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Abstract—With the rapid advancement of 3D visual technol-
ogy, the technique of depth inference from a single image has
received new attention. In this work, we present several single-
image depth inference algorithms based on the blur degree in
different regions in one image. We identify two major sources
of image blur: camera defocus and atmospheric reflectance. The
latter is also known as the haziness. We build models for these two
scenarios with the depth information as a model parameter. Thus,
we are able to infer the depth information from the observed
image. Experimental results are conducted on a large variety of
images to demonstrate that the robustness of the proposed depth
inference method.

I. INTRODUCTION

Due to the rapid progress in 3D video technology, the

problem of depth inference from single or multiple images

has received a lot of attention in recent years. Many depth-

inference schemes have been proposed by exploiting different

visual cues such as motion, stereo and focus. We examine the

single-image depth inference problem by using the image blur

cue in this paper, where image blur may be caused by camera

defocus or atmospheric reflectance.

Many focus-based methods, e.g. [1], have been proposed to

recover the depth information from one single image. Active

illumination method [2] projected a sparse set of dots onto

the image scene and estimate the depth information according

to the geometry and illumination changes of projected dot

patterns. The coded aperture method [3] introduced a modified

camera aperture shape pattern to identify the camera’s blurring

scale, then the depth map can be estimated using blurring scale

result. All aforementioned methods need to calibrate camera’s

aperture or modify camera’s scene environment, which may

not be an easy task.

To mitigate this requirement, several focus detection algo-

rithms [4], [5] were proposed to recover the depth information

without calibration or modification of camera lens and scene

environment. For example, the defocus magnification method

in [4] models the blur degree along edge points with the

Gaussian kernel and propagates the blur degree from edges to

the internal region of an object using a colorization approach.

The work in [5] proposed an exemplar-based deblur strategy

to estimate the blur degree on edge locations and propagates

the depth information to other regions using an optimization

procedure. However, the work in [4] suffers from severe

estimation errors in the propagation stage while the method in

[5] fails to provide an accurate edge blur degree. Therefore,

both of them find limited applications in practice. It is of great

interest to develop an improved focus detection algorithm to

recover the depth information accurately.

In this work, we present an effective focus-detection algo-

rithm with improved accuracy. Since it requires no calibration

or control of camera lens, it can be used to infer the depth

information from a single image captured by conventional

cameras. Our focus-detection algorithm adopts a two-stage

framework as done in [4], [5], yet it utilizes some techniques to

improve its accuracy. First, in the blur estimation stage, it mod-

els the blur along edges of an image with Gaussian blur kernel

or the atmospheric reflectance ratio. In the propagation stage,

we formulate the blur degree propagation as an optimization

problem that is similar to the classic soft matting problem [3].

There exists a closed-form solution of high accuracy. Thus, the

blur degree can be accurately estimated on image edges and be

propagated to the remaining parts effectively. As a result, the

accuracy of the inferred depth can be significantly improved.

The rest of this work is organized as follows. Two blur

models are examined in Sec. II. Experimental results are

shown in Sec. III. Concluding remarks and future research

directions are given in Sec. IV.

II. DEPTH INFERENCE FROM BLUR MODELS

We examine two blur models caused by camera de-focus

and atmospheric reflectance, respectively, and show how to

use the model to infer the depth information from a single

image in this section.

A. Gaussian Model of Camera Defocus

The blur caused by the classic thin lens model [6] is shown

in Fig. 1. When a point lighting source is placed at the focus

distance, S, all rays from it will converge to a single point on

an image plane, which is at distance fS from lens, and the

result is considered as a sharp point. On the other hand, rays

from another lighting source point at distance D �= S, it will

be projected into multi points on the same image plane, and

the result is a blurred spot, shown in rays denoted by orange

lines in the figure. Thus, the blur effect is determined by the

distance between the object and the lens.

When there is no blur, an edge of this image located at

x = 0 can be modeled by an ideal step function as

f(x) = Au(x), (1)

where u(x) is the step function and A is the amplitude of the

edge. If there exists a blur caused by the camera defocus, the

image of the object at distance D in Fig. 1 shall be a spot
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Fig. 1. (a) The lens model [6].

rather than a point. This spot is called the circle of confusion

(CoC) [6], which can be used to characterize the blur due to

the imperfect focus. Specifically, the diameter of CoC, denoted

by c in Fig. 1, can describe the amount of defocus. The

relationship between the diameter of CoC, c, and the distance,

D, is shown in Fig. 1. Thus, we can infer the depth value from

the diameter of CoC. It is worthwhile to point out that c is a

“non-linear” monotonically increasing function of D [4]. The

diameter of CoC is often determined based on blur estimation.

The defocus blur, i(x), can be modeled as a convolution of

ideal step function f(x) with a point spread function (PSF)

[4]. Specifically, the PSF is usually modeled by a zero-mean

Gaussian function g(x, y, σ),

i(x) = f(x) ∗ g(x, y, σ), (2)

where the standard deviation σ is proportional to the diameter

of the CoC c. Mathematically, we have

σ = kc,

where k is a constant parameter. Thus, the standard deviation

σ of PSF can be used as a measure of the diameter of CoC.

Based on the above discussion, we adopt the following focal

blur kernel in our work:

g(x, y, σb) =
1

2πσ2
b

exp
(−(x2 + y2)/

2σ2
b

)
, (3)

which is a zero-mean Gaussian function with standard devi-

ation σb. The parameter, σb, is called the blur degree since

it is proportional to the diameter of CoC and can be used to

characterize the defocus degree.

Another challenge is the measure of the value of σb from a

given image. To estimate the blur degree, we study a blurred

edge of an input image along the y-axis with amplitude A
and blur parameter σb, which is indicated by the red curve in

Fig. 2. In this way, the blur degree σb can be measured by the

distance where this curve changes from low to high. Since it

is difficult to estimate σb directly, we model the edge response

to the second derivative filter as proposed by Elder and Zucker

in [4]. Mathematically, we have

rx2 (x, y, σ2) = Au(x) ∗ gx2
(
x, y, σ2

b + σ2
2

)
(4)

=
−Ax

√
2π(σ2

b + σ2
2)
3/2

exp(−x2
/
2
(
σ2
b + σ2

2

)
) (5)

where u(x) is a step function, σ2 is the scale of the second

derivative operator and A can be derived from the local

extrema within each window around an edge pixel.

Fig. 2. The blurred edge response model.

Instead of estimating the distance in which the blurring edge

response changes from low to high, we measure the distance

between the two second derivative extrema of opposite signs in

edge’s second derivative response as shown in Fig. 2. That is,

we evaluate the distance, along the edge’s gradient direction by

solving a least square fitting problem with the pixel responses

model [4]. Then, the size of blur degree σb can be evaluated

using Eq. (5). Finally, the blur degree on edges of an image

can be estimated accordingly.

B. Atmospheric Reflectance Model

Another cause of image blur is atmospheric reflectance. One

example is shown in Fig. 3(b), where the Fuji mountain is far

away from the viewpoint and it has a clear edge boundary

but of low contrast. In this case, the focus degree estimation

using only the Gaussian blur kernel is not effective [4] for a

very large value of the distance, D. However, the low contrast

can be used as a clue for the blur degree estimation based on

the following atmospheric reflectance model [7] for an input

image I:

t̃(x) = 1− ω min
c∈{r,g,b}

(
min

y∈Ω(x)
(
Ic(y)

Ac
)

)
, (6)

where Ω(x) is a local patch centered at x, and A is the

estimated atmospheric light of each channel. ω is set as 0.9

here in our application. Once t(x) is computed from the above

equation, we can use it to infer the depth information d via

t(x) = e−βd(x), (7)

where β is a constant to be estimated.

III. EXPERIMENTAL RESULTS

In this section, we will show the effectiveness of the pro-

posed algorithm in depth inference. Two other depth recovery

algorithms based on focus-detection were implemented for

performance comparison. They are the defocus magnification

method [4] and the exemplar-based deblur model [5]. All

experiments were carried out on two image databases: the
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Fig. 3. Two defocus models: (a) the Gaussian blur model and (b) the
atmospheric reflectance model.

DOF-PRO image database [8], which includes mostly camera-

focused images, and the Make3D range image database [9],

which contains low contrast images with the effect of at-

mospheric reflectance. In our experiment, 10 images with

different scenes were chosen from each database as test

examples. They are shown in Figs. 4 and 5.

Fig. 4. The test image data for the Gaussian blur.

.

Fig. 5. The test image data for the low-contrast atmospheric reflectance blur.

The “ground-truth” depth maps were obtained using the

laser scan render that detects the depth field with laser scan-

ning and can achieve very accurate depth information. We

applied three different depth-inference algorithms to all test

images. The corresponding test environment (i.e., screen size,

monitor type, etc.) is listed in Table I.

TABLE I
SUBJECTIVE EVALUATION

Display 17 inch Dell LCD
Number of Observers 10

Evaluation Method PSPC

We use the following two methods to measure their perfor-

mance.

1) Preference Scaling Paired Comparison (PSPC)

The method demands viewers/users to compare two

extracted depth maps from different algorithms at each

time, and distinguishes them with rating scores (i.e.,

4 - best quality; 3 - satisfied quality; 2 - acceptable

quality; 1 - unacceptable quality). For example, the

average scores for total 20 test images are shown in

Table II. Clearly, the proposed algorithm receives the

highest score in depth map quality as compared with

the two other benchmarking algorithms.

TABLE II
EVALUATION USING THE PSPC METHOD.

method Relative depth error result
deblur model 1.25

defocus magnification 2.5
Proposed algorithm 3.75

2) Average Relative Depth Error (ARDE) [10]

The extracted depth-maps are compared with the

ground-truth ones and the average relative depth error is

computed. To make them comparable, we have to scale

depth maps obtained from both methods (the inferred

depth map and laser-scanned depth map) to the same

range, which is set to [0,1] in this work. After than, the

ARDE at pixels can be calculated to quantify the error

of the extracted depth map. We show the ARDE results

of all test images in Table III. Clearly, the proposed

depth inference algorithm outperforms the other two

benchmarking algorithms.

TABLE III
EVALUATION USING THE ARDE METHOD.

method Relative error of extracted depth map
deblur model 0.902

defocus magnification 0.699
Proposed algorithm 0.428

In addition to the above two performance measures, we

provide several extracted depth maps for visual comparison.

To save space, only three images are selected from each image

database, and their depth maps extracted from various methods

are shown in Fig. 6 (for the DOF-PRO image database) and

Fig. 7 (for the Make3D range image database). Clearly, the

depth maps obtained by the proposed algorithm have a better

match, as shown in the fifth row of Figs. 6 and 7, with

the “ground-truth” ones, as shown in the second row of the

corresponding figures.

IV. CONCLUSION AND FUTURE WORK

Two major sources of image blur; namely, camera defo-

cus and atmospheric reflectance, were studied and modeled

with the depth information as a model parameter. Then, an

algorithm was proposed to extract the depth information from

the observed image. Experimental results were conducted on

a large variety of images to demonstrate that the superior
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Fig. 6. Visual comparison of extracted depth maps due to camera defocus:
(a) the original image, (b) the ground-truth depth map, (c) the depth map
result based on the deblur model in [5], (d) the depth map result based on
the defocus magnification algorithm in [4], and (e) the depth map result of
the proposed algorithm. .

performance of the proposed depth inference algorithm over

known prior art. We would like to extend the idea in this

work, and obtain robust depth inference algorithms for a more

generic class of images.
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Fig. 7. Visual comparison of extracted depth maps due to atmospheric
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