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Abstract—We previously proposed an efficient MAP (Max-
imum a posteriori) speech spectral amplitude estimator for
stationary noise suppression. Although this method can strongly
reduce stationary noise signals, it cannot reduce impulsive noise
signals, such that a thunder, clap, and other impact noise signals.
On the other hand, we also previously proposed a zero phase
noise suppression method to achieve impulsive noise reduction,
where its effectiveness was confirmed through some simulations.
In this paper, we combine these two effective noise reduction
methods and achieve a noise suppressor which can remove both
of stationary and impulsive noise signals. We evaluate its noise
reduction capability for some types of noise. The simulation
results show the effectiveness of the proposed noise suppression
method.

I. INTRODUCTION

Continuous improvement of multimedia and communication
systems has led to the widespread use of speech recording
and processing devices, e.g., mobile phones, mobile video
cameras, speech recognition tools, and so on. In practical
situations, these devices are being used in environments where
undesirable background noise exists. Speech with background
noise can cause problems for both mobile communication and
speech recognition systems. Noise suppression techniques are
required to extract a speech signal from an observed signal
which includes noise.

Single channel noise suppression is an important tool to
improve the quality of speech communication systems. We
focus on single microphone noise suppression systems. A
number of single channel noise suppression methods have
been proposed and extensively studied for decades [1] - [18].
These methods can be classified into two groups. One is for
suppressing stationary noise and the other is for suppressing
non-stationary noise. Although there exists a variety of non-
stationary noise, we focus on its extreme case that is impulsive
noise (clap, thunder, other impact noises, etc.). To suppress
stationary and impulsive noise signals, noise suppressors have
been individually researched.

An efficient stationary noise suppression method that em-
ploys a joint MAP (maximum a posteriori) estimator has been
proposed by Lotter and Vary [3]. In the literature [3], the
speech PDF (probability density function) is modeled by a
parametric super Gaussian function, controlled by two shape
parameters. The parametric super Gaussian function has been
developed from a histogram made from a large amount of

real speech data in a single narrow SNR interval. However,
the residual noise still be persistently perceived. Andrianakis
and White [4] were aware that the speech PDF may change
in some SNR intervals. They utilized three histograms made
from speech signals in three different narrow SNR intervals
and approximate them with Gamma density function. As
reported in [4], changing these three speech PDFs according
to SNR can improve the noise reduction capability. On the
other hand, an adaptive PDF method has been proposed by
Tsukamoto et al. [5], based on the assumption that speech
PDF continuously changes its shape according to SNR. They
employed the parametric super Gaussian function used in [3]
and adaptively changes its shape parameters according to SNR.
The adaptive speech PDF improved the noise suppression
capability as reported in [5]. A sophisticated version of the
adaptive PDF method has been proposed by Thanhikam et al.,
and its effectiveness has also been confirmed in [18].

The above mentioned stationary noise suppression methods
require a priori estimated noise spectral amplitude. Thus, they
cannot reduce non-stationary noise such as an impulsive noise
since its pre-information is not available. The median filter
[13] is often used to remove an impulsive noise, while it had
been originally established in an image processing area. The
median filter outputs the median value of an observed signal
in a short interval. As a result, it achieves to remove impulsive
noise signals and keep edge components of the observed
signal, simultaneously. On the other hand, we have previously
proposed a more efficient impulsive noise suppression method
based on ZP (zero phase) signal, the ZP signal is defined as
the IDFT (Inverse Discrete Fourier Transform) of the spectral
amplitude [19]. The ZP signal has values only at around the
origin when the spectral amplitude is almost flat, and the
ZP signal has periodicity when the spectral amplitude has
values only at equally spaced frequencies. We assume that
an impulsive noise spectral amplitude is approximately flat,
and a speech signal is periodic in a short observation. Then,
we can reduce the impulsive noise by replacing the noisy ZP
signal around the origin with the ZP signal in the second
or latter period. After this replacement, taking the DFT of
the ZP signal gives the estimated speech spectral amplitude.
The IDFT of the estimated speech spectral amplitude with the
observed spectral phase provides the estimated speech signal
in time domain. Simulation results showed that the ZP signal



replacement method is effective to reduce impulsive noise
signals [20].

In this paper, we combine the adaptive PDF noise suppressor
proposed in [18] with the ZP noise suppressor proposed in
[20] for suppressing real-world noise which includes both of
stationary and impulsive noise signals. Since the stationary
noise is comparatively easily reduced, we firstly reduce the
stationary noise and then suppress the impulsive noise. To
evaluate the capability of the combined noise suppressor, we
performed noise suppression simulations for some real-world
noise signals. Simulation results showed that the combined
noise suppressor improved the noise suppression capability in
comparison to conventional methods.

This paper is organized as follows. In Section 2, we de-
scribe the adaptive PDF method for stationary noise reduction.
Section 3 presents the impulsive noise suppression method
based on the ZP signal. After that, we combine the stationary
and impulsive noise suppressors in Section 4. Then, we
show experimental results to confirm the effectiveness of the
proposed method. In Section 5, we conclude this research.

II. STATIONARY NOISE SUPPRESSION USING ADAPTIVE
SPEECH PROBABILITY DENSITY FUNCTION

A general single channel stationary noise suppression sys-
tem is shown in Fig. 1, where s(n) and d(n) are a clean speech
and an additional noise at time n, respectively. In a typical
situation of mobile phone communication, the observed signal
in time domain x(n) is composed of s(n) and d(n) as

x(n) = s(n) + d(n). (1)

The noisy signal x(n) is transformed into frequency domain
by segmentation and windowing with a window function h(n),
e.g., Hanning window. The DFT coefficient of the noisy signal
at frame l and frequency bin k is calculated with

Xl(k) =
L−1∑
n=0

x(lQ+ n)h(n)e−j2πnk/L, (2)

where L denotes the DFT frame size. For the computation of
the next DFT, the window is shifted by Q samples. The DFT
coefficient Xl(k) also consists of speech and noise parts, as
given by

Xl(k) = Sl(k) +Dl(k), (3)

where Sl(k) and Dl(k) represent the DFT coefficients ob-
tained from s(n) and d(n), respectively. The noise suppressor
first estimates the noise variance λl(k) = E[|Dl(k)|2], where
E[·] is an expectation operator. Next, the noise suppressor
calculates the a priori SNR ξl(k) and the a posteriori SNR
γl(k) for each DFT bin k, which are defined as

ξl(k) =
E[|Xl(k)|2]

λl(k)
, γl(k) =

|Xl(k)|2

λl(k)
. (4)

Many noise suppressors utilize these two SNRs to calculate
the speech spectral gain Gl(k), where various definitions of
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Fig. 1. Overview of single-channel noise suppression system.

Gl(k) have been proposed in previous studies e.g., [1]– [18].
The enhanced speech spectrum Ŝl(k) is given by

Ŝl(k) = Gl(k)Xl(k). (5)

Finally, we obtain the enhanced speech ŝ(n) after the IDFT
of Ŝl(k) and overlap-add. The speech spectral gain Gl(k) is
the key to effective suppress the noise.

Here, we show an efficient spectral gain Gl(k) used in
[3], [5]. This gain function is also utilized in our method.
For simplicity, the frame index l and frequency index k are
omitted. Let p(|S|) and p(∠S) represent the PDFs of the
speech spectral amplitude and phase, respectively. Lotter and
Vary introduced [3]

p(|S|) =
µν+1

Γ(ν + 1)

|S|ν

σν+1
S

exp

{
−µ

|S|
σS

}
, (6)

p(∠S) =
1

2π
, (7)

respectively. Here, Γ(·) and σ2
S denote the Gamma function

and the variance of the speech spectrum, respectively. The
parameters µ and ν are positive scalars to determine the shape
of the speech PDF. Assuming that p(|S|) and p(∠S) are
independent, the MAP solution provides

G = u+

√
u2 +

ν

2γ
, (8)

u =
1

2
− µ

4

√
γξ̂

. (9)

In the literature [3], fixed shape parameters µ and ν had been
derived from a large amount of speech data in a single narrow
SNR interval. On the other hand, Tsukamoto [5] changes
two shape parameters according to the SNR to improve the
capability of noise reduction. However, these variable shape
parameters are determined from the speech data may be incor-
rectly estimated in many frames, because the shape parameters
are determined from only two speech histograms in extremely
high and low SNR intervals respectively.

We have previously sophisticated the noise suppressor pro-
posed by Tsukamoto et al. We derived appropriate shape pa-
rameters for the speech PDF in (6) [18]. We have used the real
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Fig. 2. Relation between shape parameters and SNR intervals (a) µ for SNR
(b) ν for SNR.

speech histograms to derive the appropriate shape parameters.
In our previous work, various histograms were created from
speech data from low to high SNR intervals. We derived
noise suppression algorithm based on data matching between
histograms and the speech PDF for each SNR intervals.

Figure 2 (a) and (b) show the obtained optimal value
of shape parameters. Here, we can find that an interesting
property of the two parameters that include some increases and
decreases in value. The fitting results may include fluctuations
due to a limited number of the speech data. To reduce the
fluctuation of the results, we use averaged values. From Fig.
2, we see a higher linearity by dividing the region into several
parts, e.g., 19-33 dB and 33-50 dB. We used the several linear
line to represent the results of Fig. 2 (a) and (b). The results
are also shown in Fig. 2 (a) and (b) as the solid lines. Table
I shows Rµ

l (k) and Rν
l (k) that represent the derived linear

curves, we called them as the shape parameter functions.

Here, we show examples of the speech histogram and
the speech PDFs. Figure 3 depicts the histogram of speech
amplitude, which is obtained from the 19-20 dB SNR intervals.
Figure 3 also shows the conventional speech PDFs [3]– [5] and
the proposed speech PDF with the derived shape parameter
functions, respectively. The conventional [3], [4], and the
proposed speech PDFs give good fitting results, while the
speech PDF from [5] is different from other methods in this
SNR interval. To observe fitting result in another range, we
show the speech histogram and the speech PDFs in 49-50 dB
interval in Fig. 4. Here, it appears that the proposed speech
PDF provides the best fit for speech histogram. These results
support the assumption that the speech histogram has various
shapes, and the fixed values of shape parameters from the other
conventional methods are no longer appropriate.

The following algorithm is the previously proposed station-
ary noise suppression algorithm based on the adaptive speech
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Fig. 4. Speech histogram in 49-50 dB interval and speech PDFs which are
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PDF with shape parameter functions shown in Table I.

Gl(k) = ul(k) +

√
u2
n(k) +

νl(k)

2γl(k)
, (10)

ul(k) =
1

2
− µl(k)

4

√
γl(k)ξ̂l(k)

, (11)

µl(k) = αµn−1(k) + (1− α)Rµ
l (k), (12)

νl(k) = ανn−1(k) + (1− α)Rν
l (k), (13)

where α is a forgetting factor, and µl(k) and νl(k) are the
adaptive shape parameters. The forgetting factor was intro-
duced to average Rµ

l (k) and Rν
l (k). In our previous work

[18], the highest noise reduction capability was provided when
α=0.98.

We show the property of the proposed spectral gain by
observing the theoretical gain curve. Fig. 5 (a), (b), (c) and
(d) show the gain curves of Lotter’s method [3], Andrianakis’s
method [4], Tsukamoto’s method [5] and the proposed method
[18], respectively. Here, the spectral gains are depicted for
a priori SNR ξ and the instantaneous value of ξ, γ − 1.
We first focus on the effect of the spectral gains in high a
posteriori SNR ξ situation. As we can see from Fig. 5 (a) and
(b) when SNR ξ is higher than zero and γ − 1 is lower than



TABLE I
SHAPE PARAMETER FUNCTIONS Rµ

l (k) AND Rν
l (k).

SNR range Rµ
l (k) = a0Pl(k) + b0 Rν

l (k) = c0Pl(k) + d0
[dB] a0 b0 c0 d0

Pl(k) ≤ 20 -0.087 3.50 0.060 -1.04
20 < Pl(k) ≤ 33 0.045 0.84 0.060 -1.04
33 < Pl(k) ≤ 49 -0.079 4.90 -0.035 2.11
49 < Pl(k) ≤ 65 -0.011 1.60 0.039 -1.56

65 < Pl(k) -0.074 5.60 0 1.00

zero, the value of gain reaches to 1 steadily. It means that
the gain curves of [3] and [4] have less capability to remove
existed background noise in high SNR ξ. While in case of
[5] and the proposed gain curves, in high a priori SNR ξ
situation they show a good capability of noise removal when
low value of γ − 1 persisted. Then, we move on to the next
observation. When the a posteriori SNR ξ is low and γ − 1
is high, Fig. 5 (c) and (d) becomes relatively small. It means
that Tsukamoto’s method [5] and the proposed spectral gain
perform better reducing of the noise in low SNR situation and
non-speech segments.

In this section, we reviewed an efficient stationary noise
suppressor with an adaptive speech PDF. An impulsive noise
suppressor is reviewed in the next section.

III. IMPULSIVE NOISE SUPPRESSOR BASED ON ZERO
PHASE SIGNAL

The impulsive noise suppressor can be derived by using ZP
signal. We define the ZP signal of x(n), x0(n), as

x0(n) =
1

N

N−1∑
k=0

|X(k)|βej 2πn
N k, (14)

where β is a certain constant, and we omitted the frame index
l for simplicity. Obviously, |X(k)|β can be reproduced from
the DFT of the ZP signal x0(n) as

|X(k)|β =
N−1∑
n=0

x0(n)e
−j 2πk

N n. (15)

Through this paper, we put β = 1. In addition, we assume
that x(n) is a real valued signal. In this case, the ZP signal
x0(n) come to real even signals [19].

Here, we show a few examples of the ZP signal. Let the
spectral amplitude |X(k)| be a constant α0 (≥ 0). Substituting
|X(k)| = α0 into (14) with β = 1, we have

x0(n) = α0δ(n), (16)

where δ(n) denotes the Kronecker’s delta function. Equation
(16) implies that the ZP signal of any flat spectral amplitude
is expressed as the delta function. Next, let |X(k)| be equally-
spaced line-spectral pairs (i.e., x(n) is periodic), where each
frequency interval is kc (0 < kc < N/2). That is

|X(k)| =
⌊ N

2kc
⌋∑

m=1

αm

2
{δ(k −mkc) + δ(k +mkc −N)}, (17)

(a) constant spectral amplitude

(b) equally spaced line spectra

Fig. 6. Examples of zero phase signal: (a) constant, (b) equally spaced line
spectra.

where ⌊·⌋ denotes a floor function, and αm is an amplitude
of the mth frequency. Substituting (17) into (14) with β = 1,
we have

x0(n) =

⌊ N
2kc

⌋∑
m=1

αm

N
cos

2πmkc
N

n. (18)

Hence, the ZP signal of a periodic signal becomes also a
periodic signal whose period is N/kc. These properties are
shown in Fig. 6.

As the same manner of conventional noise reduction meth-
ods [2]–[17], we also assume that the spectral phase of the
estimated speech signal is equal to that of the observed signal,
i.e., ∠Ŝ(k) = ∠X(k). It means that

x0(n) = s0(n) + d0(n), (19)

where s0(n) and d0(n) are the ZP signals of s(n) and d(n),
respectively. Firstly, we models a speech signal s(n) in a short
observation as a HNM (Harmonic plus Noise Model) [21], [22]
given as

s(n) =

⌊ N
2kc

⌋∑
m=1

αm cos(2π
kc
N

mn+ θm) + ε(n), (20)

where kc/N is the normalized fundamental frequency, and
αm and θm are the amplitude and the phase of the mth
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harmonic frequency, respectively. The signal ε(n) is a noise
signal generated by passing a white noise through an all-
pole filter [22]. Here, we assume that the energy of ε(n)
in an observation frame is sufficiently small in comparison
to one of the harmonic part. This assumption is appropriate
for a voiced speech, but it is not appropriate for an unvoiced
speech. Although this assumption may give a degradation to an
enhanced speech, the degradation is not fatal. Because, voiced
speech energy is usually much greater than unvoiced one.

Next, we show some examples of practical noise and speech
signals in the ZP domain. We plotted the ZP signals of some
practical wide-band noises and a female speech signal in Fig.
7, where (a) shows a tunnel noise, (b) shows a motor noise,
(c) shows a babble noise, (d) shows a clap noise, (e) and (f)
show voiced and unvoiced speech signals, respectively. Here,
all signals were sampled at 8kHz and N = 256. We see
from Figs. 7(a)–(d) that the energy of all wide-band noises is
concentrated around the origin in the ZP domain. Hence, when
we remove the ZP signal around the origin, then the noise is
greatly reduced. On the other hand, from Fig. 7(e), we see that
the voiced speech becomes a periodic signal with amplitude

attenuation in the ZP domain. This attenuation arises due to
the window function. Since the window function is known, we
can compensate the attenuation. We also see from Fig. 7(e) that
the effect of ε(n) is extremely low for the voiced speech. On
the other hand, the ZP signal of the unvoiced speech shown
in Fig. 7(f) is similar to that of the noises. As shown in Fig.
7(e) and (f), the energy of the unvoiced speech is less than
the voiced one. In this paper, we concentrate on extracting the
voiced speech rather than the unvoiced one.

The noise ZP signal has nonzero values mainly around
origin. Hence, we assume that the noise ZP signal d0(n) at
(n > L) is sufficiently small for x0(n). Then we have

x0(n) ≈
{

s0(n) + d0(n), 0 ≤ n ≤ L
s0(n), L < n ≤ N

2 ,
(21)

x0(n) = x0(N − n),
N

2
< n < N. (22)

When the pitch period of the speech ZP signal, T = N/kc,
is greater than L, we can estimate T as the time index of the
second peak of x0(n) as shown in Fig. 8. Since the observed
ZP signal x0(n) in T ≤ n < N+L does not include the noise
components, we obtain the estimated speech ZP signal ŝ0(n)
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by the following replacement.

ŝ0(n) =

{
sc(n) · x0(T + n), 0 ≤ n ≤ L
x0(n), L < n ≤ N

2

, (23)

where sc(n) is a scaling function to compensate the envelope
attenuation of the speech ZP signal. It is obtained as the
reciprocal function of the window for signal segmentation.
When we use the hanning window, the scaling function sc(n)
is given as (see Appendix)

sc(n) =
1 + cos 2π

N n

1 + cos 2π
N (n+ T )

. (24)

After the replacement (23), the DFT of ŝ0(n) gives the
estimated speech spectral amplitude |Ŝ(k)|. Finally, taking the
IDFT of |Ŝ(k)|ej∠X(k), we have the estimated speech signal
ŝ(n) in time domain.
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Figure 9 shows the block diagram of the impulsive noise
reduction system, where the spectral gain is given as G(k) =
|Ŝ(k)|/|X(k)|. Here, this system requires the additional DFT
and IDFT to achieve impulsive noise reduction without a priori
estimation of noise spectral amplitudes. The most important
parameters in the impulsive noise suppression method are the
pitch period T and the replacement size L shown in (23).

We first describe how to estimate the pitch period T , and
then derive an appropriate replacement size L in an empirical
manner. From the definition (14), we see that any ZP signal
takes the maximum value at the origin. On the other hand, as
shown in Fig. 8, a voiced speech provides a periodic ZP signal
with amplitude attenuation. Hence, as we stated in the previous
section, the index of the second peak in the speech ZP signal
gives T . As reported in [24], an averaged pitch period of male
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speakers is about 8ms, and that of female speakers is about
4ms. Hence, an computationally efficient peak search method
can be established by restricting the search range. The pitch
period T is given as

T = arg max
tL≤n≤tH

{x0(n)}, (25)

where, tL is the lowest index number of the search range, and
tH is the highest one.

Next, we choose the replacement size L in an empirical
manner. For various L, we performed wide-band noise reduc-
tion simulations, and evaluated its capability by using

InputSNR = 10 log10

∑M−1
n=0 s2(n)∑M−1
n=0 d2(n)

, (26)

OutputSNR = 10 log10

∑M−1
n=0 s2(n)∑M−1

n=0 {ŝ(n)− s(n)}2
, (27)

where M is the number of samples. The results for the four
practical noises with Input SNR of 0dB are shown in Fig. 10.
We see from this figure that the proposed method is effective
for reducing the non-stationary clap noise, and also other wide-
band noise signals whose spectral amplitude is approximately
flat. Although the respective maximum Output SNRs gave
different values of L, all they were less than 10. Hence, we
employ L = 10 as an appropriate value.

IV. COMBINED NOISE SUPPRESSION SYSTEM

To simultaneously suppress stationary and impulsive noise
signals, we combine the above mentioned two noise suppres-
sion methods. We simply cascade these two noise suppres-
sors. There exists two possible combinations for cascading
as shown in Fig. 11. Here, “MAP” denotes the stationary
noise suppressor explained in Section 2, and “ZPS” denotes
the impulsive noise suppressor mentioned in Section 3. We
individually evaluate these combinations.

The speech signals used in the simulations were taken from
ATR-promotion database [23]. All signals used in simulations
were sampled at 8kHz. We put N = 256 and L = 10,
and used the Hanning window for signal segmentation. We
put tL = 16 and tH = 64 that implies the pitch search
range from 2ms to 8ms. The proposed method was compared
with some conventional methods. We carried out noise
reduction simulations for 8 kinds of noises which includes

practical noise. As the stationary noises, we used a white
noise, tunnel noise, motor noise, and babble noise. On the
other hand, artificially generated impulse, clap noise, white
mixed with impulse, and train noise were used as impulsive
noise. Here, the motor and babble noises were obtained from
a SPIB database [25], train noise was obtained from a noise
database distributed from Sunrise Music inc. [26], and clap
and tunnel noises were practically recorded by the authors.
The speech signals are spoken by 10 male and 10 female from
ATR-promotion database [23]. For evaluating noise reduction
capability, we used the Output SNR as a time domain criterion
and Itakura-Saito Distance (ISD) [24] as a frequency domain
criterion. The ISD is defined as

ISD =
1

J

J−1∑
j=0

1

N

N−1∑
k=0

(log
f(k, j)

g(k, j)
+

f(k, j)

g(k, j)
− 1),(28)

where J is the number of frames, and f(k, j) and g(k, j) are
kth bin of spectral envelopes in the jth frame obtained by the
maximum likelihood estimation. The spectral envelope f(k, j)
is given as [24]

f(k, j) =
1

N

σ2
f

1 + 2
∑P

i=1 Ai cos(2πki/N)
, (29)

Ai =

P−|i|∑
m=0

amam+|i|, (30)

where am (m = 1, 2, . . . , P ) is the mth linear predictor
coefficient for the speech signal s(n) in the jth frame. P
denotes the order of the linear predictor, and σ2

f is the variance
of the residual error. The same procedure for the estimated
speech ŝ(n) gives the other spectral envelope g(k, j). For all
of the following simulation results, we compared the proposed
method with the spectral subtraction (SS) [1], a variable
Maximum a Posteriori estimation method (MAP) [18], and
the conventional ZP signal method (ZPS) [20].

Table II shows the output SNR of the stationary noise re-
duction results. We see from the results for the stationary noise
that both of the proposed combined systems can improve the
noise reduction capability in comparison to the conventional
methods. On the other hand, for non-stationary impulsive noise
signals, the noise reduction capability of the proposed method
are superior to MAP and ZPS. When the input SNR was
0dB in clap noise situation, the proposed method achieved
the SNR of 13.4dB which is higher than the result of the
MAP and is equivalent to ZPS. Table III shows the ISD of the
simulation results, where it expresses speech spectral envelope
distortion. Note that the lower value of ISD is better than the
higher one. We see from the results that the proposed method
almost improved the ISD in comparison to SS, MAP, ZPS. The
difference of the cascade order provided the different results.
Although the difference of the results is not so large, the MAP–
ZPS order gave slightly better results than the ZPS–MAP.

V. CONCLUSION

In this paper, we have combined the efficient MAP speech
spectral amplitude estimator with the impulsive noise sup-



TABLE II
OUTPUT SNR OF WIDE BAND NOISE REDUCTION RESULTS [DB]

hhhhhhhhhhhSystem
Noise -10.0 [dB] 0.0 [dB] 10.0 [dB]

W Tn M B W Tn M B W Tn M B
SS [1] −2.0 −1.8 −3.2 −4.2 6.9 6.5 5.6 4.7 15.3 14.5 14.1 13.3
MAP [18] 0.5 −0.2 −1.3 −0.4 6.8 3.8 4.5 4.3 13.8 11.7 12.0 11.6
ZPS −2.4 −3.9 −4.5 −4.9 6.3 5.1 4.5 4.1 12.4 11.8 11.4 11.1
MAP-ZPS 0.9 0.1 −0.8 0.1 6.5 3.6 4.5 4.2 11.8 10.3 10.6 10.1
ZPS-MAP 2.2 0.9 −0.5 −0.3 8.3 6.3 5.9 4.6 12.4 11.3 11.4 10.4

W : white noise Tn : tunnel noise M : motor noise B : babble noise

hhhhhhhhhhhSystem
Noise -10.0 [dB] 0.0 [dB] 10.0 [dB]

I C WI Tr I C WI Tr I C WI Tr
SS [1] −9.9 −9.9 −5.1 −5.2 0.1 0.1 4.5 4.0 10.2 10.1 13.7 13.0
MAP [18] −9.9 −9.9 0.0 −1.5 0.1 0.1 7.8 4.2 10.1 10.1 15.0 12.6
ZPS 9.0 9.4 −0.5 −4.2 11.7 13.5 7.6 4.7 14.0 14.7 12.9 11.5
MAP-ZPS 9.0 9.4 1.3 −0.7 11.6 13.4 7.9 4.1 13.9 14.5 12.5 10.9
ZPS-MAP 9.0 9.4 3.4 −1.4 11.6 13.4 9.0 5.6 13.9 14.5 12.8 11.5

I : impulsive noise C : clap noise WI : white and impulsive noise Tr : train noise

TABLE III
ISD OF WIDE BAND NOISE REDUCTION RESULTS (×104)

`````````System
Noise -10.0 [dB] 0.0 [dB] 10.0 [dB]

W Tn M B W Tn M B W Tn M B
SS [1] 40.1 36.8 32.8 50.2 4.0 3.7 3.3 5.0 0.4 0.4 0.3 0.5
MAP [18] 37.7 37.0 45.5 45.5 3.8 3.7 4.6 4.6 0.4 0.4 0.5 0.5
ZPS 47.7 66.6 58.5 81.0 4.8 6.6 5.8 8.1 0.5 0.7 0.6 0.8
MAP-ZPS 12.2 14.3 18.1 23.2 1.2 1.4 1.8 2.3 0.1 0.1 0.2 0.2
ZPS-MAP 10.6 12.9 15.7 22.9 1.1 1.3 1.6 2.3 0.1 0.1 0.2 0.2

W : white noise Tn : tunnel noise M : motor noise B : babble noise

`````````System
Noise -10.0 [dB] 0.0 [dB] 10.0 [dB]

I C WI Tr I C WI Tr I C WI Tr
SS [1] 247.2 297.2 81.7 59.4 24.7 29.7 8.2 5.9 2.5 2.9 0.8 0.6
MAP [18] 247.3 297.4 48.8 47.9 24.7 29.7 4.8 4.8 2.4 3.0 0.5 0.5
ZPS [20] 0.0 68.7 26.8 104.7 0.0 6.9 2.7 10.5 0.0 0.7 0.3 1.1
MAP-ZPS 0.0 1.7 10.6 21.2 0.0 0.2 0.1 2.1 0.0 0.2 0.1 0.2
ZPS-MAP 0.0 1.7 6.8 29.4 0.0 0.2 0.7 3.0 0.0 0.0 0.1 0.3

I : impulsive noise C : clap noise WI : white and impulsive noise Tr : train noise

pressor using ZP signal. The MAP estimator and the ZP
signal method have been previously established by us for
stationary noise suppression and impulsive noise suppression,
respectively. The proposed method is very simple. We directly
cascaded two noise suppression methods. The simulation re-
sults show the effectiveness of the proposed noise suppression
method. The results showed that the suppression of stationary
noise should be done before impulsive noise suppression.
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APPENDIX

The segmented speech signal is given by

s̃(n) = s(n) · h(n). (31)

Under the assumption that the power of |ε(n)| is small enough
to be neglected in comparison to one of harmonic part in (20).
Then, we can approximate a speech signal s(n) as

s(n) ≈
⌊ N

2kc
⌋∑

m=1

αm cos(2π
kc
N

mn+ θm). (32)

We utilize the Hanning window function given as

h(n) =
1

2

{
1− cos

(
2πn

N

)}
. (33)

Then, the spectral amplitude of s̃(n) is given by

|S(k)| =

⌊ N
2kc

⌋∑
m=1

αm

2

{
1

2
δ(k −mkc + 1) + δ(k +mkc)

+
1

2
δ(k −mkc − 1) +

1

2
δ(k +mkc −N + 1)

+ δ(k +mkc −N) +
1

2
δ(k +mkc −N − 1)

}
.

(34)

By substituting (34) into (14) with β = 1, we get

s0(n) =

⌊ N
2kc

⌋∑
m=1

αm

2

{
1

2
cos

2π(mkc − 1)

N
n

+ cos
2π(mkc)

N
n+

1

2
cos

2π(mkc + 1)

N
n

}

=

(
1 + cos

2π

N
n

)
·
⌊ N

2kc
⌋∑

m=1

αm

N
cos

2πmkc
N

n. (35)

The scaling function for s0(n+ T ) is given as

sc(n) =
s0(n)

s0(n+ T )

=

(
1 + cos 2π

N n
)
·
∑⌊ N

2kc
⌋

m=1
αm

N cos 2πmkc

N n

{1+cos 2π
N (n+T )} ·

∑⌊ N
2kc

⌋
m=1

αm

N cos 2πmkc

N (n+T )

.

(36)

Using the following relation

cos
2πmkc
N

(n+ T ) = cos
2πmkc
N

n, (37)

we have (24).


