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Abstract—We study the problem of human activity recognition
from RGB-D sensors when the skeletons are not available. The
skeleton tracking in Kinect SDK works well when the human
subject is facing the camera and there are no occlusions. In
surveillance or senior home monitoring scenarios, the camera is
usually mounted higher than human subjects and there may
be occlusions. Consequently, the skeleton tracking does not
work well. In RGB image based activity recognition, a popular
approach that can handle cluttered background and partial
occlusions is the interest point based approach. When both RGB
and depth channels are available, one can still use the interest
point based approach. But there are questions on whether we
should extract interest points independently on each channel or
extract interest points from one of the channels. The goal of
this paper is to compare the performances of different ways
of extracting interest points. In addition, we have developed a
depth map based descriptor. We show that the best performance
is achieved when we extract interest points solely from RGB
channels, and combine the RGB based descriptors and depth
map based descriptors.

I. I NTRODUCTION

Much effort has been made in human activity understanding
since human activities play important roles on smart healthcare
and wellbeing [5], human-computer interfaces [15], video
surveillance, and content-based video indexing. Visual activity
recognition has been an active research topic in computer
vision community . So far, most visual action recognition
approaches only considered human body movement inx−y−t
subvolumes due to the high cost and low availability of depth
cameras. In this case, we usually capture activities using
color cameras thus losing the depth information. Hence, this
simplification definitely leads to discriminative performance
degradation. However, both physical bodies and motions are
of four dimensions,x − y − z − t, in real world. That is,
human activities involve not only spatio-temporal axes but
also the depth axis. The recent progress in depth sensors (e.g.
Microsoft Kinect [15]) has drawn much attention on human
activity recognition with RGBD data [15], [14], [11].

Compared with infinite variations in appearance of human
activities, depth information is a straightforward yet useful
cue. The depth constraints of the 3D Scenes and activities
can be directly transposed into image/video contents The
Microsoft Kinect also has facilitated a powerful human mo-
tion capturing technique that outputs the 3D joint positions

Fig. 1. The framework of the proposed approach.

of human skeletons. While in surveillance, the camera is
usually mounted higher than human subjects and there may
be occlusions. Consequently, the skeleton tracking does not
work well. Therefore, we have to rely on the depth maps and
color images for human action recognition. In RGB image
based activity recognition, a popular approach that can handle
cluttered background and partial occlusions is the interest point
based approach. When both RGB and depth channels are
available, one can still use this approach.

To this end, this paper has two main contributions. First of
all, there are questions on whether we should extract interest
points independently on each channel or extract interest points
solely from one of the channels. We compare the performances
of different ways of extracting interest points, and show that
the best performance is achieved when we extract interest
points solely from RGB channels, and then compute RBG



based descriptors and depth map based descriptors upon those
interest points. Finally, we can obtain the feature vector of
each video clip by combining the RGB-based descriptors and
depth-map based descriptors. Fig.1 illustrates the framework of
the proposed feature generating approach. Secondly, inspired
by Local Occupancy Pattern proposed by [20], we have
developed a depth map based descriptor, calledLocal Depth
Pattern(LDP), and it describes the local region of interest
points in depth map. We evaluated the proposed approach on
the RGBD-HuDaAct database[14]. The experimental results
show that the proposed approach achieves significantly better
recognition accuracy than the state-of-the-art approaches.

This paper is organized as follows. Section II reviews some
related works. Section III introduces different strategies of
interest point generating and feature combining of RGB and
Depth Map Features. Moreover,we present a novel depth map
feature.. We show the experimental results in Section IV.
Section V concludes this paper.

II. RELATED WORK

Many different approaches have been proposed for hu-
man activity recognition. These techniques have been sur-
veyed recently in [13]. Roughly, we divide activity recog-
nition techniques into four categories, Bag-of-Features/SVM
(BoF/SVM) approaches [10], Deformable Part Models (DPM)
approaches[19], silhouette representation [2], feature trajecto-
ries [18]. Most of those activity recognition approaches are
only usingx − y − t features. This section mainly presents
the related work on activity recognition usingx − y − z − t
features.

Thanks to the recent emergence of Microsoft Kinect de-
vices, depth based activity recognition has drawn much effort
in computer vision community recently [14], [16], [15], [8].Li
et al. proposed a bag-of-3D-points feature representation for
activity recognition from depth map sequences, where the 3D
points are sampled from the silhouettes of the depth maps[11].
They used an action graph as their classification framework,
where each action is encoded in one or multiple paths in
the action graph. Each node of the action graph denotes a
salient postures. Since activities consist of a sequence of well
defined sub-activities, the other category models the dynamics
of the activities explicitly using statistical techniques. Sung et
al. proposed a hierarchical Maximum Entropy Markov Model
(MEMM), where a person’s activity is composed of a set of
sub-activities and the two-layered graph structure is inferred
by using a dynamic programming approach. The BoFs/SVM
approaches are widely used in activity recognition due to its
simplicity and effectiveness [10], [17]. Ni et al. proposed a
Depth-Layered Multi-Channel STIPs (DLMC-STIPs) frame-
work [14], where STIPs were divided into multiple depth
layered channels, and afterwards those STIPs within different
depth layers are pooled correspondingly. Finally, it yields
multiple depth channel histogram representation. Meanwhile,
Ni et al. proposed a 3D Motion History Images (3D-MHI)
using depth information in the same paper. Wang et al.
propose an LOP feature which computes the local occupancy

information based on the 3D point cloud around a particular
joint to discriminate different types of interactions and an
actionlet ensemble model to represent each action[20].

To better evaluate depth based activity recognition ap-
proaches, several activity databases are collected by using
Kinect devices in very recent years [14], [16].The RGBD-
HuDaAct collected by Singapore Advanced Digital Science
Center aims at home daily activities [14]. This database
includes 12 categories, such as making a phone call, en-
tering the room, etc. The Robot Learning Laboratory at
Cornell University collected an unstructured human activities
in unstructured environment for smart homes and personal
assistive robotics [16]. This database were collected by the
Kinect sensor in five different environments: office, kitchen,
bedroom, bathroom, and living room. This database not only
provides RGBD images, but also provides skeleton motion
data. The LIRIS human activities dataset contains RGBD
videos showing people performing ten activities taken from
daily life, inculding discussion between two or more people,
giving an object to another person and so on[1].

III. C OMBING RGB AND DEPTH MAP FEATURES

A. 3D Action Representation

For representation convenience, we divide action represen-
tation into two steps. One is interest point generation, one
is feature representation based on generated interest points.
Local interest points in both space and time domains contain
significant local variation of video intensities and motions.
Spatio-Temporal Interest Points are one of the most popular
action representations, and Laptev et al. proposed the STIPs,
3D Harris detector [9], which is a natural extension of 2D
Harris detector [7]. 3D Harris interest points are local extremes
of second-moment matrix, a 3-by-3 matrix composed of first
order spatial and temporal derivatives. Upon the localization
of STIPs, Histogram of Gradient (HOG) and Histogram of
Flow (HOF) are important yet popular feature representation
in action recognition [6], [12], [9]. In this paper, we also use
a Local Depth Pattern to represent depth features. Note that
there are two separate channels, RGB and depth channels, and
we could obtain two types of interest points. In result, it yields
various action representation by combining different interest
point generation and feature representation.

B. The Proposed Depth Map Features

For 3D action recognition, we not only have RGB data
but also have depth map data. Alternatively, we can represent
depth map features of activities using HOG and HOF features
though extremely successfully used in RGB data. However,
depth map features are very different from RGB data. Conse-
quently, we propose a novel local depth pattern to represent
each local video volume at each interest point.

At volume t, we have interest points generated from the
RGB channels. For each interest pointp, its local region is par-
titioned intoNx×Ny spatial cells. Each cell is of size(Sx, Sy)
pixels. For each cell , we compute an average depth value from
the corresponding depth channel. The average depth value



of the ith cell is denote asai,∀i = 1, 2, ..., Nx × Ny. We
compute the difference of average depth values between every
cell pair thus forming a feature vector, calledLocal Depth
Pattern (LDP) in the following form

Lp(t) = (|a1 − a2|, ..., |am − an|, ..., |a(Nx×Ny)−1−
aNx×Ny

|),∀m,n = 1, 2, ..., Nx ×Ny,m 6= n
(1)

Note that the dimension of LDP should be
(

2
Nx×Ny

)
. For

example, if(Nx, Ny) = (5, 5) and (Sx, Sy) = (9, 9), the size
of the loca region is(45, 45) and the dimension of LDP is(

2
25

)
= 300.

C. Combing RGB and Depth Map Features

As we mentioned, each STIP of action representation con-
sists of interest point(x, y, t) and feature representation(i.e.
HOG and HOF features). For each interest pointp, we
denote the STIPs from either RGB channels or depth map
as Sp = (x, y, t, F ), where (x,y,t) denote the coordinates
and time of interest pointp, and action features F could be
either HOGHOF orLp. Intuitively, we can see that different
combination between interest point generation and feature
representation could yield different recognition performance.
Table I shows the different combinations.

TABLE I
TYPE OF COMBINGRGB AND DEPTH MAP FEATURES

Feature Representation

RGB Channel Depth Channel

HOGHOF HOGHOF LDP

Interest RGB 1 2 3

Point Depth 4 5 6

D. The Spatial-Temporal Depth Noise Removing Approach

The accuracy of depth images affects the performance of
human activity recognition, and there are many noise-related
issues for various compute tasks [8], [3]. As a structured light
scanner, Kinect depth cameras are prone to be affected by
noises due to reflection issues. Therefore, depth images from
Kinect sensors could contain regions with wrongly estimated
depth information.

Inspired by the hole filling strategy proposed by Camplani
et al. [3], we target to build a noise-free consistent depth map
for better performance and learning by using spatial-temporal
filtering approaches. In this paper, we use spatial-temporal
bilateral filtering to smooth depth images. The joint-bilateral
filtering proposed in [3] is formulated as

D̂(p) =
1

k(p)

∑

q∈Ωp

f(p, q)g(‖D̂m(p)− D̂m(q)‖)

h(‖I(p)− I(q)‖)
(2)

wheref(p, q) denotes domain term that measures the closeness
of the pixels,p andq; g(·) is an depth range term that measures

Fig. 2. The confusion matrix of the proposed method (RGB-STIP, RGB-
HOGHOF, RGB-SITP, DepthDescriptor)on RGBD-HuDaAct. For better view,
we use one character to represent each activity category, i.e., B: go to bed,
D: put on the jacket, E: exit the room, G: get up, I: sit down, K: drink water,
L: enter the room, M: eat meal, N: take off the jacket, O: mop the floor, P:
making a phone call, T: stand up.

the pixel similarity of the modeled depth map;h(·) is an
intensity term that measures the intensity similarity. Moreover,
Ωp denotes the spatial neighborhood of positionp.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. The RGBD-HuDaAct

In this paper, we use RGBD-HuDaAct database [14] for
validating the proposed algorithm. RGBD-HuDaAct is an
action database captured by a Kinect. This database includes
12 categories: make a phone call, mop the floor, enter the
room, exit the room, go to bed, get up, eat meal, drink water, sit
down, stand up, take off the jacket and put on the jacket. Also,
there is a background activity that contains different types of
random activities. There are 30 subjects performing these daily
activities, which are organized into 14 video capture sessions.
Each subject repeats 2-4 times and each video sample spans
about 30-150 seconds. Therefore, there are 1189 labeled video
samples in total.

B. Evaluation Schemes

We use 18 subjects with 9 capture sessions, and 702 video
samples belonging to 12 activity categories for evaluating
the proposed approach. In our experiments, the dimensions
of HOG and HOF are 72 and 90, respectively. We use
Laptev’s STIP implementation to extract interest points1.
Classification accuracy and class confusion matrix are used as
evaluation measures. Moreover, we use LibSVM [4] to classify
human activities as multi-class classification and a leave-one-
out strategy is used to evaluate the generalization capability
of the proposed approach. We perform K-means clustering to

1http://www.di.ens.fr/ laptev/download.html



the set of both descriptors, which yields codebooks with size
K. In our experiment we setK as 1000.

In order to better reveal the discriminating capability gained
by Combing RGB and Depth Map Features, we try different
scales of the local region by using different number of cells
and pixels, and the classification results are given in Table II.
To reduce the computational complexity, we did not use9×9(
the dimension of LDP will be as large as 3240). From Table II,
we can see that within a certain range, the larger the scale is,
the better the performance is. The reason why the performance
of NO.4 is not as good as expected is that the scale is too large
to describe the information of the interest point’s local region.
We also illustrate the class confusion matrix for the best result
(89.11%) in Fig. 2.

TABLE II
RECOGNITION ACCURACY COMPARISON AMONG DIFFERENT SCALES OF

LOCAL REGION FOR(RGB-IP, RGB-HOGHOF, RGB-IP, DEPTH-LDP)

NO. cell/patch pixel/cell pixel/patch dimension Accu(%)

1 5× 5 9× 9 45× 45 300 88.6

2 5× 5 11× 11 55× 55 300 88.8

3 7× 7 9× 9 63× 63 1176 89.1

4 7× 7 11× 11 77× 77 1176 86.6

We compare different types of combinations of RGB
and depth map features, the scale of LDP is set as(7 ×
7cell/patch, 9× 9pixel/cell), the accuracy is shown in Table
III. For method NO.1 and NO.2, it can be observe that Depth-
LDP is better than Depth-HOGHOF, for method NO.2 and
NO.3, it shows that RGB-IP is better than Depth-IP, thus
(RGB-IP, RGB-HOGHOF, RGB-IP, Depth-LDP)has the best
performance.

TABLE III
RECOGNITION ACCURACY COMPARISON AMONG DIFFERENT

COMBINATIONS OF RGB AND DEPTH FEATURES

No. Method Accuracy(%)

1 (RGB-IP, RGB-HOGHOF, RGB-IP,
Depth-LDP)

89.1

2 (RGB-IP, RGB-HOGHOF, RGB-IP,
Depth-HOGHOF)

83.3

3 (Depth-IP, RGB-HOGHOF, Depth-IP,
Depth-HOGHOF)

81.8

TABLE IV
RECOGNITION ACCURACY COMPARISON FORRGBD-HUDAACT

Method Accuracy(%)

DLMC-STIPs[14] 81.5

3D-MHIs[14] 70.5

The Proposed Method 89.1

We also compare our method with the state-of-the-art
method. The recognition accuracy of the 3D-MHIs is only
70.5% and the recognition accuracy of the DLMC-STIPs is

81.5%. The proposed method achieves an accuracy of89.1%.
The accuracy comparison is in Table IV.

V. CONCLUSIONS

In this paper, we have compared the performances of
different ways of extracting interest points. In addition, we
have developed a depth map based descriptor. We show that the
best performance is achieved when we extract interest points
from the RGB channel, and combine the RGB-based descriptor
the and depth-map based descriptor. The experiments show
that the proposed approach achieves superior performance to
the state-of-the-art algorithms.
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