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Abstract— Image/video interpolations and super-resolution 

are topics of great interest. Their applications include HDTV, 
image coding, image resizing, image manipulation, face 
recognition and surveillance. The objective is to increase the 
resolution of an image/video through upsampling, deblurring, 
denoising, etc. This paper reviews the development of various 
approaches on image interpolation and super-resolution theory 
for image/video enlargement in multimedia applications. Some 
basic formulations will be derived such that readers can make 
use of them to design their own, practical and efficient 
interpolation algorithms.  New results, such as hole filling using 
nonlocal means for 3D video synthesis and fast interpolation 
using a simplified image model will be introduced. New 
directions and trends will also be discussed at the end of the 
paper.  

I. INTRODUCTION 
Image interpolation and super-resolution are topics of 

great interest. The aim is to improve the resolution of a low-
resolution (LR) image/video to obtain a high-resolution (HR) 
one which is able to preserve the characteristics of natural 
images/videos. The major difference between interpolation 
and super-resolution is that interpolation only involves 
upsampling the low-resolution image, which is often assumed 
to be aliased due to direct down-sampling. The interpolation 
algorithms often exploit this aliasing property and perform de-
aliasing of the LR image during the upsampling process. As a 
result, the high-frequency components of the upsampled HR 
image can be better recovered for preserving the 
characteristics of natural images [1]. However, natural images 
do not usually observe severe aliases, such that the upsampled 
HR image does not usually recover sufficiently the high-
frequency components which lead to an blurry image.  

Besides the blurry effect, noises due to CCD’s 
limitations and transmission errors, etc, have to be handled. 
Super-resolution aims to address all these undesirable effects, 
including the resolution degradation, blur and sometimes 
noise effects. Hence, super-resolution usually involves three 
major processes which are upsampling (interpolation), 
deblurring and denoising.   

The applications of image interpolation and super-
resolution are very wide, including HDTV, image/video 
coding, image/video resizing, image manipulation, face 
recognition, view synthesis and surveillance. Due to many 
reasons, such as the cost of camera, insufficient bandwidth, 
storage limitation and limited computational power, the 
resolution of an image/video is always constrained. One 
intuitive example is the transmission of low-resolution 
content over the internet due to limited network bandwidth. 

Image interpolation and super-resolution algorithms play the 
role to produce a high quality and high resolution image/video 
from the observed low quality and low resolution image/video.  

The rest of the organization of this paper is as follows. 
Section II describes the formulation and theory of major 
classes of the image interpolation algorithms. Section III 
classifies super-resolution algorithms and briefly explains one 
major class using the FIR Wiener filter. In both sections, 
some experimental results, including the execution times, are 
given. Furthermore, some future trends are included in each 
of the image interpolation or super-resolution section, and a 
conclusion is given at the end of the paper. 

II. IMAGE INTERPOLATION 
A. Polynomial-based interpolation 

  Image interpolation aims to produce a high-resolution 
image by upsampling the low-resolution image. As explained 
in the introduction section, interpolation algorithms often 
assume that the observed LR image is a direct downsampled 
version of the HR image. Hence, the de-aliasing ability during 
the upsampling process is important, i.e. the recovery of the 
high-frequency signal from the aliased low-frequency signal 
[1].  

  For real-time applications, conventional polynomial-based 
interpolation methods such as bilinear and bicubic 
interpolation are often used due to their computational 
simplicity [2-5]. For example, the bicubic convolution 
interpolator requires only several arithmetic operations per 
pixel, such that real-time processing can easily be achieved 
[4]. The basic idea is to model the image signal by a low-
order polynomial function (using some observed signals).   
However, polynomial functions are not good at modeling the 
signal’s discontinuities (e.g. edges). Hence, the conventional 
polynomial-based interpolation methods often produce 
annoying artifacts such as aliasing, blur, halo, etc. around the 
edges. To resolve this problem, some adaptive polynomial-
based and step function-based interpolation methods were 
proposed [6-9]. 

B. Edge-directed interpolation 
B1.   Explicit interpolation 

  Since edges are visually attractive to the human perceptual 
system, some edge-directed interpolation methods have been 
developed to address the edge reconstructions [10-33]. In fact, 
the adaptive polynomial-based methods can be regarded as 
edge-directed methods as well. The basic idea of edge-
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directed methods is to preserve the edge sharpness during the 
upsampling process. The intuitive way is to explicitly 
estimate the edge orientation and then interpolate along the 
edge orientation [10-13]. For achieving low computation, 
some methods further quantize the edge orientations [12-13]. 
However, the interpolation quality of this intuitive way is 
constrained by the estimation accuracy of the edge orientation. 
Since, the edges of natural images are often blurred, blocky, 
aliased and noisy, the estimation accuracy of edge 
orientations is usually unstable. The interpolation quality of 
these methods can be improved by weighting the edge 
orientations, as described in the next section.    

B2.   Fusion of edge orientations 
  One major improvement to the explicit methods [10-13] is 

to adaptively fuse the results of several estimates of different 
edge orientations [14-18, 32-33]. The fusion process is 
usually computationally inexpensive. In [15-16, 32-33], two 
directionally interpolated results are fused using the linear 
minimum mean squares error estimation (LMMSE). The 
hidden markov random field (HMRF) was used to fuse two 
diagonal interpolated results and the bicubic interpolated 
results together [18]. Compared with the LMMSE methods 
[15-16, 32-33], the HMRF method also considers the 
consistency of fusion results by making use of the transition 
of states. Due to the advances in graphic processing unit 
(GPU), the GPU is often able to assist the directional image 
interpolation to achieve real-time upsampling [32-33]. 

B3.   New edge-directed interpolation (NEDI) 

  New edge-directed interpolation (NEDI) uses the FIR 
Wiener filter, equivalently, the linear minimum mean squares 
error estimator [19] for linear prediction. Let us briefly 
describe the formulation of NEDI as an introduction. The 4-
order linear estimation model is given by 
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where iε  is the estimation error, P is the number of data point 
samples, kA  is the model parameters and each available data 
point sample ( iY ) has four neighboring data points, kiYΔ . 
Figure 1a shows the spatial positions of kiYΔ  and iY . The 
model parameters kA  can be found by using the least squares 
estimation: 
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where the matrix form of (2.2) is given by 
2
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and the matrices are defined as 
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     The sizes of matrices Y, YA and A are Px1, Px4 and 4x1 
respectively. The close form solution of (2.3) is given as 
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where Â is called the ordinary least squares (OLS) estimator. 
Due to “geometry duality” [20], the missing data point X can 
be interpolated by its four neighboring data points, kX , as 
follows: 
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     For the missing data point between two available LR data 
points (e.g. the missing data point between 1X and 2X in 
Figure 1b), its value is obtained by rotating the spatial 
positions of the neighbors and missing data points by 45 
degree with a scaling factor of 1/ 2 . More details can be 
found in [19]. Note that the linear interpolation method 
described in this paper can be applied to high activity areas 
only, which can be identified by using a local variance larger 
than 8, as used in NEDI. The number of samples is P=64, i.e. 
using an 8×8 window. 

                    
      (a) (b) 

 
Fig. 1   Graphical illustration of spatial positions of LR and HR pixels.  

 
 NEDI uses the LR image to estimate the HR covariances 

for the FIR Wiener filter, as shown in (2.5) and (2.6). There 
are many algorithms which are based on the idea of NEDI 
[21-30]. In [21], a six-order filter design was proposed to 
avoid error accumulation in the original two steps design. In 
[22], an eight-order filter was also proposed to include the 
vertical-horizontal correlation. The filter weights of the FIR 
Wiener filter were regularized for stability [23]. In [31], 
instead of using the LR image to estimate the HR covariances; 
the relevant HR image pairs were searched from an offline 
dictionary to estimate the HR covariances. Let us clarify this 
filtering process with the following over-simplified example. 

Example: A data sequence is given by {Y(0), Y(1), Y(2), Y(3), 
Y(4), Y(5), Y(6), Y(7), Y(8), Y(9)}. We have to find Y(10) 
using the FIR Wiener filter. Let also the length of the filter be 
2, i.e. N=2. Hence the observed sample data point Y and their 
corresponding interpolating points, YA, are as shown below 

Y=[Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9)]T 
T
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This means that {Y(9), Y(8), … Y(2)} are used as sample 
points to look for the required statistics. The interpolation 
points for Y(9) are Y(7) and Y(8); for Y(8) are Y(6) and 
Y(7); …; for Y(2) are Y(0) and Y(1).  Let us assume further 
that the cross-correlation matrix YA

TY = [18 11]T and the 
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auto-correlation matrix YA
TYA= ⎥

⎦

⎤
⎢
⎣

⎡
58
813

. The filter weights 

can be estimated by equation (2.5), as follows: 
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. Hence, 

the data point Y(10) can be estimated by (eqn.2.6), i.e. 
Y(10) = A1Y(8) + A2Y(9) = 2 Y(8) - Y(9). 

B4.   Soft-decision interpolation (SAI) 
  The soft-decision adaptive interpolation (SAI) [24] was 

proposed to interpolate a block of pixels at one time using the 
idea of NEDI. It has the benefit of using the block-based 
estimation, by constraining the statistical consistency within 
the block region, which comprises of both observed LR and 
unobserved HR pixels. Within a local window as shown in 
Figure 2, the observed LR pixels Y in the LR image are used 
to estimate the HR pixels X in the HR image. The sizes of X 
and Y in the SAI are 12×1 and 21×1 respectively. Let us 
formulate the SAI as a maximum a posterior (MAP) 
estimation problem, as follows 
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where the likelihood and prior are assumed to follow the 
Gaussian distributions, elements of A and B are the model 
parameters (which are estimated using the NEDI method), YX 
are diagonal neighbors of X, Y~  are the centermost five 
elements of Y (bounded by dotted cross in Figure 2), XY are 
diagonal neighbors of Y~ , X~  is a 4×1 vector representing the 
centermost four elements of X (bounded by dotted square in 
Figure 2), and XX are horizontal-vertical neighbors of X~ . 
Hence, all the elements of X and Y are defined in the 
posterior. λ is the regularization factor which is recommended 
to be 0.5 [24]. In (2.7), the SAI uses three auto-regressive 
models to model the image signals. Such a formulation 
constrains the statistical consistency within a local region, 
which is usually locally stationary. Hence, this method is 
called the soft-decision adaptive interpolation. To solve (2.7), 
we can use a more compact form of the argument, as follows 

)()(minarg DYCXDYCX
X

−− T                   (2.8) 

which remaps the elements into a very compact form. 
Matrices C and D are defined as, C=[I12 C1 λ C2]T and 
D=[D1 D2 04×21]T (see reference [24] for details). The 
argument in (2.8) can be solved by differentiating the cost 
function with respect to X to obtain the following closed-form 
solution 

DYCCCX TT 1)( −=                         (2.9) 

B5.   Robust soft-decision interpolation using weighted least 
squares (RSAI) 

It is well known that the least squares estimation is not 
robust to outliers, hence the weighted least squares was 

proposed to improve the accuracy and robustness of the SAI 
[25-26]. The robust SAI (RSAI) incorporates the weights to 
all residuals in the cost function of the SAI, as follows 
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where Wi contains the weighting parameters for residuals in 
(X - YXA), ( Y~ -XYA) and ( X~ -XXB) respectively. To solve 
(2.10), equations similar to (2.8)-(2.9) can be used to derive 
the cost function and the resultant closed-form solution. As 
verified in [25], there exists severe outliers due to the 
mismatch of "geometric duality", which is a fundamental 
assumption of estimating the HR parameters using the LR 
image. Hence, using the weighted least squares to adaptively 
weight the residuals for both HR parameters and HR pixels 
estimation results in a significant improvement of PSNR and 
SSIM, as shown in Table 1 and Table 2. As a matter of fact 
that the RSAI is currently one of the best performers for 
image interpolation. 

         
 

Fig. 2   Graphical illustration of 21 LR and 12 HR pixels within the local 
window used by SAI. Left figure shows one element of Xi∈X and 

Yi∈Y, and their diagonal neighbors  
B6.   Bilateral soft-decision interpolation for real-time 
applications (BSAI) 

The SAI and RSAI are able to produce the best quality, 
but the computational cost is high. To largely reduce the 
computation, the least squares estimation should be avoided 
or reduced to single parameter estimation. Hence, the bilateral 
soft-decision interpolation (BSAI) was proposed to use the 
bilateral filter for replacing the least squares estimation for the 
model parameters and to reduce the weighted least squares 
soft-decision estimation to a single parameter estimation [17]. 
The BSAI uses bilateral filter weights Ak to replace the least 
squares parameters and adopts the following cost function 
(modified from SAI and RSAI) for estimating a HR pixel at 
one time (instead of a block of HR pixels at one time in the 
SAI and RSAI) 
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where Xk’s are the neighbors of X (which is the HR pixel to be 
interpolated), Xki’s are the neighbors of Xk. Figure 3 shows the 
spatial configurations of Xk and X, and X0i and X0 as examples. 
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In (2.11), the first term constrains the result to approach the 
interpolated result using the bilateral filter, and the second 
term constrains the interpolated result to be continuous with 
its neighbors (soft-decision estimation). The weight Uk is 
defined by the bilateral filter weights (since the continuity 
property of edge depends on the edge orientation, which is 
exploited by the bilateral filter weight) added with a constant 
for stabilization. To solve (2.11), we differentiate the cost 
function with respect to the variable X and obtain the 
following closed-form solution, 
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which is a very compact and efficient equation. In real-time 
implementation using C++ codes, BSAI requires 0.062 
second to interpolate a 384x256 image to double its size. The 
major advantage of BSAI is that it is the near-best performer 
for the image interpolation (as shown in Table 1 to Table 3) 
but its computational cost is sufficiently low for real-time 
applications. 
 

 
 

Fig. 3   Spatial configurations of Xk X (left), and X0i X0 (right). 
 

B7.  Recent trends of image interpolation applications 

Recently, image interpolation does benefit from the 
development of sparse representation. A family of linear 
estimators corresponding to different priors are mixed using 
the sparse representation to give the final estimates for image 
interpolation [34]. Its performance is on a par with the SAI 
[24]. Obviously, the sparse representation, which has shown 
to be successful in compressive sensing, denoising, 
restoration and super-resolution, etc, is a fruitful research 
direction of image interpolation.  

Another trend of the image interpolation application is the 
real-time upsampling of a LR video sequence for future very 
high-definition TVs, such as videos with 4K resolution. The 
HR video sequence can be obtained by fusing several low-
resolution (LR) frames into one high-resolution (HR) frame. 
For such real-time applications, nonlocal means (weighted 
sum filter) can be directly applied due to its simplicity in 
computing the filter weights and its high performance. The 
nonlocal means can be used with a linear motion model to 
better estimate the filter weights, which is optimized for the 
upsampling [35]. After fast upsampling, some simple 
restoration techniques can be applied to deblur the video. In 
the future, there should be more of these fast algorithms 

which can perform upsampling in real-time, of which the real-
time requirement is the major difficulty for their development. 

Recently view synthesis attracts much attention in the 
image processing community. In 3D videos and multi-view 
synthesis, the major issue is to fill the newly exposed area 
(hole region). The hole filling in view synthesis resembles the 
video (multi-frame) interpolation scenario. Hence, the multi-
frame interpolation techniques such as nonlocal means can be 
adopted to fill the hole. Specifically, the nonlocal means can 
be modified to cope with irregular hole sizes and the extra 
depth information [36]. Similar to eqn.(2.6), the nonlocal 
means for hole filling can be defined as 

∑
∈

=
Ni

ii xwx                                      (2.13) 

where x is a pixel's intensity inside the hole region, xi are 
neighbors of x, N is the set of neighbors and wi is the weight 
of the neighbor xi. A new closeness term (which comprises of 
the intensity and depth difference) was proposed to determine 
the weights of nonlocal means [36], as follows 
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where x(j) and dx(j) represent the nearby intensity and depth 
values of x within the local window Wx, while xi(k) and dx(i)(k) 
represent the nearby intensity and depth values of xi within the 
local window Wx(i). After some further development, the 
weight of the modified nonlocal means for hole filling is 
defined as 
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where d(.,.) measures the geometric distance between two 
pixels and σ stands for the variance. Experimental results show 
that this new approach outperforms the conventional spatial 
and temporal approaches for hole filling during the view 
synthesis. However, we believe that more interpolation 
techniques can be novelty designed suitable for view synthesis, 
which is a good future direction for image interpolation. 

C. PSNR and SSIM comparisons of several image 
interpolation algorithms 

Let us compare the subjective and objective quality of 
some image interpolation algorithms as described in this 
paper. Table I and Table II show the PSNR and SSIM values 
of various image interpolation algorithms [4, 15, 17, 19, 24, 
25] using 24 natural images from Kodak. We have also 
considered the execution time of these image interpolation 
algorithms using C++ codes as shown in Table III (see also 
figure 5). It is shown that the RSAI [25] achieves the highest 
average PSNR and SSIM but its execution time is longer than 
the second and the third best performers, i.e. SAI [24] and 
BSAI [17]. BSAI requires much less computation compared 
to that of the SAI but its quality is closed to the SAI. For real-
time applications, BSAI is the best choice; and for offline 
applications, RSAI is the best choice.  

D. Classification of image interpolation algorithms 

Low-resolution pixels Y High-resolution pixels X 
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X00 X01 

X02 X03 X 

X0 X1 
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  In this section, we are going to classify broadly image 
interpolation algorithms, as shown in figure 4. They are the 
polynomial-based approaches which are fast and can be 
adaptive to local statistics, and the edge-directed approaches 
which directly address the edge reconstruction criterion. 
Edge-directed methods can intuitively interpolate along one 
edge orientation, or fuse several estimates of different edge 
orientations, or minimize the linear mean squares error, for 
example, using the FIR Wiener filter, whereas the soft-
decision interpolation can also be applied.  

Fig. 4   Classifications of the image interpolation algorithms 
 

TABLE   I 
PSNR (dB) of the different image interpolation algorithms  

Images Bicubic [4] LMMSE [15] NEDI [19] SAI [24] BSAI [17] RSAI [25]
Kodim01 25.208 25.069 24.827 25.223 25.339 25.422 
Kodim02 33.069 33.113 33.042 33.327 33.482 33.533 
Kodim03 33.913 34.173 34.157 34.711 34.663 34.839 
Kodim04 34.019 33.868 33.754 34.276 34.421 34.419 
Kodim05 26.06 26.16 26.045 27.109 26.98 27.062 
Kodim06 26.593 26.588 26.597 26.788 26.778 26.966 
Kodim07 33.347 33.417 33.017 34.377 34.28 34.326 
Kodim08 22.403 22.45 22.074 22.51 22.517 22.692 
Kodim09 31.652 31.676 31.417 32.225 32.171 32.177 
Kodim10 31.696 31.72 32.208 32.768 32.415 32.863 
Kodim11 28.218 28.183 28.194 28.465 28.547 28.617 
Kodim12 32.499 32.654 32.371 32.868 33.057 33.01 
Kodim13 22.931 22.824 22.822 23.03 22.975 23.17 
Kodim14 28.596 28.584 28.445 29.023 28.982 29.073 
Kodim15 32.654 32.719 32.751 33.116 33.207 33.293 
Kodim16 30.073 30.106 30.055 30.166 30.286 30.355 
Kodim17 31.59 31.681 31.716 32.181 32.108 32.289 
Kodim18 27.311 27.2 26.976 27.491 27.416 27.528 
Kodim19 27.001 27.024 26.088 26.727 27.287 27.364 
Kodim20 30.834 31.25 31.264 31.729 31.697 31.809 
Kodim21 27.594 27.483 27.306 27.756 27.729 27.851 
Kodim22 29.74 29.604 29.564 29.92 29.908 30.047 
Kodim23 35.041 34.892 35.283 36.197 35.91 36.236 
Kodim24 26.06 25.918 25.831 26.133 26.06 26.277 
Average 29.504 29.514 29.408 29.921 29.925 30.051 

III. SUPER-RESOLUTION 

A. Single-image and multi-frame super-resolution 
Super-resolution (SR) aims to produce a high-resolution 

(HR) image using one or several observed low-resolution 
(LR) images by upsampling, deblurring and denoising. For 
multi-frame SR, there can involve registration and fusion 
processes. It is interesting to point out that some SR 
algorithms do not involve the denoising process, or some 

interpolation algorithms are also referred to as super-
resolution algorithms. Generally speaking, the super-
resolution methods can be classified into single-image super-
resolution (only one LR image is observed) [37-54] and 
multi-frame super-resolution [55-71]. The multi-frame super-
resolution for a video sequence can moreover use a recursive 
estimation approach of video frames, which is called the 
dynamic super-resolution [55-58]. Dynamic super-resolution 
makes use of the previously reconstructed HR frame to 
estimate the current HR frame.  

TABLE   II 
SSIM [79] of the different image interpolation algorithms  

Images Bicubic [4] LMMSE [15] NEDI [19] SAI [24] BSAI [17] RSAI [25]
Kodim01 0.7659 0.7509 0.7393 0.7647 0.7673 0.769 
Kodim02 0.8842 0.8746 0.8802 0.8867 0.889 0.8907 
Kodim03 0.9223 0.9173 0.923 0.9279 0.9279 0.93 
Kodim04 0.9035 0.8894 0.8926 0.904 0.9052 0.9051 
Kodim05 0.8616 0.8549 0.8475 0.8782 0.8758 0.8754 
Kodim06 0.8041 0.7965 0.799 0.8085 0.8087 0.8139 
Kodim07 0.949 0.9423 0.9447 0.9567 0.9559 0.9563 
Kodim08 0.7771 0.7751 0.7572 0.7804 0.7838 0.7841 
Kodim09 0.9045 0.8979 0.9021 0.9093 0.9137 0.9119 
Kodim10 0.9046 0.8982 0.9065 0.9139 0.9145 0.9159 
Kodim11 0.8344 0.8261 0.8276 0.8379 0.8408 0.8422 
Kodim12 0.8856 0.8787 0.8812 0.8876 0.8911 0.8911 
Kodim13 0.729 0.7126 0.7073 0.7273 0.7265 0.7305 
Kodim14 0.8495 0.8386 0.8354 0.8537 0.8536 0.8547 
Kodim15 0.9088 0.9028 0.9078 0.9117 0.9137 0.9147 
Kodim16 0.8426 0.8343 0.8394 0.8441 0.8456 0.8482 
Kodim17 0.9162 0.9096 0.9155 0.9249 0.9245 0.9259 
Kodim18 0.8502 0.837 0.8321 0.8522 0.8522 0.8523 
Kodim19 0.8454 0.8351 0.8378 0.8465 0.8509 0.8518 
Kodim20 0.9121 0.904 0.9118 0.9175 0.9198 0.9196 
Kodim21 0.8685 0.8569 0.8595 0.8707 0.8729 0.873 
Kodim22 0.8598 0.8432 0.8453 0.8596 0.8598 0.8612 
Kodim23 0.9507 0.9407 0.9528 0.9556 0.9554 0.9569 
Kodim24 0.8528 0.8419 0.8384 0.8565 0.855 0.8572 
Average 0.8659 0.8566 0.8577 0.8698 0.8710 0.8722 

B. Reconstruction-based and learning-based super-
resolution 
There are two major categories of SR algorithms: they 

are the reconstruction-based and learning-based algorithms. 
Reconstruction-based algorithms [37-39, 55-65, 67-71] use 
the data fidelity function, usually with the prior knowledge to 
regularize the ill-posed solution. Gradients (edges) are the 
main features to be used as the prior knowledge. Some more 
general prior knowledge using nonlocal self-similarity was 
also proposed [62]. Learning-based algorithms [40-54, 66] 
moreover utilize the information from training images. 
Generally, when a LR image is observed, a patch within that 
LR image is extracted and searched within the trained 
dictionary for estimating a suitable HR patch that reconstructs 
the HR image. Some recent investigations [41-43] make use 
of the sparse representation for estimating the HR pair and 
training the dictionary. By combining the use of prior 
knowledge and dictionary training, some unified frameworks 
[42-44] for single-image SR were proposed to further 
regularize the estimated solution from the training sets.  

C. Generic and face super-resolution 
For the learning-based algorithms, they are most suitable 

for specific applications, such as face super-resolution. Since 

Image interpolation  

Polynomial-based [3-9] Edge-directed [10-36] 

Fixed polynomial 
[3-5] 

Adaptive 
polynomial [6-9] 

Implicit methods [14-36] 

NEDI-based 
[19-30] 

Fusion of 
edge 

orientations 
[14-18] 

Explicit methods [10-13]

Real time 
[32-33] 

Sparse 
representation 

[34] 

Nonlocal means 
for interpolation 
and hole filling 

[35-36] 
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the face SR is crucial in applications like face recognition, 
surveillance, etc, a number of super-resolution methods were 
proposed for hallucinating the faces [48-54]. These are 
training-based methods which make use of the common 
characteristics of human faces (e.g. eigenface) to design the 
formulation for dictionary training and HR image 
reconstruction.  

TABLE   III 
Execution time (second) of image interpolation algorithms using C++ 

codes (* is the estimated time) 

Bicubic [4] LMMSE [15] NEDI [19] SAI [24] BSAI [17]  RSAI [25] 
0.006 *0.5 *5 3.732 0.062 12.78 

 

 

 
Fig. 5  Plot of PSNR and SSIM [79] against the execution time of image 

interpolation algorithms 

D. Blind and non-blind super-resolution 
The super-resolution methods can also be classified as 

blind and non-blind methods. The blind methods treat the 
point spread function (PSF) that represents the blur, and the 
registration parameters as variables to be estimated 
simultaneously with the HR image [67-71]. The Bayesian or 
MAP framework is widely used to jointly estimate the 
variables. Non-blind methods are still widely used because 
the PSF can be approximated, can be set according to the user 
preference, or is known due to the knowledge of the camera. 
The registration parameters can also be separately estimated. 
Usually, the non-blind methods apply the regularizations to 
make them robust to inaccurate estimations of PSF, 
registration parameters, etc. The non-blind methods are 
widely used due to its simplicity in formulations, which are 
also easier to be parallelized for the practical applications.  

E. FIR Wiener filter for super-resolution 

The finite-impulse response (FIR) Wiener filter, or 
equivalently, the linear minimum mean squares error 
(LMMSE) estimator, can be applied to perform super-
resolution reconstruction. The block-based FIR Wiener filters 
were proposed for multi-frame SR [65-66]. In [65], a wide-
sense stationary correlation function based on the geometric 
distance between pixels was proposed to estimate the 
covariances for the FIR Wiener filter, and elegant results were 
reported. The partition filters partitions an image into blocks 
for applying the FIR Wiener filter, where the filter weights 
are learned from  an offline dictionary, which is retrieved 
during the online estimation [66].  

Similarly, the Gaussian process regression (GPR) can be 
applied for super-resolution reconstruction. GPR provides a 
sophisticated Bayesian framework to estimate the HR image 
and the hyper-parameters of the process (e.g. noise variance, 
and variance of the correlation function) using a pilot HR 
image, which can be obtained by the bicubic interpolation 
[37]. The nonlocal means has been proposed as the correlation 
function in GPR [37]. Using the nonlocal means as the 
correlation function, the iterative scheme of FIR Wiener filter 
can alternatively update the estimated covariances and HR 
image, which can address the disadvantage of inaccurate pilot 
HR image [47].  

Let us briefly introduce the iterative Wiener filter (IWF) 
algorithm [47] which currently produces the best PSNR and 
SSIM results among some state-of-the-art algorithms, as 
shown in Table IV and Table V. The formulation of the FIR 
Wiener filter which minimizes the linear mean squares error 
is given by 

iii PRW 1−=                                       (3.1) 
where the filter weight Wi is related with the autocorrelation 
matrix Ri for the observation vector and cross-correlation 
matrix Pi for the unobserved vector and observation vectors. 
The unobserved vector, yi∈y, is defined as pixels inside a 
block within the unobserved HR image y and observation 
vector, xi∈x, is defined as pixels geometrically closest to the 
unobserved vector within the observed LR images x. Figure 6 
shows a graphical illustration of these definitions. The FIR 
Wiener filter estimates the unobserved vector by 

i
T
ii xWy =ˆ                                     (3.2) 

and the unobserved HR image becomes }ˆ{ˆ iyy = . The weights 
of the FIR Wiener filter can be defined as 

[ ]
[ ] }/{}/{

}/{}/{

max
1

max

maxmax
1

maxmax

cEcE

cEccEc
T
ii

T
ii

T
ii

T
iii

yxxx

yxxxW
−

−

=

=          (3.3) 

where cmax is a constant for normalization. Hence, elements of 
the scaled correlation matrices are always smaller than 1. Let 
us consider the nonlocal means filter to approximate the 
elements, as follows  

)/)(exp(}/{ 2
max σkjkj ppEcppE −−≈        (3.4) 

where pj,pk∈{xi,yi} and the hyper-parameter σ controls the 
decay speed of the correlation function. Note that the 
correlation function depends on the unobserved HR image y 
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and its blurred version Hy, where H is the PSF. An iterative 
scheme can be applied iteratively to update the estimated 
correlation matrices and unobserved HR image to give the 
final estimate, as follows.                                                                                     
_______________________________________________________
Input:  LR image x 
Output: HR image ŷ  
1. Initialization  

(a) Create an initial estimate of the unobserved HR image )0(ŷ . 
(b) Create the initial estimate of the blurred HR image )0(ŷH . 

2. Iterate on n until n reaches the desired number of iterations N. 
(a) Compute the filter weight in (3.3) by using the normalized 
correlation function in (3.4). 
(b) Use the computed filter weight and (3.2) to update the 
estimated HR image to )1(ˆ +ny . 
(c) Use IBP [59] to refine the estimated HR image )1(ˆ +ny  to fit 
the image model. 
(d) Update the blurred HR image using )1(ˆ +nyH . 
(e) Repeat 2(a) to 2(d) until the termination. 

_______________________________________________________ 
Algorithm 1   The iterative scheme of the FIR Wiener filter for SRR 

 

 
Fig. 6  An example illustration of the observation vector xi and the 

unobserved vector yi when the magnification factor q=3 and number of 
elements in xi is 16.  

Example: A data sequence is given by {x(0), x(1), x(3), x(4)}, 
where x(2) is a missing data point between x(1) and x(3). We 
have to find x(2) using the Iterative Wiener filter. Let us 
define the observation vector xi and unobserved vector yi as 
below 

[ ]T
i xx )3()1(=x   and  )2(xi =y                                        

    
    Let us initialize the unobserved vector as the average of the 
nearest two data points as follows 

2/))3()1(()0( xxi +=y  
    Let us compute the auto-correlation matrix and cross- 
correlation matrix using the correlation function in (3.4) with 
the nearest three data points for the expectation E(.): 
First iteration: 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−−
−−−

=
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⎡

−−−−
−−−−

=

)/)0(exp()/))3()1((exp(
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2

2

22

22
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where the definition of the non-diagonal element is  

)/))4(())3()1(())0([(exp(
)/))1()3((exp()/))3()1((exp(
2)0(22)0(

22

σ
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which is assumed to be 0.5. The auto correlation matrix is 
given by 

⎥
⎦

⎤
⎢
⎣

⎡
=

15.0
5.01)0(

iR  

The cross correlation matrix is given by 
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which is assumed to be [0.4 0.6]T. Then the filter weight is  

( ) ⎥
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iii PRW  

which is used to update the output vector 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
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5333.01333.0)1(

x
x

i
T
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    For the next iterations, the estimated output vector is 
substituted in computing the auto-correlation matrix and cross 
correlation matrices until convergence or the termination 
criterion is met.  

F. PSNR and SSIM comparison of several super-resolution 
algorithms 

Table IV and Table V show the PSNR and SSIM values of 
8 natural images (512×512) using several (single-image) 
super-resolution algorithms [37, 43, 47, 59, 65] to upsample 3 
times and deblur using a 3×3 box filter. Let us consider 
further the execution time of these super-resolution 
algorithms using MATLAB codes in Table VI, as plotted in 
figure 7. Table IV and Table V show that the iterative FIR 
Wiener filter (IWF) [47] achieves the highest average PSNR 
and SSIM values but its execution time is far less than that 
required for the second best performers, namely ASDS [43]. 
AWF [65] requires much less computation than the IWF but 
its quality is worse than IWF. As a result, we conclude that 
AWF would be a good choice among the tested algorithms for 
real-time applications, while IWF is likely to be the best 
choice for offline applications. Figures 10 and 11 show the 
subjective comparisons of IWF and the bilinear interpolation. 

G. Summary of super-resolution algorithms 
    Let us also give a relational diagram for some major super-
resolution algorithms. Figure 8 gives a brief classification of 
the super-resolution algorithms. The super-resolution 
algorithms can be classified as single-image and multi-frame 
approaches. For single-image algorithms, they are mostly 
learning-based approaches which aim at reconstructing the 
generic images and face images. The reconstruction-based 
algorithms often make use of gradient or patch redundancy as 
the prior knowledge to regularize the solution. The multi-
frame algorithms can be divided into static and dynamic 
algorithms of which the recursive structure is applied. 
Moreover, the multi-frame algorithms can also be classified 
as non-blind and blind approaches, which simultaneously 

Pixels in xi 

Pixels in yi 
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estimate the registration parameters and the PSF together with 
the HR image.  

IV. CONCLUSION 
For image/video interpolation and super-resolution, more 

intensive research is expected due to the popularity of ultra 
high-definition TV and free viewpoint TV. Specifically, the 
multi-frame super-resolution and hole filling interpolation for 
view synthesis are going to be popular directions in 2D and 
3D video applications. For a practical use of the super-
resolution, fast algorithms are demanding and the blind 
algorithms will receive more attention in the future 
development. Furthermore, recent works show that face 
recognition can be benefited from a customized face super-
resolution which maximizes the differences between two face 
manifolds. However, the theoretical study of such justification 
requires more investigations. Among the techniques for 
interpolation and super-resolution, the sparse representations 
should be a promising direction, and significant results have 
already been available in image processing applications.  

To complete this review, let us also include a short 
highlight of review works in the literature. An early review of 
super-resolution algorithms is given in [72] and a statistical 
performance analysis of super-resolution is shown in [76]. 
The limitation and challenges of super-resolution was 
reviewed in [73-75] which show that a major limitation of 
multi-frame super-resolution is the registration accuracy. 
However, this may be resolved by making use of the optical 
flow techniques [77], and the influence of the inaccurate 
registration can also be alleviated by using an appropriate 
regularization [78].  

 
TABLE   IV 

PSNR (dB) of the estimated images using different algorithms 

Images IBP [59] AWF [65] GPR [37] ASDS [43] IWF [47] 
Bike 22.808 22.876 22.312 23.6 23.784 

House 20.353 20.328 20.019 20.48 20.682 
Game 25.546 25.574 25.076 25.975 25.966 
Statue 28.614 28.678 28.151 29.269 29.27 

Woman 25.717 25.765 25.223 26.083 26.238 
Lighthouse 23.76 23.717 23.442 23.885 23.948 

Parrot 29.439 29.639 28.69 30.387 30.467 
Lena 31.334 31.5 30.774 32.696 32.721 

Average 25.946 26.01 25.461 26.547 26.635 
 

TABLE   V 
SSIM [79] of the estimated images using different algorithms 

Images IBP [59] AWF [65] GPR [37] ASDS [43] IWF [47] 
Bike 0.7161 0.7199 0.6686 0.7582 0.7597 

House 0.6446 0.6409 0.6096 0.6572 0.6668 
Game 0.7402 0.7421 0.7039 0.7569 0.7548 
Statue 0.8379 0.8407 0.817 0.8551 0.857 

Woman 0.7629 0.7669 0.7172 0.7762 0.7765 
Lighthouse 0.7559 0.753 0.732 0.7665 0.7671 

Parrot 0.9084 0.9089 0.8963 0.917 0.9182 
Lena 0.8792 0.8807 0.8636 0.8923 0.892 

Average 0.7807 0.7816 0.751 0.7974 0.799 
 

TABLE   VI 
Execution time (minute) of super-resolution algorithms using MATLAB 

codes 
IBP [59] AWF [65] GPR [37] ASDS [43] IWF [47] 

0.02 0.04 123 32 5.6 

ACKNOWLEDGMENT 
This work is supported by the Center for Signal Processing, the 

Hong Kong Polytechnic University (U-G863/P10-024), RGC-PolyU 
5278/08E, and SmartEN Marie Curie ITN-Network.  

 

 
Fig. 7   Plot of PSNR (dB) and SSIM [79] against the execution time of 

super-resolution algorithms 
 

 
Fig. 8   Classifications of the super-resolution algorithms 
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Fig. 11   Super-resolution results: From top to bottom, they are the LR input 
image and the estimated HR images using bilinear interpolation and IWF [47]. 


