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Abstract—In this work, we study a change-point approach
to provide the quickest detection of power quality (PQ) event
occurrence for smart grids. Despite that both the occurrence time
and the PQ event type are unknown beforehand, knowledge of
the statistics of post-PQ event signals is required to implement
the change-point approach. To circumvent this obstacle, we
propose to model the unknown PQ events using different sta-
tistical distributions, namely the Gaussian, Gamma and inverse
Gamma distributions. It is shown by computer simulation that
all distributions under consideration can provide accurate PQ
event detection. In particular, the inverse Gamma distribution
demonstrates the most promising performance in our simulation.

Index Terms—Power quality (PQ), Change-point detection
theory, cumulative sum (CUSUM) algorithm.

I. INTRODUCTION

The emerging smart grid has presented an unprecedented
opportunity to catapult the aging electric power infrastructure
into the digital grid by leveraging state-of-the-art information
technology. Equipped with two-way information and power
exchange between utilities and customers, the smart grid
is envisaged to dramatically improve future power delivery
with significantly improved efficiency and reliability. However,
realizing the promise of the smart grid critically hinges upon
adoption and integration of innovative smart grid technologies.
In particular, power quality (PQ) monitoring technology is
indispensable for highly reliable power delivery by providing
reliable and real-time network surveillance. More specifically,
the sinusoidal power waveform generated by electric utilities is
often distorted over transmission lines. In general, distortions
can be classified into two categories; namely, PQ variations
and PQ events [1], [2]. In contrast to PQ variations charac-
terized by small and gradual deviations from the sinusoidal
voltage/current waveforms, PQ events incur large waveform
deviations. Thus, PQ events are more detrimental to the
power distribution network since they may potentially inflict
more severe damages such as power outages. Therefore, the
occurrence of PQ events has to be accurately and timely
detected to facilitate appropriate amending actions. In practice,
PQ event monitoring consists of two steps: 1) detection and
2) classification. In the first step, the occurrence of a PQ
event is declared when the waveform change is detected
to exceed a pre-defined threshold. In the second step, the

distorted waveforms are fed into a classifier to identify the
cause of the PQ event before further analysis is performed.
Figure 1 illustrates voltage transient and sag events generated
with the IEEE 14-bus test setup shown in [3] at 0.06s. In
this work, we focus on developing novel detection schemes in
the first step. For readers interested in the classification step
of the PQ event monitoring, we refer to [2] and references
therein for a more comprehensive treatment. Furthermore, for
presentational simplicity, we concentrate on the voltage-based
PQ events in this work while its extension to the current-based
PQ events can be done in a straightforward manner.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time

N
or

m
al

iz
ed

 V
ol

ta
ge

Fig. 1. Illustration of a voltage transient event.

Three PQ event detection methods have been proposed in
the current literature. The first one keeps tracking the root
mean squared (rms) value of the voltage waveform over a
moving window. The likelihood of PQ event occurrence is
evaluated based on the rms change across windows. Despite
its simplicity, the rms-based method is effective in detect-
ing amplitude-related distortions. The second one detects
the distortion in the frequency domain by transforming the
time waveform into the frequency waveform using either the
wavelet or the short-time Fourier transform (STFT) [2]. The
third one decomposes the waveform into a sum of damped
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sinusoids using super-resolution spectral analysis techniques
such as signal estimation via a rotational invariance technique
(e.g., ESPRIT) or multiple signal classification (e.g., MUSIC)
[4]. The distorted waveform is detected by comparing the
decomposed frequency-domain components of a monitored
waveform with those of the normal one. Apparently, the
latter two are more agile to frequency distortions. Note that
a sliding window is also required in all these methods to
segment the waveform into blocks before any computational
operation is applied [2]. As a result, the time resolution of
all three methods is restricted by the sliding window size. To
cope with this problem, [5] has studied the PQ monitoring
problem in a change-point detection theoretic framework. In
[5], a cumulative sum (CUSUM)-based sequential detection
scheme [6] has been proposed by exploiting the difference of
statistical distributions of power waveforms before and after
the PQ event occurrence. Since the CUSUM scheme proposed
in [5] performs sample-by-sample evaluation, it can achieve
the quickest detection with the finest time resolution.

However, the CUSUM scheme requires knowledge about
the statistics of signals before and after PQ events. While
the statistics of the sinusoidal signal before PQ events can
be well characterized, the post-change signal statistics are
usually unknown, depending on the nature of the underlying
PQ event(s). To circumvent this uncertainty, [5] proposed to
model the post-event signal using the Gaussian distribution
by invoking the central limit theorem (CLT). Furthermore,
assuming that the Gaussian noise is zero-mean, [5] then
modeled the variance of the post-event signal as a Gaus-
sian random variable. Finally, capitalizing on the change-
point detection theory with unknown parameters, the weighted
CUSUM algorithm is employed to compute the expected log-
likelihood ratio (LLR) over the variance. Simulation results
in [5] showed that this approach could successfully capture
the characteristics of uncertain PQ events. While modeling
the variance as a Gaussian-distributed random variable is rea-
sonable, other distributions have also recently been proposed
for uncertainty modeling in the literature. For instance, [7]
adopted the inverse gamma distribution to model uncertainty
in channel estimation.

In this work, we examine the performance obtained with
different variance models. More specifically, we model the
unknown post-event signal variance using three distributions,
namely the Gaussian distribution, the Gamma distribution and
the inverse Gamma distribution. Through simulation, we com-
pare the resulting performance of the change-point approach
in PQ monitoring using the change-point detection technique
developed in [5].

II. PROBLEM FORMULATION

In this section, we will introduce the signal model for PQ
monitoring. Denote by te the PQ event occurrence time, the
goal is to detect the PQ event with the minimum delay and
the highest detection accuracy.

A. Pre-event PDF

The continuous-time signal before the PQ event is measured
and sampled with the k-th sample being modeled as

y[k] = sθ0 [k] + n[k], (1)

where n[k] is the additive white Gaussian noise (AWGN) with
zero-mean and variance σ2

n, denoted by N (0, σ2
n), and

sθ0 [k] = a0 · sin (2πf0Tsk + ϕ0) , (2)

is the undistorted power waveform with Ts being the sampling
duration, θ0

def
= [a0, f0, ϕ0]

T , where a0 = 1 is the signal
amplitude gain, and f0 and ϕ0 are the fundamental frequency
and the initial phase of the power waveform, respectively.
Note that we have implicitly assumed the variance of n[k]
is independent of k.

To facilitate our detection algorithm development, we first
transform y[k] in (1) into z[k] as

z[k]
def
= y[k]− sθ0 [k] = n[k], 0 ≤ t < te. (3)

Since sθ0 is deterministic, the probability density functions
(PDF) of z is simply

pθ0(z) = N
(
0, σ2

n

)
. (4)

B. Post-event PDF

Next, we model the power waveform after the PQ event as

y[k] = sθ1 [k] + n[k], t ≥ te, (5)

where

sθ1 [k] = a1 · sin (2πf1Tsk + ϕ1) + ξφ[k], (6)

with ξφ[k] being the additive distortion parameterized by φ.
Furthermore, θ1

def
=

[
a1, f1, ϕ1,φ

T
]T are the signal amplitude

gain, the fundamental frequency, the initial phase of the
post-event power waveform and additive distortion power,
respectively.

Clearly, the PDF of y in Eq. (5) depends on the specific type
of PQ events under consideration. As a result, it is generally
difficult to fully characterize the PDF denoted by pθ1(y) before
the occurrence of the PQ event. To cope with this uncertainty
of the post-event PDF, we also transform Eq. (5) in a similar
manner as Similar (3) :

z[k] = y[k]− sθ0 [k] = x[k] + w[k], (7)

where

x[k] = a1 · sin (2πf1t+ ϕ1) , (8)
w[k] = ξφ[k]− sθ0 [k] + n[k]. (9)

Since θ1 is unknown, rather than evaluating the LLR pθ1
(zi)

pθ0
(zi)

directly, we compute the logarithm of the weighted likelihood
ratio with the weighted CUSUM method as

si = ln

[∫
Θ1

pθ1(zi)

pθ0
(zi)

dFΘ1 (θ1)

]
, (10)
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where FR (r) is the cumulative density function (CDF) of the
enclosed random variable R.

By invoking the central limit theorem, we can approximate
the PDF of w as N

(
0, σ2

w

)
, where σ2

w = σ2
ξ + σ2

n + 1
2a

2
0.

Furthermore, recall that x[k] is approximately uniformly dis-
tributed over [−a1,+a1] with a1 > 0. Thus, it is shown in the
Appendix that

pθ1(z) =
1

4a1

[
erf

(
z + a1√
2 · σw

)
− erf

(
z − a1√
2 · σw

)]
. (11)

With the assumption that x[k] and w[k] are statistically inde-
pendent, we can express F (θ1) as

FΘ1 (θ1) = FA1 (a1) · FΣw (σw) . (12)

As a result, Eq. (10) becomes

si = ln

[∫
A1

∫
Σw

pθ1(zi)

pθ0(zi)
dFΣw (σw) dFA1 (a1)

]
. (13)

In the following, we propose to model F (·) using different
statistical distributions.

III. MODELING UNCERTAINTY

A. CDF of Uncertainty

The most commonly used distribution of F (·) includes the
uniform and Gaussian distributions [6]. In [5], the performance
using the Gaussian distribution has been examined. Alterna-
tively, we can also model F (·) using the inverse Gamma and
Gamma distributions. More specifically, we denote the shape
and scale parameters by α and β, respectively. The F (·) using
the inverse Gamma distribution can be expressed as:

Fx(x) = Q

(
β

x

)
, (14)

where we set the shape parameter α = 1 and the Q function
takes the following form:

Q(x) =
1√
2π

∫ ∞

x

exp

(
−u2

2

)
du. (15)

Finally, the F (·) using the Gamma distribution can be
written as

Fx(x) =

∫ x
β

0

e−t dt, (16)

with the shape parameter is also set to α = 1.
Note that the two CDF’s in Eq. (13), namely FΣw and dFA1 ,

can be modeled using various combinations of different statis-
tical distributions. For simplicity, we use the same distribution
for both CDF’s in the following simulation.

B. Summary of Weighted CUSUM-based Schemes

The proposed weighted CUSUM-based PQ-event detection
scheme is summarized in Algorithm 1.

Algorithm 1 Weighted CUSUM-based PQ-event detection
Inputs: samples {yk} and a preset threshold h
States: Initialize te = 0
Procedure:

for k = 1, 2, · · · ,∞ do
zk = yk − sθ0(tk);
sk = ln

[∫
A1

∫
Σw

pθ1
(zk)

pθ0
(zk)

dFΣw
(σw) dFA1

(a1)
]
;

Sk =
k∑

i=1

si;

mk = min
1≤j≤k

Sj ;

gk = Sk −mk;
if gk ≥ h then
t̂e = tk;
break;

end if
end for
Declare the detection of a PQ event at time t̂e if t̂e ̸= 0.

IV. SIMULATION RESULTS AND DISCUSSIONS

In this section, simulation results are provided to compare
the performance of the proposed CUSUM using different
statistical distributions to model the uncertainty. We use ATP
to simulate voltage transients with the IEEE 14-bus test setup
specified in [3]. The PQ event is set to take place at te = 0.06s
in the simulation. Furthermore, we set the sampling rate at
Ts = 0.1 ms and define the signal-to-noise ratio (SNR) as 1

σ2
n

while fixing a0 = 1.
We compare three different distributions, namely the Gaus-

sian, Gamma and inverse Gamma distributions. For the Gaus-
sian distribution, we assume that both mean and variance are
unity. For the Gamma and inverse Gamma distributions, we set
the scale parameter β to 2 and 0.5, respectively. The simulation
result is shown in Fig. 2 where the cumulated si value is
depicted as a function of time.
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Fig. 2. PQ monitoring performance with different uncertainty models.
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First, Fig. 2 shows that all three distributions could accu-
rately detect the occurrence of the PQ event at te = 0.06s.
Furthermore, we argue that the slope of the performance curve
at te = 0.06s is a good metric to evaluate how well the PQ
event can be detected. More specifically, steeper is the rising
edge, more robust is the detection. Inspection of Fig. 2 reveals
that the inverse Gamma modeling has slight edge over the
other two distributions, though the advantage does not appear
very significant.

V. CONCLUSION AND FUTURE WORK

Intelligent PQ event monitoring technology is indispensable
for realizing the promise of the smart grid. In this study, we
have extended the change-point detection scheme proposed in
our previous work by modeling the uncertainty caused by PQ
events using various statistical distributions. Simulation results
have shown that all distributions investigated provided accurate
PQ event detection while the inverse Gamma distribution
demonstrated the best performance.

We may consider several extensions of our current study.
For example, instead of using the same distribution for both
FΣw and dFA1 , different distribution combinations can be
employed to model these two CDF’s. Furthermore, it is
worthwhile to study the impact of fine-tuning distribution
parameters such as the scale parameter β in the inverse Gamma
distribution on the performance of the proposed approach.

APPENDIX

In this appendix, we will detail the derivation steps of
Eq. (11). Recalling Eq. (7), we know that Z is the sum
of a uniform-distributed random variable X ∼ U [−a1, a1]
and a Gaussian-distributed random variable W ∼ N(0, σ2).
Exploiting the fact that X and W are statistically independent,
the PDF of Z is simply given by the convolution of the PDF’s
of X and W :

pZ(z) =

∫ +a1

−a1

1

2a1

1√
2πσ

e−
(z−x)2

2σ2 dx. (17)

Let y = (z−x)√
2σ

. After replacing Y with Z in Eq. (17), we
have

pZ(z) =

∫ z+a1√
2σ

z−a1√
2σ

1

2a1

1√
π
e−y2

dx (18)

=
1

4a1

[
erf(

z + a1√
2σ

)− erf(
z − a1√

2σ
)

]
(19)

where
erf(x) =

2√
π

∫ x

0

e−t2 dt. (20)
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