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Abstract—We present a PET image reconstruction approach
that aims for accurate quantitation through model-based physical
corrections and rigorous noise control with clinically acceptable
image properties. We focus particularly on image generation chain
components that are critical to quantitation such as physical
system modeling, scatter correction, patient motion correction and
regularized image reconstruction. Through realistic clinical datasets
with inserted lesions, we demonstrate the quantitation improvements
due to detector point spread function modeling, model-based single
scatter estimation and the associated object-dependent multiple
scatter estimation and non-rigid patient motion estimation and
motion correction. We also describe a penalized-likelihood (PL)
whole-body clinical PET image reconstruction approach using the
relative difference penalty that achieves superior quantitation over
the clinically-widespread ordered subsets expectation maximization
(OSEM) algorithm while maintaining visual image properties similar
to OSEM and therefore clinical acceptability. We discuss the axial
and in-plane smoothing modulation profiles that are necessary to
avoid large variations in noise and resolution levels. The overall
approach of accurate models for data acquisition, corrections for
patient related effects and rigorous noise control greatly improve
quantitation and when combined with repeatable imaging protocols,
limit quantitation variability only to factors related to patient
physiology and scanner performance differences.

I. INTRODUCTION

As Positron Emission Tomography (PET) is more commonly

used for diagnosis, staging, and therapy response evaluation,

accurate quantitation becomes increasingly important for prog-

nosis and response monitoring [1]. PET quantitation however, is

affected by many factors such as injection and scan protocols [2],

[3], patient biology [4], scanner properties and image reconstruc-

tion methods and parameters [3].

The PET data acquisition process includes scanner and patient

dependent physical effects that can affect quantitation if they

are not correctly accounted for during the reconstruction. Patient

related effects include scatter [10], [11], [12], attenuation and

voluntary and involuntary motion [24], [25] while scanner related

effects include blurring at the detectors due to crystal penetration

and inter-crystal scatter [5], [14], [15] as well as variations in

detector sensitivities.

Patient motion during a PET/CT scan that typically lasts several

minutes per bed position can result in compromised lesion detec-

tion and quantitation. Correcting for patient motion also requires

matched PET and CT images. In addition to these physical effects

PET imaging suffers from a limited number of detected photons

that requires some form of explicit or implicit noise control [6].

Current clinical practice uses the ordered subsets expectation

maximization (OSEM) algorithm that controls noise through

underconvergence and post-filtering which affects quantitation.

In this paper we describe accurate, model-based corrections

for physical effects and demonstrate how quantitation can be

improved by accurate models, corrections and explicit noise

control through regularization while avoiding image artifacts such

as blocky organs or patchy noise textures.

II. BACKGROUND

A. Forward Model

We use the following factored forward model for PET data

generation that relates the mean measured data ȳ to the activity

distribution x that is being estimated [5]:

ȳ = PnormPpsfPattnPgeomx+ ŝ + r̂ (1)

where the ijth element of the system matrix P ≡
PnormPpsfPattnPgeom contains the probability of an annihila-

tion at voxel j being detected at detector pair i and is composed

of normalization, detector point-spread-function, attenuation and

geometric components. Additive background terms ŝ and r̂ are



mean scatter and random coincidences that are estimated prior to

the reconstruction.

For a motion-gated dataset with mean data ȳg at gate g and

known or estimated patient motion, the forward model becomes

[25]:

ȳg = PnormPpsfPattnPgeomWgx+ ŝ+ r̂ (2)

whereWg is the warping matrix that relates the reference activity

distribution x to the activity distribution in gate g due to motion:

Wgx.

B. Forward Model Formation

The geometric detection probability matrix Pgeom is effi-

ciently calculated on-the-fly using “distance-driven” projectors

[7], [8] that are based on computing the overlap between detector

boundaries and image voxel boundaries on a common plane.

Pattn is a diagonal matrix of attenuation correction factors

whose elements are formed by converting the patient’s CT image

into attenuation maps at 511 keV [16] and applying Beer’s

law - i.e. exp(−
∫

L
µdℓ). The elements of Pnorm account for

sensitivity variations due to geometry and detector efficiencies.

These calibration factors are measured using a combination of

rotating sources (line, plane, flood etc.). Ppsf is measured by

placing point sources at various locations within the field-of-view.

Mean scatter events (s) are estimated by first forming a model-

based mean single-scatter sinogram estimate [10], followed by

multiple-scatter estimation by filtering the single-scatter estimate

and finally performing tail-scaling to ensure that the overall

scatter estimate is correctly scaled. Mean random coincidences

r are estimated either from a smoothed version of the delayed

events [17] or from the singles rates [18].

Our focus is on the quantitation effects of the following

components each of which can have significant effects on both

quantitation and visual image quality:

• Detector point spread function (PSF) estimation and model-

ing that forms Ppsf

• Model-based mean scatter activity estimation and correction

(ŝ)

• Motion estimation to form the warping matrix Wg and

motion corrected image reconstruction

• Convergent reconstruction of x from measured data y under

the forward model (1) with rigorous noise control

C. Penalized Likelihood Image Reconstruction

Image reconstruction is performed by maximizing the follow-

ing penalized-likelihood objective function over all non-negative

images, assuming a Poisson model for the data:

Φ(x) =

nd
∑

i=1

yilogȳi − ȳi − β

nv
∑

j=1

∑

k∈Nj

wjwkφ(xj − xk) (3)

where nd and nv denote the number of detectors and voxels

respectively, ȳi ≡ [Px]i + r̂i + ŝi, β is the global smoothing

parameter controlling overall penalty strength, wj and wk are

penalty weights modulating the local penalty strength and φ(·) is
a potential function penalizing the difference between neighbor-

ing voxels. Quantitation and subjective image properties such as

organ uniformity, organ boundary sharpness, background noise

texture depend heavily on the particular penalty φ(·) and local
penalty strength as determined by β and its modulation.

There are several globally convergent numerical optimization

algorithms that are designed to optimize this cost function

for convex penalties with bounded second derivatives such as

BSREM [19], [21], COSEM [20] and OSEM-MAP [22]. We

chose BSREM due to its convergence speed away from the

solution, automatic incorporation of the positivity constraint and

ease of applicability to different penalties.

III. METHODS FOR QUANTITATIVE IMAGING

A. Quantitation Evaluation with Hybrid Datasets

In order to perform quantitation analysis with clinical datasets

and known ground truth, we inserted lesions of known size

and activity into patient datasets. This was accomplished by

generating high resolution lesions, forward projecting them with

the entire system model accounting for geometry, patient-specific

attenuation, detector blurring and detector normalization and

finally adding the resulting projections to the original dataset.

Scatter and random sinograms were assumed to be unaffected

by the lesions that occupy a very small fraction of the activity

distribution.

Lesions were inserted in various locations where algorithmic

properties might be different such as the liver (hot background),

lung (cold background), near-liver (cold background close to hot

object) and spine (center of the FOV). This “hybrid” dataset

approach allows us to combine realistic clinical backgrounds (im-

portant for clinical acceptability) with known lesion activity levels

(necessary for quantitative evaluations). Such a combination is

neither possible with anthropomorphic phantoms due to their

piecewise constant nature nor with the original clinical datasets

where ground truth is not known.

The contrast metric is the ratio of mean reconstructed activity

throughout the lesion region-of-interest (ROI) to the true inserted

activity.

The noise metric is the ratio of the standard deviation of

reconstructed activity within a large, uniform region (e.g. liver)

to the mean of that activity. Such a single-image noise metric is

necessary because it is not possible to generate multiple noise

realizations as in the case of phantom simulations and they

are good surrogates for ensemble noise metrics when the noise

correlation lengths are not too long relative to ROI sizes.



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Contrast recovery coefficient

P
ix

e
l 
v
a
ri
a
n
c
e

 

 

Full PSF

57% PSF

No PSF

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Contrast recovery coefficient

O
v
e
rs

h
o
o
t 
(%

)

 

 

Full PSF

57% PSF

No PSF

Fig. 1. Theoretical contrast versus noise (top) and contrast versus overshoot
plots for different levels of detector PSF modeling for quadratically penalized PL
reconstructions. Individual curves are parameterized by the smoothing parameter
β.

B. PSF Estimation and Modeling

Blurring of sinograms caused by physical effects such as

inter-crystal scatter, detector penetration and photon pair non-

collinearity are typically modeled as point spread functions

(PSFs) in sinogram space and incorporated into image recon-

struction (e.g., [5], [14], [15]). It is also possible to model the

effect mathematically in image space [23].

While the inclusion of such detector PSF models expectedly

leads to improved contrast recovery and noise, they can also

produce edge artifacts, even with exact PSF modeling, which have

been described as ringing and overshoot/undershoot artifacts (e.g.,

[5], [14], [15]). These artifacts have an impact on clinical accept-

ability and can be reduced by modeling the detector blurring as

a narrower than actual blur; however such undermodeling comes

at the cost of lower contrast and/or increased noise. As a result,

Fig. 2. Penalized likelihood images reconstructed with full, 70%, 50% and no
PSF (left to right) modeling for clinical dataset anon4039. Despite the resolution
and contrast loss in reconstructions with partial PSF models, there is no significant
overshoot/undershoot reduction. Data courtesy of Mayo Clinic, Rochester, MN.
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Fig. 3. Representative contrast versus liver variability curves for the inserted
lung lesion in anon4039. Full PSF modeling produces the highest contrast levels
at matched noise levels.

there is a tradeoff between contrast, noise and ringing artifacts

that are parameterized by the extent of detector modeling [9].

For the case of penalized likelihood image reconstruction with

quadratic penalties, these tradeoffs can be theoretically analyzed

and predicted [9]. Figure 1 shows such theoretically predicted

tradeoffs between contrast, noise and ringing as a function of

percent PSF modeling.

The operating point among these tradeoffs depends on the noise

level in the dataset. When high count, low noise datasets are

reconstructed with small voxels (e.g. brain imaging), the tradeoff

primarily becomes one between contrast and ringing. In that

case undermodeling the detector PSF can be a viable option for

controlling ringing. On the other hand, when low count datasets

are reconstructed with larger voxels, as in whole-body clinical

datasets, ringing artifacts are small due to higher smoothing

levels and fall below the image noise levels. Therefore the main

tradeoffs are between contrast and noise.



Fig. 4. Profiles from reconstructed phantom and hybrid clinical dataset images
with object independent and object dependent multiple scatter estimation. Object
dependent multiple scatter estimation results in approximately 10% improvement
in contrast to liver variability ratios for both simulated and clinical datasets.
Clinical dataset courtesy of Mayo Clinic, Rochester, MN.

Figure 2 shows reconstructions with full and partial PSF mod-

eling and Figure 3 shows the associated contrast/noise tradeoff

curves. Inclusion of full PSF models improve both contrast and

noise metrics. Note that part of the single-image noise degradation

in undermodeled PSF images is due to reduced correlation

between voxels. The most visible visual effect of PSF modeling

is sharper patient boundaries.

C. Model-Based Scatter Estimation

In 3-D PET systems scattered events can comprise approxi-

mately 40% of the total counts [10] and accurate scatter correction

is therefore critical for quantitation. Most scatter estimators

are model-based single scatter estimators that rely on single-

scatter physics models [10], [11]. Since scatter estimation requires

knowledge of the activity distribution and vice versa, scatter

estimation algorithms are performed iteratively where the activity

and scatter estimates are refined at each iteration. Other scatter

components that present challenges for modeling are multiple

scatters and scatter from outside the field-of-view [29].

Multiple scatter estimates could either be model-based at very

high computational cost [27] or in the form of smoothed versions

of the single-scatter sinogram (SSS) estimate [28]. Even though

multiple scatters form only approximately 15% of total scattered

events [13], it plays an important role in determining the overall

scatter contribution. Scatter contributions that come from outside

the scanned field of view can be estimated by accounting for one

bed position on either side of the reconstructed bed position in the

model-based single scatter estimator which results in additional

computational cost [29].

Fig. 5. Gate-averaged images before (left) and after motion correction illustrating
reduced motion blur and improvement in tumor conspicuity. For this case the
SUVmax increased from 9.5 kBq/ml to 11.94 kBq/ml whereas the volume
reduced from 6.35 ml to 4.04 ml. Dataset courtesy of Cancer Treatment Centers
of America, Tulsa, OK.

We had previously implemented and evaluated a fully 3D

scatter sinogram estimation algorithm [12] based on the single-

scatter estimation model in [10]. Shift-invariant SSS smoothing

is not robust across object sizes because the extent of multiple

scatters depend on the object. For this reason we performed an

object-dependent smoothing of the SSS where the smoothing

kernel parameters, amplitude and width, at each sinogram point

depend linearly on the total object path length seen by the line-

of-response [30]. These path lengths are obtained from the CT

image of the patient that is readily available in clinical PET/CT

systems. The form of the object dependent smoothing and their

dependences on path lengths are as follows:

k(u; r, φ) =
A(r, φ)

σ(r, φ)
exp

(

−
−u2

2σ2(r, φ)

)

(4)

A(r, φ) = a · ℓf(r, φ) + b (5)

σ(r, φ) = c · ℓf(r, φ) + d (6)

where ℓf(r, φ) denotes the path length along the line of response,
A(r, φ) and σ(r, φ) are the object dependent kernel amplitude and
with respectively. The linear model parameters (a, b, c, d) were
determined for a given scanner geometry and detector energy

resolution by performing least square fits over a range of object

sizes.

Figure 4 shows reconstructed image profiles across inserted

lesions that estimated multiple scatters from object dependent

and independent smoothing of the SSS. Improved multiple scatter

estimation improves quantitation by approximately 10% for both

the simulated and hybrid clinical datasets.

D. Motion Corrected Image Reconstruction

Patient motion such as respiratory motion is an important factor

affecting PET quantitation in regions affected by the motion.

Respiratory motion can cause lesions motion of up to several

centimeters and therefore result in the overestimation of the lesion

size and underestimation of lesion contrast [34], [35].

Motion correction approaches consist of three stages: (i) data

binning, (ii) motion vector estimation (iii) motion corrected image

reconstruction.



(a) (b)
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Fig. 6. Images showing the improvement after motion correction (right) for high
count (a)-(b), medium count (c)-(d) and (e)-(f) low count cases which correspond
to 250 , 125 and 80 seconds of acquisition time respectively. Data courtesy of
Hospitale San Raffaele, Milan.

Although there is no established “best” data binning scheme,

a common approach to binning is based on the displacement

of an external motion tracker where data collected within each

predefined displacement range is assigned to the same bin

(displacement binning e.g. [31]). Some of the other binning

approaches include phase binning that is based on the patient’s

phase within a respiratory/cardiac cycle (e.g. [33]) and quiescent

period binning [32] that only uses data from the breathing cycle

during which there is minimal motion.

Motion vector estimation is performed by registering gated

CT or gated PET images to a reference gate. Registration of

PET images instead of CT images avoids any PET-CT gate

mismatch problems since PET and CT are acquired sequentially.

We applied a multiresolution version of the level-sets algorithm

[36] on gated PET images to [37] to obtain the motion vectors.

The displacement field is updated according to:

vn+1(x) = vn(x) + [IR − Ig(v(x))]
∇Ig(v(x))

||∇Ig(v(x))||
(7)

where IR is the reference image and Ig is the registered image

and v(x) denotes the displacement vector at x and v is initialized
with zero displacement.

Motion corrected image reconstruction techniques fall under

two main categories: (i) Each gated image is reconstructed

independently, registered to a reference gate and the results

are averaged (possibly with weights) to form the final motion

corrected image (e.g. [24], [25]). We call this method RRA

(Reconstruct, Register and Average) (ii) Motion information is

included in the large system model that accounts for all gates and

the single, motion corrected image is directly reconstructed (e.g.

[26], [38]). We call this method MBMC (Model-Based Motion

Correction). The modeling equations for RRA and MBMC are

as follows:

RRA:

ȳg = Pxg g = 1, . . . , G

x̂g = argmax
x≥0

L(yg|x;P)− βR(x)

x̂RRA =
1

G

G
∑

g=1

W−1
g x̂g (8)

MBMC:

ȳ ≡







ȳ1

...

ȳG






=







PW1

...

PWG






x ≡ PBIGx

x̂MBMC = argmax
x≥0

L(y|x;PBIG)− βR(x) (9)

where G is the total number of gates, L(y|x;P) =
∑nd

i=1
yi log(Px)i − (Px)i denotes the Poisson log-likelihood

with data y, candidate image x and system matrix P and Wg

denotes the warping matrix that relates true activity at gate g to

true activity at the reference gate. Both of these techniques require

matched gated CT images for attenuation correction which can

be acquired within acceptable dose levels by using low-dose CT

data acquisition and image reconstruction techniques [47], [48].

While MBMC has been shown to be quantitatively more

accurate [26], [38] due to its ability to account for variations

in detection probabilities between gates, RRA has the practical

advantage of post gated-reconstruction applicability and quanti-

tation performance comparable to MBMC at medium and high

levels of smoothing [26], especially when gates are of similar

duration [38].

Figure 5 shows a clinical case in which a tumor in the liver that

was indistinct in the ungated imaged becomes significantly more

prominent after respiratory motion correction. The correction

brought about a 36.3% decrease in volume, a 25.7% increase
in the SUVmax.

Figure 6 shows results from a clinical case (top row) as well

as its lower count scan versions where data from only half and

one-third of the scan are used. For the lesion to the right of the

spine in the image (left in patient), lesion motion is approximately

12 mm and average SUVmax increase across all count levels

is 20%. For the smaller lesion immediately left of the spine,

lesion motion is approximately 7 mm and average SUVmax is

reduced by 17% due to interpolations in the motion estimates.

This case illustrates difficulties that may occur with respiratory



Fig. 7. Images reconstructed (from left to right) with OSEM (2 it.), generalized
Gaussian penalty p=1.4 (β = 325), quadratic penalty (β = 15000) and RDP
(β = 325) for anon4127. Bed overlap regions are oversmoothed and noise
in cold regions is blocky in the generalized Gaussian and quadratic penalty
reconstructions with constant smoothing parameters. Datasets courtesy of Mayo
Clinic, Rochester, MN.

motion correction when the extent of motion is small compared to

lesion size and/or when lesions are small compared to voxel size.

It is also notable that the tumor motion is accurately recovered

in both the half and one-third count cases.

E. Quantitative PL Image Reconstruction with Clinically Accept-

able Images

Despite the fact that penalized likelihood image reconstruction

methods have been published and analyzed since the late 80s,

(e.g. [39], [41]) their clinical applicability has been hindered by

increased computational cost and tradeoffs between quantitation

and visual image quality (e.g. blocky organs, patchy organ and

background noise textures etc.). The commonly used penalties

were the quadratic penalty (φ(r) = r2) that produced natural

looking images but with limited quantitation improvements or

edge-preserving penalties such as generalized Gaussian (φ(r) =
rp), log-cosh or Huber [40] with greater improvements in quan-

titation but unnatural looking, blocky images.

Another important factor affecting both image quality and

quantitation is smoothing modulation. When a constant smooth-

ing parameter is used, low sensitivity regions within the field-of-

view (FOV) such as axial planes towards the edge of the FOV are

oversmoothed, causing blurry bed-overlap regions. This effect is

related to the uniform variance properties of the quadratic penalty

[45].

Although modulated quadratic penalty weights were derived

for target resolution properties such as uniform resolution [46]

and isotropic resolution [42], such properties can come at the

expense of undesirably large noise strength variations throughout

the FOV. The second and third images in Figure 7 show recon-

structions using constant smoothing parameters where the blurry

overlap regions (due to oversmoothing) and patchy background
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Fig. 8. Contrast vs. liver variability curves for clinical dataset anon4127 (left)
and anon4101 (right) for three of the five inserted lesions at the liver, lung and
near-liver (top to bottom) for time-of-flight (TOF) and non-TOF reconstructions .
RDP and OSEM curves are parameterized by β and iteration number, respectively.
Quantitation improvements with RDP and spatially modulated smoothing are
comparable to quantitation differences between TOF-OSEM and non-TOF OSEM.
Datasets courtesy of Mayo Clinic, Rochester, MN.

noise textures (due to approximately uniform noise in hot organs

and cold background) are visible.

In order to treat noise differently in hot organs and cold

background regions, Nuyts et al proposed the following con-

vex, relative difference penalty (RDP) [43] and demonstrated

improved lesion detection performance compared to the standard

quadratic penalty [44]:

R(x) =

nv
∑

j=1

∑

k∈Nj

wjwk(xj − xk)
2

xj + xk + γ|xj − xk|
(10)

Note that depending on the choice of edge-preservation level

parameter γ, the RDP penalty behaves as a combination of a

quadratic penalty with activity dependent smoothing and an edge-

preserving generalized Gaussian penalty. The activity dependent

smoothing property of RDP ensures that regions of low activity

are smoothed heavier and vice versa. This property is very

similar to that of commonly used, early-stopped OSEM where

low activity regions are smoother due to slower convergence. As a



result, RDP produces images with visual noise properties similar

to that of OSEM while maintaining quantitation advantages due

to full convergence and more rigorous noise control. These

similarities can be seen by comparing the first and fourth images

in Figure 7.

The γ parameter is chosen based on the tradeoff between

quantitation accuracy and clinical acceptability. Higher γ val-

ues provide more accurate quantitation due to improved edge-

preservation; however very large γ values result in blocky,

clinically unacceptable images. Therefore the preferred γ is

the largest possible value that avoids blockiness and maintains

clinical acceptability.

In order to avoid oversmoothing in bed-overlap regions, we per-

formed modulated smoothing with separate axial and transaxial

modulation components. The axial profile followed the sensitivity

profile except for flat bed-overlap regions (i.e. sensitivity profile

accounting for the next bed-position). Transaxially, smoothing

increased linearly with distance away from the center. These

data-independent profiles mimic the uniform resolution kernels

in [46] but vary slower throughout the FOV therefore avoiding

both oversmoothing and undersmoothing of low sensitivity re-

gions that may occur when noise and resolution uniformity are

targeted respectively. Overall, these smoothing profiles provide

a reasonable, computationally efficient and object-independent

trade-off between noise and resolution uniformity.

Representative reconstructed images are shown in Figure 7 and

contrast versus liver-variability trade-off curves for two clinical

datasets are shown in Figure 8. Liver variability serves as the

single-image noise metric in these hybrid datasets. We see that the

RDP penalty images have superior quantitation in all five lesions

for both clinical datasets. Largest quantitation improvements

occur for the lung and near-liver lesions due to OSEM’s slow

convergence in cold regions and near hot objects, respectively.

Figure 9 shows contrast values at matched noise levels for

lesion contrasts of 1.5, 2, 3, 4 and 8 to 1. Together, these curves

demonstrate the robustness of the improved quantitation across

count levels and lesion contrast levels. The results shown here are

for non time-of-flight (TOF) PET imaging and their application

to TOF imaging would further improves quantitation.

IV. CONCLUSIONS AND DISCUSSION

We have presented corrections for the components of the

PET data acquisition and image reconstruction chain that are

critical to quantitation and showed how quantitation can be

improved through these corrections. We also showed that when

these corrections are used in conjunction with regularized image

reconstruction techniques that explicitly and predictably control

noise, quantitation can be further improved over algorithms that

implicitly control noise through early stopping.

The resulting image reconstruction approach considers all

aspects of the imaging chain and the cumulative effect of all

Fig. 9. Reconstructed vs. true contrast curves for lung, liver, mediastinum
and fat lesions at approximately matched liver variability (noise metric) levels
for anon4039. Black curves correspond to ideal reconstructions where recovered
contrast exactly equals true contrast, blue curves are for PL reconstructions with
RDP and red curves are for OSEM. All reconstructions include full PSF modeling.

improvements, small and large, makes PET an even more re-

liable and accurate tool for quantitation, thereby improving its

applications such as cancer staging, deciding on whether or not

a patient responds to therapy, the extent of the response and the

prognosis.
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