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Abstract—Distant speech recognition (DSR) holds out the
promise of the most natural human computer interface because
it enables man-machine interactions through speech, without the
necessity of donning intrusive body- or head-mounted micro-
phones. With the advent of the Microsoft Kinect, the application
of non-uniform linear arrays to the DSR problem has become
commonplace. Performance analysis of such arrays is well-
represented in the literature. Recently, spherical arrays have
become the subject of intense research interest in the acous-
tic array processing community. Such arrays have heretofore
been analyzed solely with theoretical metrics under idealized
conditions. In this work, we analyze such arrays under realistic
conditions. Moreover, we compare a linear array with 64-channel
arrays and a total length of 126 cm to a spherical array with 32
channels and a radius of 4.2 cm; we found that these provided
word error rates of 9.3% and 10.2%, respectively, on a DSR
task. For a speaker positioned at an oblique angle with respect
to the linear array, we recorded error rates of 12.8% and 9.7%,
respectively, for the linear and spherical arrays. The compact size
and outstanding performance of the spherical array recommends
itself well to space-limited and mobile applications such as home-
gaming consoles and humanoid robots.

I. INTRODUCTION

When the signals from the individual sensors of a micro-
phone array with a known geometry are suitably combined, the
array functions as a spatial filter capable of suppressing noise,
reverberation, and competing speech. Such beamforming tech-
niques have received a great deal of attention within the
acoustic array processing community in the recent past [1], [2],
[3], [4], [5], [6], [7]. With the advent of the Microsoft Kinect,
the application of non-uniform linear arrays to the distant
speech recognition (DSR) problem has become commonplace.
Performance analysis of such arrays is well-represented in the
literature [8]. Recently, spherical arrays have become the sub-
ject of intense research interest in the acoustic array processing
community [9]. Such arrays have heretofore been analyzed
solely with theoretical metrics under idealized conditions [10],
[11]; e.g., assuming an ideal array with a continous pressure
sensitive surface. The effects of discretization, whereby the
continuous pressure-sensitive surface must be replaced with
a finite number of discrete sensors, are typically ignored. In
this contribution, we analyze the effects of such discretization
using the theoretical metrics of array gain, white noise gain,

and directivity index; these metrics are defined and discussed
in Section III. More importantly, we compare a conventional
linear array with a spherical array in terms of word error rate,
the preferred metric in the DSR literature. To the knowledge
of the present authors, such a study has never been undertaken
in the literature.

The present contribution complements Kumatani et al [12],
also appearing in these proceedings, with some amount of
unavoidable overlap. Much of the material appearing here is
based on Kumatani et al [13] as well as the recent book chapter
McDonough and Kumatani [14], and is intended to serve as
an introduction to these works.

The remainder of this article is organized as follows. In Sec-
tion II we consider the conventional beamforming techniques,
including delay-and-sum, minimum variance distortionless re-
sponse, and superdirective designs. A review of the perfor-
mance metrics used in conventional beamforming is discussed
in Section III. The fundamentals of the analysis of spherical
arrays is presented in Section IV, and Section V describes
how the beamformer designs for conventional arrays can be
adapted for spherical arrays. The principal results of this
section are presented in Section VII, wherein a conventional
linear array is compared to its spherical counterpart in terms
of the conventional performance criteria from Section III, as
well as in terms of the all important word error rate, the metric
of choice for DSR.

II. CONVENTIONAL BEAMFORMING TECHNIQUES

Here we introduce the conventional beamforming designs
for conventional arrays; much of this material necessarily
overlaps with Kumatani et al [12]. The presentation of these
designs will lead naturally to the discussion of their counter-
parts for spherical arrays.

In the case of the spherical wavefront depicted in Figure 1a,
let us define the propagation delay as τs , Ds/c. In the far-
field case shown in Figure 1b, let us define the wavenumber
k as a vector perpendicular to the planar wavefront pointing
in the direction of propagation with magnitude ω/c = 2π/λ.
Then, the propagation delay with respect to the origin of the
coordinate system for microphone s is determined through
ωτs = kTms.
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Fig. 1. Propagation of a) the spherical wave and b) plane wave.

A. Delay-and-Sum Beamformer

The simplest model of wave propagation assumes that a
signal f(t) at t, carried on a plane wave, reaches all sensors
in an array, but not at the same time. Hence, let us form the
vector

f(t) =
[
f(t− τ0) f(t− τ1) · · · f(t− τS−1)

]T
of the time delayed signals reaching each sensor s, where
S is the total number of sensors. In the frequency domain,
the comparable vector of phase-delayed signals is F(ω) =
F (ω)v(k, ω) where F (ω) is the transform of f(t) and

v(k, ω) ,
[
e−iωτ0 e−iωτ1 · · · e−iωτS−1

]T
(1)

is the array manifold vector, which is manifestly a vector of
phase delays for a plane wave with wavenumber k. To a first
order, the array manifold vector is a complete description of
the interaction of a propagating wave and an array of sensors.
Note that the notation v(k, ω) is actually redundant in that the
magnitude of k is ω/c.

If X(ω) denotes the vector of frequency domain signals
for all sensors, the so-called snapshot vector, and Y (ω) the
frequency domain output of the array, then the operation of a
beamformer can be represented as

Y (ω) = wH(ω) X(ω), (2)

where w(ω) is a vector of frequency-dependent sensor
weights. The differences between various beamformer designs
are completely determined by the specification of the weight
vector w(ω). The simplest beamforming algorithm, the delay-
and-sum (DS) beamformer, time aligns the signals for a plane
wave arriving from the look direction by setting

wDS , v(k, ω)/S. (3)

Substituting X(ω) = F(ω) = F (ω)v(k, ω) into (11) provides

Y (ω) = wH
DS(ω) v(k, ω)F (ω) = F (ω);

i.e., the output of the array is equivalent to the original signal
in the absence of any interference or distortion. In general,
this will be true for any weight vector achieving

wH(ω) v(k, ω) = 1. (4)

Hereafter we will say that any weight vector w(ω) achiev-
ing (4) satisfies the distortionless constraint, which implies
that any wave impinging from the look direction is neither
amplified nor attenuated.

B. Minimum Variance Distortionless Response Beamformer

To improve upon noise suppression performance provided
by the DS beamformer, it is possible to adaptively suppress
spatially-correlated noise and interference N(ω), which can
be achieved by adjusting the weights of a beamformer so
as to minimize the variance of the noise and interference at
the output subject to the distortionless constraint (4). More
concretely, we seek w(ω) achieving

argminw wH(ω) ΣN(ω) w(ω), (5)

subject to (4), where ΣN , E{N(ω)NH(ω)} and E{·} is the
expectation operator. In practice, ΣN is computed by averag-
ing or recursively updates the noise covariance matrix [8, §7].
The weight vectors obtained under these conditions correspond
to the minimum variance distortionless response (MVDR)
beamformer, which has the well-known solution [2, §13.3.1]

wH
MVDR(ω) =

vH(k, ω) Σ−1
N (ω)

vH(k, ω) Σ−1
N (ω) v(k, ω)

. (6)

If N(ω) consists of a single plane interferer with wavenum-
ber kI and spectrum N(ω), then N(ω) = N(ω)v(kI)
and ΣN(ω) = ΣN (ω)v(kI)v

H(kI), where ΣN (ω) =
E{|N(ω)|2}.

Depending on the acoustic environment, adapting the sensor
weights w(ω) to suppress discrete sources of interference can
lead to excessively large sidelobes, resulting in poor system
robustness. A simple technique for avoiding this is to impose
a quadratic constraint ‖w‖2 ≤ γ, for some γ > 0, in addition
to the distortionless constraint (4), when estimating the sensor
weights. The MVDR solution will then take the form [2,
§13.3.7]

wH
DL =

vH
(
ΣN + σ2

d I
)−1

vH (ΣN + σ2
d I)
−1

v
, (7)

which is referred to as diagonal loading where σ2
d is the

loading level; the dependence on ω in (7) has been suppressed
for convenience. While (7) is straightforward to implement,
there is no direct relationship between γ and σ2

d ; hence
the latter is typically set either based on experimentation
or through an iterative procedure. Increasing σ2

d decreases
‖wDL‖, which implies that the white noise gain (WNG) also
increases [15]; WNG is a measure of the robustness of the
system to steering errors, as well as errors in sensor placement
and response characteristics.

C. Super-Directive Beamformer

A theoretical model of diffuse noise that works well in
practice is the spherically isotropic field, wherein spatially
separated microphones receive equal energy and random phase
noise signals from all directions simultaneously [16, §4].
The MVDR beamformer with the diffuse noise model is
called the super-directive beamformer [2, §13.3.4]. The super-
directive beamforming design is obtained by replacing the



noise covariance matrix ΣN(ω) with the coherence matrix
Γ(ω) whose (m,n)-th component is given by

Γm,n(ω) = sinc
(
ωdm,n
c

)
, (8)

where dm,n is the distance between the mth and nth elements
of the array, and sinc x , sinx/x. Notice that the weight
of the super-directive beamformer is determined solely based
on the distance between the sensors dm,n and is thus data-
independent. In the most general case, the acoustic environ-
ment will consist both of diffuse noise as well as one or more
sources of discrete interference, such as in

ΣN(ω) = ΣN (ω)v(kI)v
H(kI) + σ2

SIΓ(ω), (9)

where σ2
SI is the power spectral density of the diffuse noise.

D. Minimum Mean-Square Error Beamformer

The MVDR beamformer is of particular interest because
it forms the preprocessing component of two other impor-
tant beamforming structures. Firstly, the MVDR beamformer
followed by a suitable post-filter yields the maximum signal-
to-noise ratio beamformer [8, §6.2.3]. Secondly, and more
importantly, by placing a Wiener filter [17, §2.2] on the
output of the MVDR beamformer, the minimum mean-square
error (MMSE) beamformer is obtained [8, §6.2.2]. Such post-
filters are important because it has been shown that they
can yield significant reductions in error rate [5], [18], [19],
[20]. Of the several post-filtering methods proposed in the
literature [21], the Zelinski post-filtering [22] technique is
arguably the simplest practical implementation of a Wiener
filter. Wiener filters in their pure form are unrealizable because
they assume that the spectrum of the desired signal is available.
The Zelinski post-filtering method uses the auto- and cross-
power spectra of the multi-channel input signals to estimate
the target signal and noise power spectra effectively under
the assumption of zero cross-correlation between the noises at
different sensors.

The MVDR beamformer and its variants can effectively
suppress sources of interference. They can also potentially
cancel the target signal, however, in cases wherein signals
correlated with the target signal arrive from directions other
than the look direction. This is precisely what happens in
all real acoustic environments due to reflections from hard
surfaces such as tables, walls and floors. A brief overview
of techniques for preventing signal cancellation can be found
in [23].

III. BEAMFORMING PERFORMANCE CRITERIA

Before continuing our discussion of adaptive array process-
ing algorithms, we introduce three measures of beamforming
performance, namely, the array gain, white noise gain, and
the directivity index. These criteria will prove useful in our
performance comparisons of conventional, linear and spherical
arrays in Section V.

A. Array Gain

The array gain is defined as the ratio of the signal-to-noise
(SNR) ratio at the output of the beamformer to the SNR at
the input of a single channel of the array. Hence, array gain
is a useful measure of how much a particular acoustic array
processing algorithm enhances the desired signal. In this sec-
tion, we formalize the concept of the array gain, and calculate
it for both the delay-and-sum and MVDR beamformers given
in (3) and (6), respectively.

Let us assume that the component of the desired signal
reaching each component of a sensor array is F (ω) and the
component of the noise and interference reaching each sensor
is N(ω). This implies that the SNR at the input of the array
can be expressed as

SNRin(ω) ,
ΣF (ω)

ΣN (ω)
, (10)

where ΣF (ω) , E{|F (ω)|2} and ΣN (ω) , E{|N(ω)|2}.
Then for the vector of beamforming weights wH(ω), the
output of the array is given by

Y (ω) = wH(ω) X(ω) = YF (ω) + YN (ω), (11)

where YF (ω) , wH(ω) F(ω) and YN (ω) , wH(ω) N(ω)
are, respectively, the signal and noise components in the
output of the beamformer. Let us define the spatial spectral
covariance matrices

ΣF(ω) , E{F(ω)FH(ω)},
ΣN(ω) , E{N(ω)NH(ω)}.

Then, upon assuming the F (ω) and N(ω) are statistically
independent, the variance of the output of the beamformer
can be calculated according to

ΣY (ω) = E{|Y (ω)|2} = ΣYF
(ω) + ΣYN

(ω), (12)

where
ΣYF

(ω) , wH(ω) ΣF(ω) w(ω) (13)

is the variance of the signal component of the beamformer
output, and

ΣYN
(ω) , wH(ω) ΣN(ω) w(ω) (14)

is the variance of the noise component. The spatial spectral
matrix F(ω) of the desired signal can be written as

ΣF(ω) = ΣF (ω) vk(ks) vHk (ks), (15)

where ks is the wavenumber of the desired source, and vk(ks)
is the array manifold vector (1). Substituting (15) into (13),
we can calculate the variance of the output signal spectrum as

ΣYF
(ω) = wH(ω) vk(ks) ΣF (ω) vHk (ks) w(ω). (16)

If we now assume that w(ω) satisfies the distortionless con-
straint (4), then (16) reduces to

ΣYF
(ω) = ΣF (ω),



which holds for both the delay-and-sum and MVDR beam-
formers.

Substituting (3) into (14), it follows that the noise compo-
nent present at the output of the DSB is given by

ΣYN
(ω) =

1

S2
vHk (ks) ΣN(ω) vk(ks) (17)

=
1

S2
vHk (ks)ρN(ω)vk(ks)ΣN (ω), (18)

where the normalized spatial spectral matrix ρN(ω) is defined
through the relation

ΣN(ω) , ΣN (ω) ρN(ω). (19)

Hence, the SNR at the output of the beamformer is given by

SNRout(ω) ,
ΣYF

(ω)

ΣYN
(ω)

=
ΣF (ω)

wH(ω) ΣN(ω)w(ω)
. (20)

Then based on (10) and (20), we can calculate the array gain
of the DSB as

Adsb(ω,ks) ,
ΣYF

(ω)

ΣYN
(ω)

/
ΣF (ω)

ΣN (ω)
(21)

=
S2

vHk (ks) ρN(ω) vk(ks)
. (22)

Repeating the foregoing analysis for the MVDR beam-
former (6), we arrive at

Amvdr(ω,ks) = vHk (ks) ρ
−1
N (ω) vk(ks). (23)

If noise at all sensors are spatially uncorrelated, then ρN(ω)
is the identity matrix and the MVDR beamformer reduces to
the DSB. From (22) and (23), it can be seen that in this case,
the array again is

Amvdr(ω,ks) = Adsb(ω,ks) = S. (24)

In all other cases,

Amvdr(ω,ks) > Adsb(ω,ks). (25)

The MVDR beamformer is of particular interest because it
comprises the preprocessing component of two other impor-
tant beamforming structures. Firstly, the MVDR beamformer
followed by a suitable post-filter yields the maximum signal-
to-noise ratio beamformer [8, §6.2.3]. Secondly, and more
importantly, by placing a Wiener filter [17, §2.2] on the
output of the MVDR beamformer, the minimum mean-square
error (MMSE) beamformer is obtained [8, §6.2.2]. Such post-
filters are important because it has been shown that they
can yield significant reductions in error rate [18], [24]. If
only a single subband is considered, the MVDR beamformer
without modification will uniformly provide the highest SNR,
as indicated by (25), and hence the highest array gain; we will
return to this point in Section V.

B. White Noise Gain

The white noise gain (WNG) is by definition [15]

Gw(ω) ,

∣∣wH(ω) v(ks)
∣∣2

wH(ω) w(ω)
. (26)

The numerator of (26), which will be unity for any beamformer
satisfying the distortionless constraint (4), represents the power
of the desired signal at the output of the beamformer, while
the denominator is equivalent to the array’s sensitivity to self
sensor noise. Gilbert and Morgan [25] explain that WNG also
reflects the sensitivity of the array to random variations in its
components, including the positions and response characteris-
tics of its sensors. Hence, WNG is a useful measure of system
robustness.

It can be shown that uniform weighting of the sensor outputs
provides the highest WNG [8, §2.6.3]. Hence, we should
expect the delay-and-sum beamformer to provide the highest
WNG in all conditions; we will re-examine this assumption
in Section V.

C. Directivity Index

We now describe our third beamforming performance met-
ric. Let us begin by defining the power pattern as

P (θ, φ) , |B(θ, φ)|2 , (27)

where B(θ, φ) is the beampattern as a function of the spherical
coordinates Ω , (θ, φ). Let Ω0 , (θ0, φ0) denote the look
direction. The directivity is typically defined in the traditional
(i.e., non-acoustic) array processing literature as [8, §2.6.1]

D(ω) ,
4πP (θ0, φ0)∫
Ωsph

P (θ, φ) dΩ

, (28)

where Ωsph represents the surface of a sphere with differential
area dΩ; we will consider such spherical integrals in detail in
Sections IV and V.

Assuming that the beamforming coefficients satisfy the
distortionless constraint (4) implies P (Ω0) = 1 such that (28)
can be simplified and expressed in decibels as the directivity
index

DI , −10 log10

[
1

4π

∫
Ω

P (θ, φ) dΩ

]
= −10 log10

[
1

4π

∫ 2π

0

∫ π

0

P (θ, ω) sin θdθdφ

]
. (29)

Note the critical difference between array gain and directivity
index. While the former requires specific knowledge of the
acoustic environment in which a given beamformer operates,
the latter is the ratio of the sensitivity of the array in the
look direction to that averaged over the surface of the sphere.
Hence, the directivity index is independent of the acoustic en-
vironment once the beamforming weights have been specified.

In the acoustic array processing literature, directivity is more
often defined as SNR in the presence of a spherically isotropic
diffuse noise field with sensor covariance matrix defined in (8);
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see [26]. Under this definition, the directivity index can be
expressed as

DI , −10 log10

∣∣wHv(kS)
∣∣2

wHΓSIw
. (30)

The superdirective beamformer mentioned in Section II-C
will uniformly provide the highest directivity index, although
this may not be the case when the covariance matrix (8) is
diagonally loaded to achieve greater robustness. We will return
to this point in Section V.

IV. SPHERICAL MICROPHONE ARRAYS

The advantage of spherical arrays is that they can be pointed
at a desired speaker in any direction with equal effect; the
shape of the beampattern is invariant to the look direction. The
following sections provide a review of beamforming methods
in the spherical harmonics domain. Thereafter we provide a
comparison of spherical and linear arrays in terms of DSR
performance.

In this section, we describe how beamforming is performed
in the spherical harmonics domain. We will use the spherical
coordinate system (r, θ, φ) shown in Figure 2 and denote the
pair of polar angle θ and azimuth φ as Ω = (θ, φ).

Spherical Harmonics: Let us begin by defining the spher-
ical harmonic of order n and degree m [9] as

Y mn (Ω) ,

√
(2n+ 1)

4π

(n−m)!

(n+m)!
Pmn (cos θ)eimφ, (31)

where Pmn (·) denotes the associated Legendre function [27,
§6.10.1]. Figure 3 shows the magnitude for the spherical
harmonics, Y0 , Y 0

0 , Y1 , Y 0
1 , Y2 , Y 0

2 and Y3 , Y 0
3

in three-dimensional space. The spherical harmonics satisfy

a) b) c) d)
Fig. 3. Magnitude of spherical harmonics, a) Y0, b ) Y1, c) Y2 and d) Y3.
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the orthonormality condition [9], [28],

δn,n′ δm,m′ =

∫
Ω

Y m
′

n′ (Ω)Ȳ mn (Ω)dΩ (32)

=

∫ 2π

0

∫ π

0

Y m
′

n′ (θ, φ)Ȳ mn (θ, φ) sin θdθ dφ, (33)

where δm,n is the Kronecker delta function, and Ȳ is the
complex conjugate of Y .

Spherical Fourier Transform: In Section II, we defined
the wavenumber as a vector perpendicular to the front of a
plane wave of angular frequency ω pointing in the direction
of propagation with a magnitude of ω/c. Now let us define
the wavenumber scalar as k = |k| = ω/c; when no confusion
can arise, we will also refer to k as simply the wavenumber.
Let us assume that a plane wave of wavenumber k with unit
power is impinging on a rigid sphere of radius a from direction
Ω0 = (θ0, φ0). The total complex sound pressure on the sphere
surface at Ωs can be expressed as

G(ka,Ωs,Ω0) = 4π

∞∑
n=0

inbn(ka)

n∑
m=−n

Ȳ mn (Ω0)Y mn (Ωs),

(34)
where the modal coefficient bn(ka) is defined as [9], [10]

bn(ka) , jn(ka)− j′n(ka)

h′n(ka)
hn(ka); (35)

jn and hn are the spherical Bessel function of the first kind and
the Hankel function of the first kind [29, §10.2], respectively,
and a prime indicates the derivative of a function with respect
to its argument. Figure 4 shows the magnitude of the modal
coefficients as a function of ka. It is apparent from the
figure that the spherical array will have poor directivity at
the lowest frequencies—such as ka = 0.2 which corresponds
to 260 Hz for a = 4.2 cm—inasmuch as only Y0 is available
for beamforming; amplifying the higher order modes at these
frequencies would introduce a great deal of sensor self noise
into the beamformer output. From Figure 3 a), however,
it is clear that Y0 is completely isotropic; i.e., it has no
directional characteristics and hence provides no improvement
in directivity over a single omnidirectional microphone.



The sound field G can be decomposed by the spherical
Fourier transform as

Gmn (ka,Ω0) =

∫
Ω

G(ka,Ω,Ω0)Ȳ mn (Ω)dΩ (36)

and the inverse transform is defined as

G(ka,Ω,Ω0) =

∞∑
n=0

n∑
m=−n

Gmn (ka,Ω0)Y mn (Ω). (37)

The transform (36) can be intuitively interpreted as the de-
composition of the sound field into the spherical harmonics
illustrated in Figure 3.

Upon substituting the plane wave (34) into (36), we can
represent the plane wave in the spherical harmonics domain
as

Gmn (ka,Ω0) = 4π in bn(ka) Ȳ mn (Ω0). (38)

In order to understand how beamforming may be performed
in the spherical harmonic domain, we need only define the
modal array manifold vector [30, §5.1.2] as

v(ka,Ω0) ,



G0
0(ka,Ω0)

G−1
1 (ka,Ω0)
G0

1(ka,Ω0)
G1

1(ka,Ω0)
G−2

2 (ka,Ω0)
G−1

2 (ka,Ω0)
G0

2(ka,Ω0)
...

G−NN (ka,Ω0)
...

GNN (ka,Ω0)



, (39)

which fulfills precisely the same role as (1). It is similarly
possible to define a noise plus interference vector N(ka) in
spherical harmonic space. Moreover, Yan et al. [31] demon-
strated that the covariance matrix for the spherically isotropic
noise field in spherical harmonic space can be expressed as

Γ(ka) = 4πσ2
SI diag{|b0(ka)|2,−|b1(ka)|2,−|b1(ka)|2,

− |b1(ka)|2, |b2(ka)|2, · · · , (−1)N |bN (ka)|2}, (40)

where σ2
SI is the noise power spectral density.

With the changes described above, all of the relations
developed in Section II can be applied; the key intuition
is that the physical microphones have been replaced by the
spherical harmonics which have the very attractive property
of the orthonormality as indicated by (33). In particular, the
weights of the delay-and-sum beamformer can be calculated
as in (3), the MVDR weights as in (6), and the diagonally
loaded MVDR weights as in (7); the spherical harmonics
super-directive beamformer is obtained by replacing ΣN in (7)
with (40).

A. Discretization

In practice, it is impossible to construct a continuous,
pressure sensitive spherical surface; the pressure must be
sampled at S discrete points with microphones. The discrete
spherical Fourier transform and the inverse transform can be
written as

Gmn (ka) =

S−1∑
s=0

αsG(ka,Ωs)Ȳ
m
n (Ωs), (41)

G(ka,Ωs) =

N∑
n=0

n∑
m=−n

Gmn (ka)Y mn (Ωs), (42)

where Ωs indicates the position of microphone s and αs is
a quadrature constant. Typically N is limited such that (N +
1)2 ≤ S to prevent spatial aliasing [9].

Accordingly, the orthonormality condition (33) is approx-
imated by the weighted summation, which causes orthonor-
mality error [28]. In order to alleviate the error caused by
discreteness, spatial sampling schemes [10] or beamformer’s
weights [28] must be carefully designed. In this article, we
use a spherical microphone array with 32 equidistantly spaced
sensors and set αs = 4π/S in (41) for the experiments
described later.

V. SPHERICAL ADAPTIVE ALGORITHMS

In this case we investigate the MVDR beamformer de-
scribed in Section II-B for spherical arrays. The solution for
the MVDR beamforming weights with diagonal loading is
given by (7). As discussed in the prior section, in the case
of a spherical array, we treat each modal component as a
microphone, and apply the beamforming weights directly to
the output of each mode. In so doing, we are adhering to the
decomposition of the entire beamformer into eigenbeamformer
followed by a modal beamformer as initially proposed by [9],
[32].

With formulations of the relevant array manifold vec-
tor (39), we can immediately write the solution (3) for the
delay-and-sum beamformer. Another popular fixed design for
spherical array processing is the hypercardioid [9]. In order
to illustrate the differences between these several designs,
let us now consider the case wherein the look direction is
(θ, φ) = (0, 0) and there is a single strong interference
signal impinging on the array from (θI, φI) = (π/6, 0) with a
magnitude of σ2

I = 10−1. In this case, the covariance matrix
of the array input is

ΣX(ka) = v(Ω, ka) vH(Ω, ka)

+ σ2
I v(θI, φI, ka) vH(θI, φI, ka). (43)

The beampatterns obtained with the delay-and-sum and hyper-
cardioid designs are shown in Figure 5a) and b) respectively.
The MVDR design both with and without a radial symmetry
constraint are shown in Figure 5c) and d), respectively.



a) Delay-and-Sum b) Hypercardioid

c) Radially Symmetric
MVDR d) Asymmetric MVDR

Fig. 5. Spherical beampatterns for ka = 10.0: a) Delay-and-sum beam-
pattern; b) Hypercardioid beampattern H = Y0 +

√
3Y1 +

√
5Y2; c)

Symmetric MVDR beampattern obtained with spherical harmonics Yn for
n = 0, 1, . . . , 5, diagonal loading σ2

D = 10−2 for a plane wave interferer
π/6 rad from the look direction; d) Asymmetric MVDR beampattern obtained
with spherical harmonics Ym

n for n = 0, 1, . . . , 5, m = −n, . . . , n, diagonal
loading σ2

D = 10−2 for a plane wave interferer π/6 rad from the look
direction.
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Fig. 6. Orientation of the a) Mark IV linear array and b) Eigenmike R©
spherical array.

VI. COMPARATIVE STUDIES

In this section, we present a set of comparative studies for
a conventional linear array and a spherical array. We first
compare the arrays on the basis of the theoretical performance
metrics introduced in Section III, namely array gain, white
noise gain, and directivity index. Thereafter, we compare the
arrays on a metric of more direct interest to those researchers
on the forefront of distant speech recognition technology,
namely, word error rate.

The orientation of the conventional, linear and spherical
arrays shown in Figure 6 were used as the basis for evaluating
array gain, white noise gain, and directivity index; these con-
figurations were intended to simulate the condition wherein the
arrays are mounted at head height for a standing speaker. The
acoustic environment we simulated involved a desired speaker,
a source of discrete interference—such as a screen projector—
somewhat below and to the left of the desired source, and
a spherically isotropic noise field—such as might be created

Position Ω , (θ, φ)
Source Mark IV Eigenmike Level (dB)
Desired (3π/8, 0) (π/2,−π/8) 0

Discrete Interference (3π/4, π/8) (3π/8, π/4) -10
Diffuse Noise — — -10

TABLE I
ACOUSTIC ENVIRONMENT FOR COMPARING THE MARK IV LINEAR
ARRAY WITH THE EIGENMIKE R© SPHERICAL MICROPHONE ARRAY.

by an air conditioning system; the details of the environment,
which is equivalent for both arrays, are summarized in Table I.
The specific arrays we chose to simulate were the Mark IV
linear array and the Eigenmike R© spherical array.

In Figure 7 are shown the plots of array gain as a function
of ka of for the ideal spherical array as well as the discrete
arrays with S = 24 and 32. From these plots two facts become
apparent. Firstly, the MVDR beamformer, as anticipated by the
theory presented in Section II-B, provides the highest array
gain overall. This was to be expected because minimizing the
noise variance is equivalent to maximizing SNR if performed
over each individual subband; in order to maximize SNR over
the entire subband, the subband signals must be weighted by a
Wiener filter prior to their combination. Secondly, the figures
for S = 24 and 32 indicate that the array gain of the ideal array
is reduced when the array must be implemented in hardware
with discrete microphones.

Figure 8 shows the white noise gain (WNG) for the ideal
spherical array, as well as its discrete counterparts for S =
24 and 32. Once more, as predicted by the theory, the uniform
(i.e., D&S) beamformer provides the best performance accord-
ing to this metric. The SD and MVDR beamformers provide
substantially lower WNG at low frequencies, but essentially
equivalent performance for ka ≥ 30.

The beampattern is the sensitivity of the array to a plane
wave arriving from some direction Ω. By weighting each
spherical mode (38) by w̄mn , the beampattern for the ideal
array can be expressed as

B(Ω, ka) = 4π

N∑
n=0

inbn(ka)

n∑
m=−n

w̄mn Ȳ mn (Ω).

This implies that the power pattern (27) is given by

P (Ω) , |B(Ω, ka)|2 (44)

= 16π2
∞∑

n,n′=0

in īn
′
bn(ka) b̄n′(ka)·

n,n′∑
m,m′=−n,−n′

w̄mn wm
′

n′ Ȳ
m
n (Ω)Y m

′

n′ (Ω).

Substituting (44) into (29) and applying (33) then pro-
vides [11]

DIideal(ka,w) =

− 10 log10

{
4π

N∑
n=0

|bn(ka)|2
m∑

m=−n
|wmn |

2

}
. (45)
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Fig. 7. Array gain as a function of ka for a) S = 24, b) S = 32, and c) the Ideal array.
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Fig. 8. White noise gain as a function of ka for a) S = 24, b) S = 32, and c) the Ideal array.

-5

0

5

10

15

10-1 100 101

D
ire

ct
iv

ity
 In

de
x 

(d
B

)

ka

D&S 
SD 
MVDR

a) S = 24

-5

0

5

10

15

10-1 100 101

D
ire

ct
iv

ity
 In

de
x 

(d
B

)

ka

D&S 
SD 
MVDR

b) S = 32

-5

0

5

10

15

10-1 100 101

D
ire

ct
iv

ity
 In

de
x 

(d
B

)

ka

D&S 
SD 
MVDR

c) Ideal array

Fig. 9. Directivity index as a function of ka for a) S = 24, b) S = 32, and c) the Ideal array.

The directivity index as a function of ka for both ideal
and discrete arrays is plotted in Figure 9. These figures reveal
that—as anticipated by the theory of Section II-C—the su-
perdirective (SD) beamformer provides the highest directivity
save in the very low frequency region where the sensor
covariance matrix (8) is dominated by the diagonal loading.

Now we come to an equivalent set of plots for the Mark IV
linear array; these are shown in Figure 10, where each metric
is shown as a function of d/λ, the ratio of intersensor spacing
to wavelength. Once more, the MVDR beamformer provides
the highest array gain, the D&S beamformer the highest white
noise gain, and the superdirective beamformer the highest
directivity index. What is unsurprising is that the Mark IV

provides a higher array gain than the Eigenmike overall, given
its greater number of sensors. What is somewhat surprising is
the drastic drop in all metrics just below the point d/λ = 1;
this stems from the fact that this is the point where the first
grating lobe crosses the source of discrete interference. A
grating lobe cannot be suppressed given that—due to spatial
aliasing—it is indistinguishable from the main lobe and hence
subject to the distortionless constraint (4).

VII. COMPARISON OF LINEAR AND SPHERICAL ARRAYS
FOR DSR

As a spherical microphone array has—to the best knowledge
of the current authors—never before been applied to DSR,
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Fig. 10. a) Array gain, b) white noise gain, and c) directivity index as a function of d/λ for the 64-element, linear Mark IV micophone array with an
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Fig. 11. The layout of the recording room.

our first step in investigating its suitability for such a task
was to capture some prerecorded speech played into a real
room through a loudspeaker, then perform beamforming and
subsequently speech recognition. Figure 11 shows the config-
uration of room used for these recordings. As shown in the
figure, the loudspeaker was placed in two different positions;
the locations of the sensors and loudspeaker were measured
with OptiTrack, a motion capture system manufactured by
NaturalPoint. For data capture we used an Eigenmike R© which
consists of 32 microphones embedded in a rigid sphere with
a radius of 4.2 cm; for further details see the website of
mh acoustics, http://www.mhacoustics.com. Each sensor of
the Eigenmike R© is centered on the face of a truncated
icosahedron. We simultaneously captured the speech data with
a 64-channel, uniform linear Mark IV microphone array with
an intersensor spacing of 2 cm for a total aperture length
of 126 cm. Speech data from the corpus were used as test
material. The test set consisted of 3,241 words uttered by 37
speakers for each recording position. The far-field data was
sampled at a rate of 44.1 kHz. The reverberation time T60 in
the recording room was approximately 525 ms.

We used the speech recognition system and passes described
in Kumatani et al [12]. Tables II and III show word error
rates (WERs) for each beamforming algorithm for the cases
wherein the angles of incidence of the target signal to the array

Beamforming (BF) Algorithm Pass (%WER)
1 2 3 4

Single array channel (SAC) 47.3 18.9 14.3 13.6
D&S BF with linear array 44.7 17.2 11.1 9.8
SD BF with linear array 45.5 16.4 10.7 9.3

Spherical D&S BF 47.3 16.8 13.0 12.0
Spherical SD BF 42.8 14.5 11.5 10.2

CTM 16.7 7.5 6.4 5.4

TABLE II
WERS FOR EACH BEAMFORMING ALGORITHM IN THE CASE THAT THE

ANGLE OF INCIDENCE TO THE ARRAY IS 28o .

were 28o and 68o, respectively. As a reference, the WERs
obtained with a single array channel (SAC) and the clean
data played through the loudspeaker (Clean data) are also
reported. It is clear from the tables that every beamforming
algorithm provides superior recognition performance to the
SAC after the last adapted pass of recognition. It is also
clear from the tables that superdirective beamforming with
the small spherical array of radius 4.2 cm (Spherical SD
BF) can achieve recognition performance very comparable to
that obtained with the same beamforming method with the
linear array (SD BF with linear array). In the case that the
speaker position is nearly in front of the array, superdirective
beamforming with the linear array (SD BF with linear array)
can still achieve the best result among all the algorithms. This
is because of the highest directivity index can be achieved with
64 channels, twice as many as the sensors as in the spherical
array. In the other configuration, however, wherein the desired
source is at an oblique angle to the array, the spherical
superdirective beamformer (Spherical SD BF) provides better
results than the linear array because it is able to maintain
the same beam pattern regardless of the angle of incidence.
In these experiments, spherical D&S beamforming (Spherical
D&S BF) could not improve the recognition performance
significantly because of its poor directivity.

VIII. CONCLUSIONS AND FUTURE DIRECTIONS

This contribution provided an overview of standard beam-
forming methods for spherical microphone arrays. Addtionally,
we compared conventional linear and spherical arrays in



Beamforming (BF) Algorithm Pass (%WER)
1 2 3 4

Single array channel (SAC) 57.8 25.1 19.4 16.6
D&S BF with linear array 53.6 24.3 16.1 13.3
SD BF with linear array 52.6 23.8 16.6 12.8

Spherical D&S BF 57.6 22.7 14.9 13.5
Spherical SD BF 44.8 15.5 11.3 9.7

CTM 16.7 7.5 6.4 5.4

TABLE III
WERS FOR EACH BEAMFORMING ALGORITHM IN THE CASE THAT THE

ANGLE OF INCIDENCE TO THE ARRAY IS 68o .

terms of the theoretical performance metrics typically used in
acoustic beamforming. Finally, we presented the results of sev-
eral distant speech recognition (DSR) experiments comparing
linear and spherical arrays under the realistic conditions. The
results suggested that the compact spherical microphone array
can achieve recognition performance comparable or superior
to that of a large linear array. In our view, a key research topic
in future will be the efficient integration of various information
sources such as video modalities and turn-taking models into
a DSR-based dialogue systems.
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