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Abstract—Vector quantization schemes are proposed to extract
secret keys from correlated wireless fading channels. By assuming
that the channel between two terminals are reciprocal, its
estimates can be used as the common randomness for generating
secret keys at the two terminals. Most schemes in the literature
assume that channels are independent over time and utilize scalar
quantization on each element of the estimated channel vector to
generate secret key bits. These schemes are simple to implement
but yield high key disagreement probability (KDP) at low SNR
and low key entropy when channels are highly correlated. In this
work, two vector quantization schemes, namely, the minimum key
disagreement probability (MKDP) and the minimum quadratic
distortion (MQD) secret key generation schemes, are proposed to
effectively extract secret keys from correlated channel estimates.
The vector quantizers are derived using KDP and QD as the
respective distortion measures. To further reduce KDP, each
channel vector is first pre-multiplied by an appropriately chosen
unitary matrix to rotate the vector away from quantization cell
boundaries. The MKDP scheme achieves the lowest KDP but
requires high complexity whereas the MQD scheme yields lower
complexity but at the cost of slightly increased KDP. Computer
simulations are provided to demonstrate the effectiveness of the
proposed vector quantization schemes.

I. INTRODUCTION

Due to the broadcast nature of the wireless medium, com-
munication between terminals in a wireless environment are
often susceptible to eavesdropping, message modifying, and
node impersonation. Secret keys have thus been used to protect
the confidentiality, integrity, and authenticity of messages and
nodes. The generation and agreement of secret keys at the
communicating terminals have traditionally been done in the
network or application layers using, e.g., the Diffie-Hellman
key agreement protocol [1]. However, these schemes rely on
message exchanges between terminals, which could also be
intercepted, and assume certain computational constraints at
the adversaries. Alternatively, physical-layer approaches that
do not require such assumptions have been examined, e.g., in
[2]-[11], utilizing in particular the common randomness in the
channel between legitimate users to generate secret keys.

Channel-based secret key generation schemes [5]-[11] al-
low terminals to extract common randomness from their
locally estimated channels and utilize it as the random seed to
locally generate secret keys at the terminals. When the channel
shared by two terminals is reciprocal, their local estimates
will be similar and, thus, the generated secret keys will agree
with high probability. An eavesdropper located more than

half a wavelength away will, on the other hand, experience
independent fading [12] and, thus, will not be able to infer any
information about the secret key from its local estimate of the
channel. However, the channel estimates obtained at different
terminals are often subject to discrepancies caused by noise
and may lead to large key disagreement if their continuous
values are used as the random seed for secret key generation.
Hence, quantized versions of the channel estimates must be
used instead in order to combat the effect of noise. These key
generation schemes are designed with the goal of ensuring low
key disagreement probability (KDP) among communicating
terminals and also high key entropy so that the generated keys
cannot be easily inferred by the eavesdropper.

The use of common randomness to generate secret keys
at different terminals has first been studied in [2]-[4]. More
recently, many works in the literature, e.g., in [S]-[11], have
exploited specifically the common randomness in the channel
to achieve this task. These schemes utilize quantization of the
amplitude and/or phase of the channel to mitigate the effect of
noise and to determine the common index of the secret key at
the two terminals. In particular, the use of channel phase as the
common randomness was considered in [5] and was applied
to OFDM multipath channels in [6]. The use of channel
amplitude was considered in [7]-[9]. These methods have also
been extended to UWB systems in [10], [11]. However, these
works assume that the channels observed at the users must
be independent over time, which limits the secrecy generation
rate in slow fading channels. The issue of channel correlation
has been addressed in [13] by first decorrelating the channel
observations and, then, allocating different quantization bits to
each decorrelated dimension depending on its effective signal-
to-noise ratio. However, the proposed bit allocation scheme
is less systematic and requires integer number of bits to be
allocated to each dimension, which is rather restrictive.

The main contribution of this work is to propose vector
quantization schemes to efficiently extract secret keys from
correlated wireless fading channels. Two vector quantiza-
tion schemes are proposed: the minimum key disagreement
probability (MKDP) and the minimum quadratic distortion
(MQD) secret key generation schemes. These schemes are
designed using Lloyd-Max-like algorithms with KDP and
quadratic distortion (QD) as their respective distortion mea-
sures. The MKDP scheme achieves low KDP but requires
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Fig. 1. Two legitimate users and an eavesdropper at the third location.

high complexity whereas the MQD yields low complexity but
slightly higher KDP. Notice that, different from conventional
source coding literature, quantization in secret key generation
applications is used to reduce the discrepancy at the two
terminals. The reconstruction or representation of the vectors
in each quantization cell is not a concern. However, in this
application, two users with a given quantizer may yield large
KDP if their channel estimation vector lies at the boundary
of the quantization cells since, in this case, small discrepancy
between the two users’ estimates may result in completely
different quantizer outputs. Hence, in this work, we propose
the use of appropriately chosen unitary transformations to
rotate the channel vectors away from the cell boundaries before
quantization The chosen unitary transformation can then be
communicated between the two terminals without providing
the eavesdropper with any information regarding the channel
vector. Computer simulations are provided to demonstrate the
effectiveness of the proposed vector quantization schemes.

The remainder of this paper is organized as follows. In
Section II, the system model is described. In Section III, the
general concept of quantization-based secret key generation is
introduced. In Sections IV and V, two Lloyd-Max-like vector
quantization methods are proposed and are later extended
to the case with entropy constraints in Section ??. Finally,
simulations are provided in Section VI to demonstrate the
effectiveness of our proposed schemes and a brief conclusion
is given in Section VII.

II. SYSTEM MODEL

Consider a system that consists of two users, Alice and
Bob, transmitting confidential messages to each other using
a common secret key, as shown in Fig. 1. All terminals are
assumed to have only a single antenna element. The secret
key is generated at each terminal based on its local estimate
of the channel. Suppose that training signals are transmitted
from Alice to Bob and from Bob to Alice in consecutive time
slots at the beginning of each block, as shown in Figure 2.
The channels observed by the two users are assumed to be
constant in each block but may vary from block to block. The
received signals at Alice and Bob (namely, nodes A and B in
the remaining of the paper) in block i are given respectively
by

Yali] = VPR[i] + ngli] (1)

and
yoli] = VPhli] + m|i] )

where P is the power of the training signal and n,[i] and
np[i] are independent complex Gaussian random variables with
mean 0 and variance 02, i.e., ny[i], np[i] ~ CN(0,02).

The channel estimates obtained over L blocks at Alice and
Bob are represented as

h, = [ha[l],. .., ha|L])T

and . . R
hy = [h[1],..., he[L]]F

where hgli] = ya[i]/VP and hpli] = wli]/VP, for i =
1,..., L. The covariance matrices Cy, ~and Cy = of h, and
hy are given by
o o H
CBGZCBb:Ch'FFI:U(A"‘FI)U 5 (3)
where A = diag(A1,...,\z) is a diagonal matrix consisting
of the eigenvalues of Cy, on its diagonal and U is a unitary
matrix formed by the eigenvectors of Cy,. Please note that the
channel vector h can also be viewed as vectorization of the
channels received over multiple antenna elements in MIMO
systems and, thus, the following operations extend readily to
the MIMO case as well.

By letting

2

02
D=U(A+-2I

as the decorrelating matrix, we can obtain uncorrelated equiv-
alent channels
11
g, =D 'h, “)

DflcﬁaD*H = I and, similarly,
gy 2 D 'hy, with Cg, = L. The covariance of g, (and also
gp) can also be written as

with covariance Cg, =

2
Cg, =D 'C,D ¥ + ‘%"D*D*H

= dia, A AL
TN Fo2/P AL+ o2 /P
. on/P on/P
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where the first term corresponds to the covariance of the signal
component and the second term corresponds to that of the
noise component. That is, even though the entries in g, are
independent and identically distributed (i.i.d.), their signal to
noise ratios (SNRs) are different and are given by \; P/o2,
.. AL P/02, respectively.

In the following, we assume that g, and g, are utilized as
the random seed to generate secret keys at nodes A and B,
respectively. In the noiseless case, we have g, = D"'h = g,
and, thus, the secret keys generated by the two terminals will
be identical. However, in practice, g, will be equal to g
plus noise. In this case, quantized information would be more
robust since two nodes will observe the same random seed as
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Fig. 2. Relationship between channel training and coherence block in the
half-duplex communication system.

long as g, and g fall in the same quantization cell. In [13],
secret keys are generated by performing scalar quantization
separately on each entry of g, and the heterogeneity of the
SNRs are taken into consideration by heuristically allocating
different number of quantization bits to each entry of g,.
However, the resulting quantizer in this case is suboptimal.
In this work, optimized vector quantization schemes are used
to generate secret keys from the channel vectors g, and g,
respectively, at nodes A and B. A general description of
the vector quantization based secret key generation scheme
is given in the following section.

III. SECRET KEY GENERATION USING VECTOR
QUANTIZATION: GENERAL CONCEPT

Let us define a vector quantizer @ : C* — {1,..., K} asa
mapping from an L-dimensional input vector g to an integer
from 1 to K, where K is the number of secret keys. Since L
channel observations are used to generate K secret keys, the
secret key generation rate is log, K/L bits per observation.
The quantizer divides the L-dimensional Euclidean space into

K partitions (or quantization cells) R, ---, Rx, where
Ri={g € C": Qg) = k} (6)
for k =1,..., K. The same quantizer () is used at both nodes

A and B to generate their secret keys. However, if the decor-
related channel vectors g, or g; are used directly as the input
of the quantizer (), the two nodes will likely yield different
quantizer outputs when the signal component D~'h lies close
to the boundary of a quantization cell. This is because, if
D~ 'h lies at the boundary of a quantization cell, the noise
component in g, and g, will lead to discrepancies between
the two vectors and, thus, cause them to lie in two different
quantization cells or partitions. This effect often dominates
the key disagreement probability (KDP) in quantization-based
secret key generation schemes.

To address this issue, we propose to pre-multiply each chan-
nel vector g, and g, by a rotation matrix U to move it away
from the quantization cell boundaries before quantization. The
matrix U is chosen from a predetermined set

U={Uy,...,Un}, @)

where

Uy, = diag (7, e) ®)

and 0,0, € [0,27], forn = 1,...,N and ¢ = 1,...,L.
During each secret key generation process, Alice first performs
quantization on the vectors U;g,, ..., Uxg,, and selects the

matrix U among the set U/ that yields the minimum KDP based
on its statistical knowledge of gy, i.e.,

U = argminPr(Q(Ug.) # Q(Ugs)|8a) . (9)
Ueld
The index of U is then sent to Bob, who then pre-multiplies
its observation g; with the same rotation matrix U. Notice
that, by choosing U to take on the form in (8), the statistics
of g, (or gp) do not change and, thus, the optimality of the
quantizer (), derived in later sections, is not violated. It is
interesting to remark that Q(U1g,), ..., Q(Ung,) can be
viewed equivalently as the output of N different quantizers
Q1(84), ---» Qn(gs) and, indeed, the boundary effects can
be addressed in more generality by considering N different
quantizers instead of using the N different rotation matrices
mentioned above. However, the complexity of generating a
quantizer is much higher than that of generating the rotation
matrices in (8) and, thus, the latter is employed in this work.
It is interesting to note that, even with well designed
quantizers, the nodes will always be subject to key disagree-
ment due to noise. In practice, the key discrepancies can
be overcome through information reconciliation (i.e., error
correction) [5], [7] or by simply regenerating the keys at the
two terminals [6]. In this work, these operations are assumed to
be inherent in the system and we focus on designing quantizers
to minimize the rate of key disagreement.
In the following sections, two Lloyd-Max-like quantizers
are derived for secret key generation, utilizing KDP and QD
as the distortion measures.

IV. MINIMUM KEY DISAGREEMENT PROBABILITY
(MKDP) VECTOR QUANTIZATION SCHEME

The main objective of quantization-based secret key gen-
eration schemes is to minimize the probability that the two
terminals employing the same quantizer yield different quan-
tizer outputs, i.e., the KDP. In this section, a Lloyd-Max like
vector quantizer is derived by using the KDP as the distortion
criterion.

Specifically, by the choice of U in (9), the average KDP
can be computed as

KDP(Q)
2 [ i PrQUe,) # QUs) | )] - . (g0) e
go LUEU
(10)
and the minimum KDP (MKDP) quantizer is chosen as
(11

QMKDP = argénin KDP(Q).

Following the Lloyd-Max philosophy [14], the MKDP quan-
tizer can be found using the following iterative approach.
However, notice that, in conventional quantization schemes,
both an encoder and a decoder must be found. In the case
of secret key generation, there is no explicit need to find
decoders (or representation levels for the quantization cells).
Theoretically, the iteration can be given as follows:



1) Initialization: Set ¢ = 0. Initialize partition sets R(t),

. R(I? and let
Q" (ga) =k,
fork=1,...,K.
2) Update: Update the partition sets such that
{Uga : Pr(k # Q" (Ugs) | ga)
< Pr(k' # QW (U'gy) | ga), VK, U’}

fork=1,... K.

3) Continue update until the difference between the sets
{Rgt), e ,Rg?} and {Rgtﬂ), . ,R(I?rl)} are negligi-
ble, e.g.,

if g, € R(t)

R(H‘l)

i R URETY — R AR /i R <.
k=1 k=

In the update step, the vector Ug, is included in the set
R if the probability that Q(Ug,) # k is the smallest
among all £ and U. Note that, by choosing the best rota-
tion matrix U, each observation vector (e.g., g,) is rotated
away from neighboring quantization cells before it is actually
quantized. Hence, the vectors that are actually quantized (i.e.,
Ug,) are concentrated in smaller regions and the distance
between the regions R(OO) . R(OO) will be larger. Therefore,
the union of the partmons, ie., U :1R,(€°°), may not cover
entirely the space C”. Vectors Ug, that fall outside of the set
UleR,(fo) correspond to suboptimal choices of U and, thus,
will never be the vectors that are actually quantized. Hence,
these vectors can be assigned arbitrarily to any of the partitions
since they do not affect the KDP performance.

Due to the irregularity of the partitions Rj, ..., Rix
generated from the above algorithm, the probabilities required
in the update step will be difficult to compute explicitly.
However, in practice, the partitions can be found using training
vectors generated based on the statistics of g, and g;. The
more practical procedure is described below.

1) Inmitialize: Set ¢ = 0. Initialize partition sets Rgt), A
Rg? and let

(t)

Q(t)(ga) =k, ifg, € Rk

fork=1,..., K.
2) Update: Generate the set of M, training vectors G, =
{8a,1, "+ ,8a,m, } randomly according to the pdf fg, .
3) For each g, ,,, € G,, generate a set of M training vec-
tors Gyjg, .. = 18b,1|ga.ms " » &b, Mp|ga.  according to

the pdf fg, g, .-
4) Construct the sets

1 &
(t+1) .
S {Ug“ ™M, Zl L ve g 2RO
1=

]‘ - ! !

5) Construct the partitions
R,(fﬂ) ={g:3¢g € S(Hl) such that
lg—g'l <llg—g&ll, v& € U, 8}

fork=1,..., K.

6) Continue update until the difference between the sets
{Sl(t),... t)} and {S(tJrl - ,S;H)} are negligi-
ble, e.g.,

K K
Z SO usI = s s /Y|S0 <6
k=1 k=1

In Step 4 of the algorithm, M Ez | {Ugb o RO
ilga,m

is used as an approximation of the probability Pr(k #*
Q™ (Ugy)|g.). In this step, the training vectors are associated
to the set S,i”l) that yields the minimum approximate KDP.
The partition R,(:H) is then chosen to include all vectors g
that is closest to one of the vectors in S,i”l). However, when
the number of training vectors is large, the computation of
the partitions Rng), e R%H) according to the procedures
in Step 5 require large memory. To reduce the complexity,
these partitions can be further approximated using the centroid
approximation, i.e.,

R~ e e <[ -

(t+1) _
= > ges(+ |

partition Rt“ Namely, instead of searching for the minimum
distance among all the vectors in u{;s;””, the centroid
approximation reduces the complexity by searching for the
minimum distance among K centroids {ggtﬂ), ey gﬁéﬂ)}.

The performance of the MKDP scheme is demonstrated
through simulations in Section VI. However, even though the
MKDP yields the minimum KDP, the complexity is relatively
high due to the large number of training vectors needed for
both g, and g;. By compromising slightly the MKDP, we
show in the following section that an algorithm with lower
complexity can be obtained, utilizing the quadratic distortion
as the performance measure.

””H Vk'} (12

where g, S“ ] is the centroid of the

V. MINIMUM QUADRATIC DISTORTION (MQD) VECTOR
QUANTIZATION SCHEME

In this section, we reduce the complexity of the quantizer
design by considering instead the quadratic distortion measure
and decouple the quantizer design and the rotation selection
problems. The key idea is to map each channel observation
vector g, at node A (or g, at node B) to a vector X in a
finite set {x1,...,xx} C CL such that this vector is closest
to the true vector g = D~ 'h. Since both g, and g, are noisy
versions of g, they will both associate to the same vector x
with high probability and, thus, reduce the KDP.

Specifically, let us define X : {1,...,K} — CL as a
mapping that associates each output of the quantizer @) to a
vector in CL. The vectors X (k) = xi, for k = 1,..., K,
can be viewed as the representation level or the decoder



in conventional quantization literature [14]. However, in the
MQD scheme, the quadratic distortion is defined between the
observation vector g, at node A (or g, at node B) and the
noiseless vector g = D~ 'h. It is defined as

QD(Q, X) = E[|X(Q(g.) — &) (13)
and the MQD quantizer is chosen as
Qutap = arg min {minQD(Q, X)} . (14)

Notice that the search for the optimal () and X above is
similar to the problem of finding the optimal encoder and
decoder in conventional Lloyd-Max iterative quantization de-
sign procedure. Motivated by this approach, we propose in the
following an iterative approach where () and X are optimized
interchangeably while the other is fixed.

A. Optimization of Q for given X

In this subsection, we first optimize () for a given choice
of X (i.e., the set {x1,...,Xx }. Notice that, in this case, the
QD in (13) can be computed as

E[|X(Q(g.)) — gl?]
K
-y / Elllxc — gl | €1/ (€))de
k—1"7/80ERK
K
= Z/ (/ [|xx — g’lzfgga(g’lgfz)dg’) fe. (82)dg,
k=1 8L,ERK\/g’
K
-y / D8} %:) e, (8))d, (15)
k=1 ggeRk
where
De(ga x1) = / Ik — gl fale. (glga)dg  (16)
g

is the average distortion between g and x; when conditioned
on g,. From (15), we can see that, to minimize the overall
average distortion, the observation vector g, should be associ-
ated with the representation vector x;, that yields the minimum
value of D.(g,, X ). The optimal quantizer for given X is then
given by Quop(8s) = k if g, € Ry, where

Rk = {ga | De(gaaxk) < De(gaaX€)7 Vﬂ}

for k =1,..., K. Note that the conditionally average distor-
tion can be computed explicitly as

a7)

)\éga

L
\eo2 /P
+
)\g—I—UQ/P‘ Zl (Me+02/ )

ga7 Xk

=

where x[¢] and g, [Z], for ¢ =1,...,L, are the L-th entries
of x; and g,, respectively. Since the last term is a constant,
the optimal quantizer can be found as

/\Zga [é]

2
— 18
A["—U%/P 9 ( )

Q(ga) = argmm Z

WK} o

which is easily computable.

B. Optimization of X for given Q)

In this subsection, we optimize X for a given choice of Q)
(i.e., the partitions R, ..., Rx). Notice that, in the source
coding literature [14], the function X represents the decoding
or reconstruction of the quantized variable but, in the case of
secret key generation, it is only an auxiliary operation used to
facilitate our search of () since only the index of the secret
key is needed in the latter case.

To find the optimal X1, .. ., Xx to minimize the QD, we can
take the derivative of the QD with respect to each x;, and set it
to zero. Specifically, by taking the derivative of the QD given
in (15), the optimal values of x;, ..., Xk can be computed as

xp =E|[g | 8q € Ri] 19)

fork=1,... K.

By the optimization procedures given in the above subsec-
tions, an iterative algorithm can be proposed to find the optimal
Qmaqp by optimizing over () and X interchangeably while
fixing the other. The iterative procedure can be described as
follows.

1) Initialize: Set ¢ = 0 and set initial values for Xgo)’ e

(0)
X
2) Find Ql(\/OI)QD (or, equivalently, ’Rgo), o R(Ig)) based on
(O), (0) and (17).
3) Update: Compute x(*7, ..., x{*1) by
Xy T = [g | g, e RY

fork:l,...,K

4) Find Q (t+1) p (or, equivalently, Rgtﬂ), e R(I?Ll)) based

on xgtH), o %H) and (17).
5) Repeat update until
1
QD(Q{gn, X)) — QD@ X )| < 6.

After obtaining the quantizer Qniqp, the rotation matrices
are also employed to reduce the KDP between the Alice and
Bob. The rotation matrix is chosen such that the rotated vector
Ug, is closest to its representation level X (Q(Ug,)), i.

U = argmin | X(Q(Ug.)) — Ugal|*. (20)
Ueu

This ensures that the vector to be quantized does not lie at
the boundary of the quantization cells. The performance of
the MQD scheme is also demonstrated through simulations in
Section VI.

VI. SIMULATION RESULTS

In this section, the effectiveness of the proposed vector-
quantization-based secret key generation schemes are demon-
strated through computer simulations. The performance of
these schemes are compared with conventional schemes pro-
posed in [13] that perform scalar quantization over entries in
g, (or gp). In our experiments, channel correlation is modeled
using a Gauss-Markov process, where

hli + 1] = ahli] + V1 - ?w[i], 0<a <1, (21)
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Fig. 3. KDP of the MKDP, MQD and the scalar quantization schemes when
a = 0.9 and key rate 1.5 bits per measurement.
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Fig. 4. KDP of the MKDP, MQD and the scalar quantization schemes when
a = 0.9 and key rate 2 bits per measurement.

where h[i] represents the channel in the i-th block and
{wli]}E, is i.i.d. over time. Both h[i] and w[i] are assumed
to complex Gaussian with mean 0 and variance 0,21. Here,
we set = 0.9 and L = 4. We consider key generation
rates: log, K/L = 1.5 and 2 bits per measurement (i.e.,
K = 2% and 2%). Moreover, we consider a set I/ with N = 16
rotation matrices. The phases in each diagonal element of
the rotation matrices are chosen randomly according to the
uniform distribution between [0, 27].

In Figs. 3 and 4, the KDP of the MKDP, the MQD, and
conventional scalar quantization schemes are compared for
key generation rates of 1.5 and 2 bits per measurement,
respectively. In the case with 1.5 bits per measurement (i.e.,
Fig. 3), two bit allocation policies are considered: the case
with (0,2, 2,2) bits allocated to the L = 4 entries of g, with
SNR from low to high and the case (0,0,2,4) bits allocated
correspondingly. In the case with 2 bits per measurement (i.e.,

0.5

X ]
0.45f . x X X X x X x
AN —©- 8 bits vector quantization
c 0.4r o R 8 bits scalar quantization
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<
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Fig. 5. Average distortion between the MQD scheme and the scalar quanti-
zation scheme when o = 0.9 and key rate 2 bits per measurement.

Fig. 4), three bit allocation policies are considered: the case
with (0,2,2,4) bits, the case with (0,0,4,4) bits, and the
case with (0,0, 2,6) bits. In both figures, we can see that the
MKDP scheme always achieves the minimum KDP among all
schemes. The MQD scheme performs well in most cases but
has a slight degradation at high SNR. This is due to the fact
that, without noise, the distribution of g, is less smooth and
the centroid computed in (19) may be close to the boundary
of the cell, resulting in undesired KDP. Moreover, we can also
see that the bit allocation policies that can be adopted in the
scalar quantization scheme are limited and generally achieve
suboptimal performance.

In Fig. 5, we show the quadratic distortion between the
quantized g, and the noiseless channel g. We can see that
the MQD scheme indeed achieves the lowest QD compared
to scalar quantization schemes. Utilizing the QD reduces the
design complexity but in general does not always lead to
minimum KDP as can be observed in Figs. 3 and 4.

VII. CONCLUSIONS

In this work, vector quantization schemes were proposed for
secret key generation over correlated channels. Two quantiza-
tion schemes were proposed, namely, the minimum quadratic
distortion (MQD) and the minimum key disagreement proba-
bility (MKDP) secret key generation schemes. These schemes
were derived by using Lloyd-Max-like algorithms with KDP
and QD as the respective distortion measures. The MKDP
scheme achieves the smallest KDP among all schemes but
requires high complexity whereas the MQD yields low com-
plexity but may have a slightly higher KDP than conventional
schemes at high SNR. Moreover, to further reduce KDP,
rotation matrices were imposed on the channel vectors before
quantization to move the channel vectors away from the
quantization cell boundaries. The rotation matrix does not
change the statistics of the channel and thus does not affect



the optimality of the quantization schemes. The effectiveness
of the proposed schemes over other schemes in the literature
were demonstrated through computer simulations.
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