthogonal embedding techniques are employed to yield large
hiding capacity without substantially degrading visual quality
of marked images as compared with [8].

In this paper, we propose a pixel-wise data hiding method
for the hybrid authentication system. As shown Fig. 1, its core
engine invariantly selects a large number of good DCPLs in
both embedding and extraction. This is achieved through
establishing dense edge-adaptive grid (EAG) along the object
contours, i.e. through tracing 3-pixel long contour segments.
Our study shows that the EAG more efficiently selects the
good DCPLs associated with the best rated “-shape” patterns

[4, 8, 15] than several existing block-based methods [4, 5, 8].
It is worthwhile to note that our proposal uniquely addresses a
key challenge that the embedding changes can easily interfere

with the local content adaptive processes (CAP) and result in
errors in re-discovering the DCPLs and errors in the
extraction. Using our redesigned content adaptive switches
and a novel protection mechanism with carefully designed
CAPs, comparison shows our method works well for arbitrary
binary images with a good trade-off between capacity and
perceptional quality.

II. PROPOSED ALGORITHM

Fig. 2 shows the flow graph of the core engine, consisting
of three main components, a contour tracer, content-adaptive
processes (CAP) and a protector. Contour tracer traverses the
entire image to establish the EAG, i.e. to search for new
contour starting locations and to trace a new contour segment
(CS) iteratively. Three CAPs are designed to make local
content-adaptive processing, where CAP 1 and CAP 2 are
associated with the contour tracer and CAP 3 determines the
embeddability of a current processing CS. The protector
protects the context of a CAP for preserving the same
outcomes being achieved in the marked image.

A. Contour Tracer and CAPs

As detailed in Fig. 2, during the initialization, we initialize
an accessorial status map for all locations and a stack. The
location status map is used to keep track of the current
processing statuses while searching for new DCPLs. Initially,
we set the status for each location as “0” indicating that the
pixel has not been processed and is in an “unprotected” status.

Figure 2. Flow graph of our selection engine for Data Carrying Pixel Locations (DCPL), where the content adaptive processing (CAP) blocks are highlighted
with bold lines

Figure 3. Chain code definition [16]

Figure 4. Two pairs of interchangeable contour segment patterns (CSP).
CSPs that differ by rotation and tracing direction are not shown

The stack is used to keep track of the context to be protected
due to the CAPs. We initialize an empty stack.

After initialization, our contour tracer starts with scanning
for a starting contour pixel in a pre-defined sequence. For
each pixel, CAP 1 is applied to check its validity of being a
starting contour pixel with three possible outcomes T{0,+1,-
1}, where “0”, “+1” and “-1” indicates “not valid”, “valid
with counter clockwise (CCW) tracing” and “valid with
clockwise (CW) tracing”, respectively. We use the radio
sweep tracing algorithm and only a black pixel location from
which, a second contour pixel in its 33 neighborhood can be
traced based on CCW or CW, is determined as a valid contour
pixel. Once such a pixel is found, we temporarily suspend the
scanning at this pixel location L and use CAP 2 (radio sweep
algorithm) to trace a new contour segment originated from L.
Using a fixed-length segmentation, once three consecutive
black pixels are traced, we output them as one current
processing contour segment (CPCS). This CPCS can be
represented as  = {d0, d1, t, S}, where d0, d1 {0, 1, …, 7}
denote the transitions, in terms of chain codes (Fig. 3), from
the first contour pixel to the second, and from the second to
the third, respectively. t {+1,-1} denotes either CCW or CW
tracing direction and S is the ending pixel location of . For
each CPCS, we apply CAP 3 to determine its embeddability,
where an embeddable CPCS contributes one DCPL. Our CAP
3 requires an embeddable CPCS to belong to one of the four
pattern types in Fig. 4, with the following equation

 1 2 mod8 1 or 7d d  (1)

being satisfied. Also, flipping the embeddable pixel (as
highlighted with dotted circles in Fig. 4) would not violate our
protector’s rules (see Sec. 2.3) and cause its dual CPCS not
traceable using the same contour tracing algorithm.

After the CPCS is processed, our contour tracer moves to
its ending location and starts there tracing a new contour
segment. This process iterates until the current contour ends.
At this moment, the previously suspended scanning is
restarted from the next scanning location to search for new
contour starting pixel locations and new contour segments.
The entire process ends either when the required number of
DCPLs is recorded or when the entire input image is scanned.

B. Design of CAP Switch

One key challenge for contour-based binary data hiding is
that contour tracing involves tremendous amount of local

content-dependant processing. Outcomes of these processes
depend on image content and can be easily interfered by the
embedding changes so that the sequence of DCPLs selected
from a host image in the embedding cannot be rediscovered
exactly in its marked version, particularly for binary host
images with noises present near the edge pixels. This can
cause undesired extraction errors and failures of the hybrid
authentication. Current contour-based hiding methods, e.g. the
work in [10], demands relatively clean object contour of the
text and may not work for practical binary images, whose
edges or part of the image region is mixed with substantial
amount of noises.

To address this challenge, we observe that each CAP
process is actually comprised of many similar fundamental
CAP switches. As shown in Fig. 5(a), this switch checks
whether p (the current pixel value at the location L of the
input image) is unequal to a target value x with two different
output paths corresponding to Yes and No. This CAP switch is
the most fundamental and it can be shown that other more
complex switch can be implemented as a combination of this
basic type of switch. We have redesigned this CAP switch as
shown in Fig. 5 (b). The new switch first checks whether the
current status a of location L is equal to 2 (being quarantined).
If yes, regardless of the actual p, b is assigned as 0 (black
pixel) for the subsequent comparison with x. Otherwise, b is
assigned the actual value of p for the comparison. In the later
case, we also record (L, 1) into the protector’s stack, for
updating location L to a target status of 1 at a later time. The
redesigned switch allows us quarantining a newly selected
DCPL by CAP 3 so that change of its current pixel value does
not affect other local CAPs. Also, it protects the context of
this CAP switch, i.e. the location whose pixel value has been
checked for making a flow-control decision.

C. Protector

We design a protector to preserve all previous CAPs’
context and to facilitate the processing efficiency. As
mentioned earlier, this is achieved by keeping track of an
accessorial status map for all locations and a stack. For each
location L, we define three possible statues A(L){0, 1, 2}.
Locations with Status 0 are currently unprotected and all pixel
locations are assigned as “unprotected” during the
initialization (Fig. 2). Locations with Status 1 are currently
protected; therefore, they are not allowed to be selected as
new DCPLs to incur possible embedding changes in the
future processing. But we still allow them being traced as new
contour pixels. Locations with Status 2 are currently

(a) (b)

Figure 5. A content adaptive processing (CAP) unit in (a) and our re-design in (b) for protecting each CP unit from being affected by the embedding changes,
where p{0,1} is the pixel’s value at location L of the input image, a is current status of the pixel and b is temporary variable

quarantined meaning these locations can be neither selected as
a new DCPL nor traced as a new contour pixel. The locations
subject to possible future pixel changes, e.g. a newly selected
DCPL, shall be assigned to a “quarantined” status. We use the
stack to dynamically keep track of the context of a CAP and
their targeted protection statuses. An empty stack is initialized
at the beginning.

In the two “Protection” blocks in Fig. 2, the accumulated
records in the stack (due to our switch design in Fig. 5(b) and
due to the DCPL selection by CAP 3 in Fig. 2.) are read out.
For each record (Location: L, Targeted status: n) in the stack,

we perform a status update by setting () max(, ())A L n A L


,

where ()A L


 is the status of L before this update. Note that

() ()A L A L


is always satisfied implying that status of a

location cannot be lowered. We empty the stack after each
“protection” block for the subsequent CAP.

In Fig. 2, protection is performed immediately after a CAP
to ensure that no DCPL will be selected from its context in the
subsequent processing because only an unprotected location,
i.e. with a status 0, can be selected as a new DCPL according
to our aforementioned CAP 3. This ensures that each CAP
can be performed invariantly in the extraction with the same
outcome.

III. EXPERIMENTAL RESULTS

To validate the invariance of our EAG in selecting the
DPCLs for arbitrary host images and their marked versions,
we synthetically generated 100 binary images of 512512
containing random noises. Fig. 6 shows a cropped portion of
such noise image. From the image, we can see that there
exists no dominant object contour and the interference
between nearby contours are significant. Using each of the
100 images as a host image, we discover its DCPLs with our
engine in Fig. 2 and embed random secret message of about
4800 bits by enforcing the DCPLs’ pixel values to be same as
the secret bits. We then re-identify the DPCLs from the
marked image and extract the secret message. Through
comparison, we find that for all 100 cases, a same sequence of

DCPLs is re-selected from the marked image as those from its
host image to have correct extraction of the secret message.
Our successful embedding and extraction for these extremely
noisy binary host images with no clear object contours also
show that our design ensures the embedding changes do not
affect our re-discovery of the same sequence of DCPLs in the
extraction. To the best of our knowledge, this is the first
demonstration that our contour-tracing based data hiding
method can work on such extremely noisy binary host images.
Though practically we do not perform data hiding on such
images with no meaningful visual information, the
experimental outcomes suggest that our proposed method
would work well for all types of contours and our
embedding/extraction mechanism would not be affected by
the interfering noises.

We have successfully tested our data hiding method over
hundreds of practical bi-level images. A subset of about 200
such images is shared at https://sites.google.com/site/sstarcao/.
Table 1 shows a comparison with several other relevant data
hiding methods using three representative images, i.e. Chinese
text, English text and Cartoon host images. All these methods
can be applied to the hybrid authentication. The results show
that our method achieves the least perceptional distortion per
flipping measured in Edge Line Segment Similarity (ELSS)
[15] since our method selects mostly the best rated hiding
locations, i.e. centers of -shape patterns [4, 8, 15], as

illustrated in Fig. 4. Note that we choose the ELSS/per
flipping to measure the visual quality because the marked
images using different hiding algorithms have been embedded
with different amount of secret bits with different number of
alterations. Though Yang’s interlaced 44 block method
(IB4), i.e. state-of-the-art block-based method, has
comparable capacity with ours for generic data hiding, it
experiences an average drop of 25.7% in capacity when used
for hybrid authentication, as some embeddable locations must
be deselected to avoid parity attacks [9]. Also our average
ELSS distortion per flipping is 30% lower than IB4. Another
contour-based method, Mei et al. [10], achieves comparable
low ELSS distortion per flipping as ours, but their hiding
capacity is only 54% of our achieved capacity. From the
results, we can see that our method has achieved better trade-
off between the large hiding capacity and good visual quality.

The processing of our proposed algorithm is fairly efficient.
For a full-capacity embedding case, our algorithm takes MN
operations to scan through the entire host image in one pass,
where M and N denote the number of rows and columns in the
host image, respectively. The basic contour tracing operation
will be performed for about B times, where B denotes the
number of black boundary pixels. In our current
implementation in C++, it takes only about 3.510-2 second to
complete embedding 4060 bits in a French Text image of
512512 pixels with a common 2.53-GHz Duo CPU. For an
A4-Page of binary “English text” image scanned in 300 dot
per inch (DPI) with a size of 24793507, our algorithm takes
about 0.36 second to embed 30391 secret bits. These suggest
that our algorithm is efficient for practical use.

Figure 6. An image of random noises. The image is enlarged so that each
pixel can be seen clearly.

IV. CONCLUSION

In this paper, we proposed to establish dense edge-adaptive
grid to efficiently select good data carrying pixel locations
(DCPL). Through designing a novel protection scheme with
our carefully re-designed content-adaptive process (CAP)
switch, our dynamic system addressed an interference issue
between the embedding changes and the CAP outcomes.
Experimentally, we demonstrated that our contour-based
method invariantly selected the DCPLs from arbitrary binary
host images, e.g. random noise images, and their marked
versions. Our method well fits the region-separation
requirement for state-of-the-art hybrid authentication systems.
For such hybrid authentication, our method offered 25.7%
capacity improvement and 30.0% reduction of the distortion
over the existing interlaced 4×4 block (IB4) scheme.
Therefore, our method achieved a better trade-off between
large data hiding capacity and good perceptional quality than
the prior binary data hiding schemes.

Along this avenue, our future work will prove that the
proposed algorithm and framework invariantly selects DPCLs
from arbitrary binary host images.

REFERENCES

[1] I. J. Cox, M. L. Miller, and J. A. Bloom, Digital Watermarking.
Sam Mateo, CA: Morgan Kaufmann, 2001.

[2] H. Cao and A. C. Kot, "Lossless Data Embedding in Electronic
Inks," IEEE Trans. on Information Forensics and Security, vol.
5 (2), pp.314-323, June 2010.

[3] S. H. Low, N. F. Maxemchuk, and A. M. Lapone, "Document
Identification for Copyright Protection using Centroid
Detection," IEEE Trans. on Communications, vol. 46 (3),
pp.372-383, 1998.

[4] M. Wu and B. Liu, "Data Hiding in Binary Image for
Authentication and Annotation," IEEE Trans. on Multimedia,
vol. 6 (4), pp. 528-538, 2004.

[5] G. Pan, Z. Wu, and Y. Pan, "A Data Hiding Method for Few-
Color Images," in Proc. ICASSP. vol. 4, 2002, pp. IV-3469 –
IV-3472.

[6] Y.-C. Tseng, Y.-Y. Chen, and H.-K. Pan, "A Secure Data
Hiding Scheme for Binary Images," IEEE Trans. on
Communications, vol. 50, pp. 1227-1231, 2002.

[7] H. Lu, A. C. Kot, and Y. Q. Shi, "Distance-Reciprocal
Distortion Measure for Binary Document Images," IEEE Signal
Processing Letters, vol. 11 (2), pp. 228-231, 2004.

[8] H. Yang and A. C. Kot, "Pattern-Based Data Hiding for Binary
Image Authentication by Connectivity-Preserving," IEEE Trans.
on Multimedia, vol. 9 (3), pp. 475-486, 2007.

[9] H. Yang, A. C. Kot, and S. Rahardja, "Orthogonal Data
Embedding for Binary Images in Morphological Transform
Domain - A High-Capacity Approach," IEEE Trans. on
Multimedia, vol. 10 (3), pp. 339-351, 2008.

[10] Q. G. Mei, E. K. Wong, and N. D. Memon, "Data Hiding in
Binary Text Documents," in Proc. SPIE. vol. 4314, 2001, pp.
369-375.

[11] P. W. Wong and N. Memon, "Secret and Public Key Image
Watermarking Schemes for Image Authentication and

 Chinese Text English Text Cartoon

(a) Host images of size 157×73

(b) Proposed with 106, 220 and
226 bits embedded,
respectively.
Ave. ELSS distortion = 0.98

(c) Mei et al. [10] with 59, 137
and 101 bits embedded,
respectively.
Ave. ELSS distortion = 1.11

(d) Yang et al. [9] IB4 method
with 85, 153 and 190 bits
embedded, respectively.
Ave. ELSS distortion = 1.40
(For generic data hiding (non-
hybrid authentication), the
above 3 capacities can increase
to 122, 212 and 235,
respectively.

Table 1. Comparison of binary data hiding methods when they are configured for hybrid authentication (Random message is embedded)

Ownership Verification," IEEE Trans. on Image Processing, vol.
10 (10), pp. 1593-1601, 2001.

[12] H. Y. Kim and A. Afif, "Secure Authentication Watermarking
for Binary Images," in Proc. SIBGRAPI, 2003, pp. 199-206.

[13] H. Y. Kim and R. L. de Queiroz, "A Public-Key Authentication
Watermarking for Binary Images," in Proc. ICIP. vol. 5, 2004,
pp. 3459-3462.

[14] H. Y. Kim and R. L. de Queiroz, "Alternation-Locating
Authentication Watermarking for Binary Images," in Proc. Int.
Workshop on Digital Watermarking (IWDW), 2004. pp. 125-
136.

[15] J. Cheng and A. C. Kot, "Objective Distortion Measure for
Binary Text Image Based on Edge Line Segment Similarity "
IEEE Trans. on Image Processing, vol. 16 (6), pp. 1691-1695,
2007.

[16] H. Freeman, "On the Encoding of Arbitrary Geometric
Configurations," IEEE Trans. on Electronic Computers, vol.
EC-10 (2), pp. 260-268, 1961.740-741, August 1987 [Digests
9th Annual Conf. Magnetics Japan, p. 301, 1982].

[17] M. Young, The Technical Writer's Handbook. Mill Valley, CA:
University Science, 1989.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

