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Abstract—In this paper, we propose a Lasso based framework
to generate the sparse total variability supervectors (s-vectors).
Rather than the factor analysis framework, which uses a low
dimensional Eigenvoice subspace to represent the mean supervec-
tor, the proposed Lasso approach utilizes the ' norm regularized
least square estimation to project the mean supervector on a
pre-defined dictionary. The number of samples in this dictionary
is appreciably larger than the typical Eigenvoice rank but the
I norm of the Lasso solution vector is constrained. Only a
small number of samples in the dictionary are selected for
representing the mean supervector, and most of the dictionary
coefficients in the Lasso solution are 0. We denote these sparse
dictionary coefficient vectors in the Lasso solutions as the s-
vectors and model them using probabilistic linear discriminant
analysis (PLDA) for speaker verification. The proposed approach
generates comparable results to the conventional cosine distance
scoring based i-vector system and improvement is achieved by
fusing the proposed method with either the i-vector system
or the joint factor analysis (JFA) system. Experiments results
are reported on the female part of the NIST SRE 2010 task
with common condition 5 using equal error rate (EER), norm
old minDCF and norm new minDCF values. The norm new
minDCF cost was reduced by 7.5% and 9.6% relative when
fusing the proposed approach with the baseline JFA and i-vector
systems, respectively. Similarly, 8.3% and 10.7% relative norm
old minDCF cost reduction was observed in the fusion. '

I. INTRODUCTION

The use of joint factor analysis (JFA) [1], [2], [3] has contributed
to state of the art performance in text independent speaker verifi-
cation and hence is being widely used. It is a powerful technique
for compensating the variability caused by different channels and
sessions.

Recently, total variability i-vector modeling has gained signif-
icant attention due to its excellent performance, low complexity
and small model size [4]. In this modeling, first, a single factor
analysis is used as a front end to generate a low dimensional
total variability space which models both the speaker and channel
variabilities [4]. Then, within this total variability vector space,
channel variability compensation methods, such as Within-Class
Covariance Normalization (WCCN) [5], Linear Discriminative
analysis (LDA) and Nuisance Attribute Projection (NAP) [6], are
performed to reduce the channel variability. Finally, two classifica-
tion approaches, namely support vector machine (SVM) and cosine
distance scoring (CDS), are proposed for the verification task [4].
It is also shown in [4] that LDA followed by WCCN achieved the
best performance.
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More recently, a sparse representation computed by It
minimization (to approximate the 1°-minimization) with equality
constraints was proposed to replace the SVM in the GMM mean
supervector modeling and by fusing the sparse representation
based classification (SRC) method with SVM, the overall system
performance was improved [7], [8]. This approach was extended
in our previous work [9], [10] to handle the robust verification task
against large session variabilities. First, the sparse representation
is computed by {'-minimization with quadratic constraints rather
than equality constraints. Second, by adding a redundant identity
matrix at the end of the original over-complete dictionary, the
sparse representation is made more robust to variability and noise.
Third, both the {' norm ratio and the background normalized
(BNorm) 12 residual ratio are used and shown to outperform the
conventional [ residual ratio in the speaker verification task.
In [10], SRC is employed to perform classification on the total
variability i-vectors. Since the dimensionality of i-vectors is small,
it requires fewer samples to construct the over-complete dictionary
and the SRC approach becomes more efficient.

In the aforementioned approaches [7], [8], [9], [10], the sparse
representation framework was used just as a kind of classifica-
tion approach on various GMM supervectors. Since sparse rep-
resentation solution needs to be calculated for every trial, it is
computationally expensive for high dimensional supervectors and
sometimes intractable to perform score normalization (ZT-norm).
Therefore it is more efficient to utilize SRC to model the low
dimensional supervectors, such as i-vectors and JFA speaker fac-
tors, rather than the mean supervectors. However, factor analysis
based Eigenvoice modeling and sparse representation are generally
similar in terms of projecting the supervector into a dictionary. The
dictionary of Eigenvoice modeling is a low dimensional subspace
which makes the factor vector low dimensional while the dictio-
nary of SRC is over-complete which results in a sparse coefficient
vector. Thus, this analogy motivates us to explore the sparse
representation as a kind of front end representation framework
which is similar to the factor analysis based Eigenvoice modeling
in the i-vector modeling approach. In this case, the benefits are
as follows. First, computing the sparse representation solution is
required only once for each testing utterance which makes the
score normalization efficient. Second, there is no need to use over-
complete dictionary since it is adopted as a front end representation
framework rather than the classification approach. Therefore, it can
be performed on the high dimensional GMM mean supervectors.

In this work, we employ the Lasso based /' norm regularized
weighted least square estimation to map the centered 1st order
statistics vector on the UBM into a sparse factor vector which is
denoted as sparse total variability supervector (s-vector). Although
the number of elements in the dictionary is large, this representa-
tion only selects some of the dictionary elements to represent the
mean supervector due to the [ L constraint. Therefore, the selected
dictionary elements are more likely to be more informative than



others. We applied the principal component analysis (PCA) on
the centered Ist order statistics vector on the UBM and used
the first 3000 eigenvectors (corresponding to the largest 3000
eigenvalues) to construct the dictionary. This preserves most of the
energy and make the dictionary size and s-vector dimensionality
small which is efficient for Lasso calculation. Furthermore, we
can reuse the PCA training data for LDA, WCCN, PLDA and
score normalization. Because if we construct the dictionary using
raw mean supervector data samples, the Lasso solution for the
same sample on the dictionary is a Kronecker delta vector. The
speaker and channel variability information is encoded into the
non-zero entries of this s-vector which servers as the feature vector
in the subsequent probabilistic linear discriminant analysis (PLDA)
modeling. Compared to i-vectors, the proposed s-vectors use in-
formation from lager subspace; but without performing matrix
inversion, the Lasso solution is just an approximation under the
I* norm constraint. So, we assume the proposed s-vectors carry
complementary information to the i-vectors.

PLDA has been recently introduced to the speaker verification
task to model the i-vectors and has demonstrated excellent perfor-
mance in [11], [12], [13]. PLDA incorporates both within-speaker
and between-speaker variations into modeling which is adopted to
model the s-vectors in this system.

II. METHODS

A. Total variability i-vectors and cosine kernel modeling

In the total variability space, there is no distinction between
the speaker effects and the channel effects. Rather than using the
eigenvoice matrix V' and the eigenchannel matrix U [1], the total
variability space contains the speaker and channel variabilities
simultaneously [4]. Given a C' component GMM UBM model A
with A¢ = {pe, e, Xe},c = 1,--- ,C and an utterance with a L
frame feature sequence {y1,y2, - ,yr}, the 0" and centered 1"
order Baum-Welch statistics on the UBM are calculated as follows:

L
Ne=>_P(clys, \) (1
t=1

L
Fe= P(clys, \)(ye — pe) 2
t=1

where ¢ = 1,--- , C is the GMM component index and P(c|yt, \)
is the occupancy posterior probability for y¢ on Ac. The corre-
sponding centered mean supervector F' is generated by concate-
nating all the F¢ together:
L
P > i1 Plelye, M) (ye — pe)
€= L
Zt:1 P(clyt, \)

The speaker and channel dependent centered GMM mean super-
vector F' can be written as follows:

F =Tw, 4)

. 3)

where T is a rectangular total variability matrix of low rank and
w is the so-called i-vector [4]. Considering a C-component GMM
and F' dimensional acoustic features, the total variability matrix
T is a CF x K matrix which can be estimated the same way
as learning the eigenvoice matrix V' in [14] except that here we
consider that every utterance is produced by a new speaker [4].

Given the centered mean supervector F' and total variability
matrix T, the i-vector is computed as follows [4]:

w=T+T'S'NT) 'T*'S 'NF )

where N is a diagonal matrix of dimension C'F' x C'F’ whose diag-
onal blocks are NoI,c =1,--- ,C and X is a diagonal covariance

matrix of dimension CF x CF estimated in the factor analysis
training step. It models the residual variability not captured by
the total variability matrix 7" [4]. In our implementation, we only
explored the 1*" order statistics and this 3 is the concatenated
version of .

In this total variability space, two channel compensation meth-
ods, namely Linear Discriminant Analysis (LDA) and Within Class
Covariance Normalization (WCCN) [5], are applied to reduce the
variabilities. LDA attempts to transform the axes to minimize the
intra-class variance due to the channel effects and maximize the
variance between speakers while WCCN uses the inverse of the
within-class covariance to normalize the cosine kernel. After LDA
and WCCN steps, cosine distance scoring is used for i-vector
modeling. The cosine kernel between two i-vectors w; and ws
is defined as follows:

< wi, w2 >
k(wi,wg) = —————— 6)
(w1, w2) = o o lwalls

B. Sparse total variability supervector extraction by Lasso

In the i-vector extraction equation (5), the identity matrix is the
prior of the i-vector w. The Maximum Likelihood (ML) solution
is:

w= (TS 'NT) 'T*s~'NF (7)

which is a weighted least square solution of equation (4). We define

the normalized total variability matrix and normalized centered
mean supervector as 7" and F',

F=Fx zN: 8)

Tk = T*S" 2Nz k=1,... K, )

where T* is the k' column in the matrix T'. Then equation (7) can
be rewritten as a standard least square estimation
w = (T*T) " 'TF. (10)
In our Lasso based sparse total variability supervector extrac-
tion, the dictionary T is constructed by PCA on the centered GMM
mean supervectors. Suppose we have D utterances to train the
PCA, each column of the CF x D data matrix A is a centered
GMM mean supervector. If CF < D, eigen decomposition can
be performed directly on (AA%)/D and T is the eigenvectors
corresponding to the largest K eigenvalues. While if CF' > D, we
do the eigen decomposition on (A*A)/D to generate eigenvectors
matrix V and T = AV. ~
Given the centered GMM mean supervector F' from an input
utterance and the total variability matrix T' generated by PCA,
we first normalize them into F' and T by equations (8) and (9).
Then the Lasso based /' norm regularized least square estimation
is performed to calculate the s-vector w:
min (11)
If we convert it back to the pre-normalization forms, equation (11)
becomes minimizing the upper bound of KL divergence used to
derive the GMM mean supervector kernel in [15]:

, , 2 . 3
| F — Tl subject to |w|* < 7.

C
min Y Ne(Fe — Tewe) ' Se ™! (Fe — Tewse)subject to||w | " < 7.
c=1

12)

From Fig.1, we can observe that the first 1000 largest eigenval-
ues cover majority of the total energy. The summation of the largest
3000 eigenvalues is around 72% of the total sum. Although the dic-
tionary size K in the proposed s-vector framework is significantly
larger than in the factor analysis approach, the {* norm constraint
guarantee the s-vector to be sparse. As shown in Fig. 2, the {°
norm of this s-vector is 753 which means only 753 coefficients are
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Fig. 1. The PCA eigenvalues of the centered GMM mean supervector space
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Fig. 2. S-vector of utterance fzzhwB with 7 = 6. |[w]|o = 753, ||W|1 =6

non-zero in the 3000 dimensional s-vector. Generally, the selected
dictionary elements are different for each utterance. Since every
column of F' and T is normalized to unit {2 norm before Lasso
is performed, the dimensions with larger eigenvalues tend to have
higher coefficients in the s-vector which matches the case in Fig.
1.

C. Probabilistic linear discriminant analysis modeling

We assume that the training data consists of J utterances from I
speakers and denote the j*" s-vector of the i speaker by x;j. We
assume that the data are generated in the following way [16]:

Tij :N+Uhi+Gwij + €5, (13)
where the speaker term p + U h; is only dependent on the speaker
index and the variability term Gw;; + €;; is different for every s-
vector and used to model the within-speaker variances. The model
parameters are estimated by employing Expectation Maximization
(EM) algorithms on the training data. Given a pair of s-vectors
S(w;,w;) for testing, the log likelihood ratio is computed based
on a hypothesis testing P(S|H1)/P(S|Hp) where H; means itis a
true trial and Hy denotes a false trial [16]. Since the scoring is sym-
metric for the target and test s-vectors, symmetric normalization
(Snorm) [17] is performed as the score normalization approach.
The PLDA implementation is based on the UCL toolkit [16].

III. EXPERIMENTAL RESULTS
A. Corpus and baseline systems

We performed experiments on the NIST 2010 speaker recogni-
tion evaluation (SRE) corpus [18]. Our focus is the female part of
the common condition 5 (a subset of tel-tel) in the core task. We
used equal error rate (EER), the normalized old minimum decision
cost value (norm old minDCF) and norm new minDCF as the
metrics for evaluation [18].

TABLE I
CORPORA USED TO ESTIMATE THE UBM, TOTAL VARIABILITY MATRIX,
JFA FACTOR LOADING MATRIX, WCCN, LDA, PLDA AND THE
NORMALIZATION DATA FOR NIST 2010 TASK CONDITION 5.

Switchboard NIST04 | NISTOS NISTO6 | NISTO8
UBM v 4
T 7 Vv 7 7 7
TFA V Y/
TFA U 7 7 7 7
JFA D Vi
WK Vv 7 7 7
LA Vv V v vV
PLDA v v v V
Znorm VA V4
Snorm V4
Tnorm v/
" —EER% T
10.5| =*="'10 x norm new minDCF /\ R
------- 20 x norm old minDCF /\/ \/’\

TN
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Fig. 3. Performance of the s-vector system using LDA and cosine distance
raw scoring without Snorm

For cepstral feature extraction, a 25ms Hamming window with
10ms shifts was adopted. Each utterance was converted into a
sequence of 36-dimensional feature vectors, each consisting of
18 MFCC coefficients and their first derivatives. We employed
a Czech phoneme recognizer [19] to perform the voice activity
detection (VAD) by simply dropping all frames that are decoded
as silence or speaker noises. Feature warping is applied to mitigate
channel effects.

The training data for NIST 2010 task included Switchboard II
partl to part3, NIST SRE 2004, 2005, 2006 and 2008 corpora on
the telephone channel. The description of the dataset used in each
step is provided in Table I. The gender-dependent GMM UBMs
consist of 1024 mixture components, which were trained using EM
with the data from NIST SRE 04 and 05 corpus. We used all of the
training data for estimating the total variability space. The NIST
SRE 2004, 2005, 2006 and 2008 datasets were used for training
WCCN, LDA and PLDA matrix, and a data set chosen from SRE
2006 corpus was used for Tnorm score normalization, including
1325 female utterances. 256 female utterances from NIST 2008
were adopted as Snorm data.

The JFA baseline system is trained using the BUT toolkit [20]
and linear common channel point estimate scoring [21] is adopted.
The speaker factor size and channel factor size is 300 and 100,
respectively. ZTnorm was applied on JFA subsystem while Snorm
was employed in i-vector subsystem.

B. Results and discussion

Performance of the s-vector system using LDA with cosine
distance raw scoring and PLDA modeling are shown in Fig.3 and
Table II, respectively. Compared to the raw scoring (EER 15.23%
in Table II), applying LDA on top of the s-vectors significantly



TABLE 11
PERFORMANCE OF THE S-VECTOR SYSTEM USING PLDA MODELING
(#EM DENOTES THE EM ITERATION NUMBER FOR PLDA TRAINING)

PLDA norm minDCF

T LDA WCCN T el FEM Snorm EER% oW SId
6 X X X X X X 15.23 0.96 0.65
6 600 X X X X X 10.16 0.72 0.42
6 600 v/ X X X X 11.79 0.71 0.44
6 600 X 100 100 10 X 11.22 0.97 0.55
6 100 X 100 100 10 X 8.97 0.85 0.43
6 X X 100 100 10 X 11.02 0.90 0.52
6 X X 100 100 20 X 8.44 0.83 0.42
6 X X 100 100 20 v/ 4.80 0.62 0.27
8 X X 100 100 20 v/ 4.86 0.65 0.26
6 X X 150 50 20 X 8.73 0.75 0.41
6 150 X 150 50 20 V4 7.61 0.85 0.34
6 X X 150 50 20 v/ 4.83 0.55 0.28

TABLE IIT
PERFORMANCE OF THE S-VECTOR SYSTEM WHEN FUSING WITH THE JFA
AND I-VECTOR BASELINE SYSTEMS

norm minDCF
ID Systems EER(%) oW ol
1 JFA linear scoring ZTnorm 3.62 0.41 0.193
2 I-vector LDA WCCN Cosine Snorm 5.04 0.52 0.241
3 S-vector PLDA Snorm 4.83 0.55 0.277
4 Fusion JFA + S-vector 3.37 0.38 0.177
5 Fusion I-vector + S-vector 4.14 0.47 0.215
6 Fusion JFA + I-vector + S-vector 3.09 0.37 0.157

improved the performance which might be because that majority
of s-vector coefficients are zero. Furthermore, both EER and norm
old minDCF cost continue to reduce by decreasing the LDA
dimensionality while the norm new minDCF cost achieved the best
result at 600. Adding WCCN on top of 600 dimensional LDA
did not help which may suggest nonlinear session variabilities.
Therefore, PLDA was applied to replace LDA and WCCN. PLDA
modeling improved the system performance with small rank sub-
matrixes (U and G). This matches the result in [11] that 90 rank
U and G achieved the best performance. The Snorm score normal-
ization achieved big improvements on both the EER and minDCF
cost values. The best result was observed by using 150 eigen-
voices and 50 eigen-channels which matches the parameter setting
(300 eigen-voices and 100 eigen-channels) in the JFA framework.
Furthermore, the proposed s-vector system is not very sensitive to
the constraint 7 values in equation (11). Larger 7 can loose the
I* norm constraint which results in a more accurate least square
solution. However, a large norm constraint also slows the Lasso
computation and may violate the sparse assumption of s-vector
w. With a large 7, the proposed Lasso becomes the standard least
squares estimator. On the other hand, setting 7 to be very small
increases the residue between F' and TW which may lead to non
accurate s-vectors. Thus, a balanced 7 is preferred.

It is shown in Table III that the proposed s-vector PLDA
approach achieved comparable results to the conventionali-vector
method. By fusing the s-vector system with JFA and ivector
systems, the overall performance was enhanced by 7.5% - 10.7%
relative EER and minDCF reduction. This supports our claim that
the s-vector modeling is complementary to the conventional factor
analysis framework based methods.

IV. CONCLUSIONS

We propose a I' norm regularized least square based Lasso
approach to generate the sparse total variability supervectors (s-
vectors) and use probabilistic linear discriminant analysis to model
the s-vectors. Rather than the Eigenvoice modeling approach that
projects the mean supervector into a low dimensional subspace,

the proposed Lasso framework maps the mean supervector into
a larger dimensional s-vector with /' norm constraint. The pro-
posed approach generates comparable results to the conventional
cosine distance scoring based i-vector system and improvement is
achieved by fusing the proposed method with either the i-vector
system or the joint factor analysis (JFA) system.
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