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Abstract—In this paper, we investigate bit allocation schemes
with limited rate feedback for cooperative jamming. In addition
to the transmitter and receiver, we assume a passive eavesdropper
and cooperative jammer are present. In order to achieve a secure
communications link against the eavesdropper, the transmitter
and jammer require channel state information (CSI) to be fed
back to them from the receiver. Assuming feedback channels
with a maximum sum feedback rate constraint, the receiver must
allocate the total number of bits available to quantize the CSI
between the transmitter and jammer. This requires the receiver
to balance the need for a strong channel from the transmitter
against the need for the jammer to accurately null the receiver
and reduce the resulting interference. We propose an optimal bit
allocation strategy for this problem using mean-squared error
as the performance metric, and we use simulation examples to
illustrate its advantage over a non-optimized feedback allocation.

I. INTRODUCTION

Classical results in information theoretic secrecy have

demonstrated that secret communication is possible if the

eavesdropper’s channel is degraded compared to that of the

legitimate receiver [1], [2]. Since this condition cannot be

guaranteed in general, attention has focused recently on the

use of multiple antennas as a means of either enhancing the

channel of the desired user through beamforming, or selec-

tively degrading the eavesdropper’s channel through artificial

interference or jamming. The former approach requires knowl-

edge of the eavesdropper’s channel, which is a problematic

assumption in many cases, while the latter can be beneficial if

only limited information (or even no information) is available

about the eavesdropper [3], [4].

The use of jamming from cooperating transmitters has been

discussed in [5]–[12]. In most works, multiple antennas are

used to mitigate the effect of the jamming on the desired

receiver, but this requires accurate channel state information

(CSI). In practice, perfect CSI is not possible at the cooperative

jammer due to channel estimation errors in time division

duplex (TDD) systems or limited feedback in the frequency

division duplex (FDD) case. The design of limited feedback

schemes and their performance compared to the perfect CSI

case has received considerable attention for standard wireless

applications (for example, see [13]), but little work has been

done on the impact of limited feedback for the wiretap channel

[14], [15]. In this paper, we consider the problem of limited

feedback design for cooperative jamming systems, where both

the data transmitter and jamming transmitter require CSI.

This problem is interesting when the feedback bandwidth is

limited, and the total number of feedback bits must be properly

allocated between the two transmitters. In this case, one must

balance the need for good beamforming gain from the data

transmitter against interference leakage from the cooperative

jammer. Using the mean-squared error (MSE) at the desired

receiver as our performance metric, we describe an approach

for obtaining an optimal feedback bit allocation. While a

simple optimization is required in the general case, we show

that a closed-form solution can be obtained when the trans-

mitter and jammer precoding matrices have the same number

of elements. Numerical results demonstrate the advantage of

using the optimal feedback bit allocation approach.

The remainder of this paper is organized as follows. The

system model and assumptions are introduced in Section II.

The beamformer design problem is presented in Section III,

and the optimal bit allocation algorithm is derived in Section

IV. Simulation results are presented in Section V. Throughout

the paper we use lowercase boldface letters to denote vectors

and uppercase bold letters to denote matrices. The space of

m×n complex matrices is denoted by C
m×n. The Hermitian

transpose is represented by (·)H , ‖·‖ the Euclidean (Frobenius)

norm, E [·] the expectation operator, tr(·) the matrix trace.

II. SYSTEM MODEL AND ASSUMPTIONS

The scenario under consideration is depicted in Fig. 1, and

is comprised of a transmitter (Alice) with Na antennas, an

intended receiver (Bob) with Nb antennas, and a cooperative

jammer (Helper) with Nh antennas. While the Helper is

present to provide artificial interference to degrade the channel

of any eavesdropper that may be present, the parameters of the

eavesdropper are assumed to be completely unknown. We also

make the following additional assumptions:

• Bob has perfect channel estimation, but Alice and the

Helper do not know Bob’s channel.

• Na > Nb and Nh > Nb.

• The feedback channels from Bob to Alice and the Helper

are error-free and the total feedback rate is limited.

• All channels are assumed to experience independent

block fading.

The channels from Alice and the Helper to Bob are respec-

tively given by Hba ∈ C
Nb×Na and Hbh ∈ C

Nb×Nh , and

the elements of these matrices are assumed to be indepen-

dent and identically distributed (i.i.d.) and have a circularly

symmetric complex Gaussian distribution with zero mean and

unit variance. We further assume that Hba and Hbh are of



Fig. 1. System model.

full rank Nb, and that Alice transmits a single data stream

s. On the other hand, the Helper transmits a d-dimensional

jamming signal v. The elements of s and v are zero-mean

Gaussian with variance 1 and 1/d, respectively. The jamming

dimension d is constrained to be no greater than Nh − Nb,

so that it can be designed to be orthogonal to the information

signal at Bob (although the imperfect CSI will not allow this

to be exactly true). We define Alice’s precoder (beamformer)

as w̃a ∈ C
Na×1 and the jamming precoder as W̃h ∈ C

Nh×d;

both are normalized to have unit Frobenius norm. The trans-

mitted power at Alice is given by PS and that at the Helper is

PI . With these assumptions, the signals transmitted by Alice

and the Helper are:

x =
√

PSw̃as, (1)

z =
√
PIW̃hv. (2)

The signal received by Bob is thus

y =
√
PSHbaw̃as+

√
PIHbhW̃hv + n ,

where the components of n are i.i.d. Gaussian noise with

zero mean and unit variance. Assuming that Bob uses a linear

receiver rH ∈ C
1×Nb , the estimated data symbol is

ŝ =
1√
PS

rHy

= rH

(
Hbaw̃as+

√
PI

PS

HbhW̃hv +
1√
PS

n

)
. (3)

Bob designs “quantization-error-free” precoders wa and

Wh based on perfect knowledge of Hba and Hbh. Bob then

quantizes wa and Wh by selecting precoders from codebooks

containing 2Ba and 2Bh elements. The Ba and Bh bits

corresponding to the chosen precoders are separately fed back

to Alice and the Helper. Since the total rate of the feedback

channels is limited, Bob is only able to send a fixed total

number of bits B:

Ba +Bh = B.

Let ŵa and Ŵh represent the quantized signal precoders, and

let ∆wa and ∆Wh be the quantization errors:

ŵa , wa +∆wa, (4)

Ŵh , Wh +∆Wh. (5)

Due to the power constraints, the actual precoders used by

Alice and the Helper are normalized versions of the quantized

precoders:

w̃a =
1

‖ŵas‖
ŵa, (6)

W̃h =
1∥∥∥Ŵhv

∥∥∥
Ŵh. (7)

III. BEAMFORMER DESIGN

The mean-squared error (MSE) associated with the estimate

ŝ is

MSE , E

[
|ŝ− s|2

]
. (8)

According to (3), the instantaneous MSE is

MSE(w̃a,W̃h, r) =
∣∣rHHbaw̃a − 1

∣∣2 + rHRnr

= rH
(
Hbaw̃aw̃

H
a HH

ba +Rn

)
r+ 1

− rHHbaw̃a − w̃H
a HH

bar (9)

where

Rn =
PI

PSd
HbhW̃hW̃

H
h HH

bh +
1

PS

I.

A. Optimal Decoder

Given w̃a and W̃h, the optimal decoder r∗ is easily found

by setting the gradient of the MSE to zero, which yields the

minimum MSE (MMSE) receiver

r∗ =
[
Hbaw̃aw̃

H
a HH

ba +Rn

]−1
Hbaw̃a.

Using the optimal decoder, the MSE expression in (9) reduces

to

MSE(w̃a,W̃h) = MSE(w̃a,W̃h, r
∗)

=
1

1 + w̃H
a HH

baR
−1
n Hbaw̃a

(10)

where the second expression is obtained after applying the

matrix inversion lemma.

B. Quantization-Error-Free Precoders

Bob designs the quantization-error-free precoders wa and

Wh that minimize the instantaneous MSE

min
w̃a,W̃h

1

1 + w̃H
a HH

baR
−1
n Hbaw̃a

,

subject to unit norm constraints on w̃a and W̃h. The optimal

solution to this optimization problem is given by

wa = [Va](:,1), (11)

Wh = [Vh](:,Nh−d+1:Nh)
, (12)

where [Va](:,1) denotes the first right singular vector of Hba,

and [Vh](:,Nh−d+1:Nh)
denotes the last d right singular vectors

of Hbh. The beamformer wa aligns the transmitted signal

along the strongest channel mode, so that Hbawa = λpu1,

where u1 is the first left singular vector of Hba and λp is the

principal singular value of Hba. The precoder Wh satisfies

HbhWh = 0.



C. Quantized Precoders

Bob quantizes wa and Wh to ŵa and Ŵh, and sends

the indices corresponding to the closest codebook elements as

feedback. The actual precoders used by Alice and the Helper

are normalized to meet the power constraints:

w̃a =
1√

ŵH
a ŵa

ŵa, (13)

W̃h =
1√

tr(ŴH
h Ŵh)

Ŵh. (14)

IV. OPTIMAL BIT ALLOCATION ALGORITHM

Plugging (4) and (5) into (13) and (14) yields

w̃a =
wa +∆wa√

1 +wH
a ∆wa +∆wH

a wa +∆wH
a ∆wa

W̃h =
Wh +∆Wh√

tr(I+WH
h ∆Wh +∆WH

h Wh +∆WH
h ∆Wh)

,

and substituting the above expressions into (10) gives the

following expression for the instantaneous MSE:

MSE =
1

1 +
(wa+∆wa)

H
HH

ba
R

−1
n Hba(wa+∆wa)

1+wH
a ∆wa+∆wH

a wa+∆wH
a ∆wa

,

where

Rn =
PIHbh∆Wh∆W

H

h
H

H

bh

tr(I+WH

h
∆Wh +∆WH

h
Wh +∆WH

h
∆Wh)PSd

+
1

PS

I.

Since the codebook size is fixed for all the channel realiza-

tions, the optimal bit allocation will be based on the MSE

averaged over the channels. When B is large, the entries

of ∆wa and ∆Wh can be modeled as zero-mean circularly

symmetric complex Gaussian random variables, independent

of wa and Wh, with i.i.d. components each having variance

σ2
∆a and σ2

∆h, respectively. We assume a codebook design that

minimizes mean squared quantization error

σ2
∆a =

1

Na

Na∑

i=1

E

[
|(∆wa)i|2

]

σ2
∆h =

1

Nhd

d∑

j=1

Nh∑

i=1

E

[
|(∆Wh)ij |2

]
.

The mean squared quantization errors are lower-bounded by

the corresponding rate-distortion functions [16], i.e.,

σ2
∆a ≥ D(Ra) = σ2

a2
−Ra

σ2
∆h ≥ D(Rh) = σ2

h2
−Rh

where Ra = Ba

Na
and Rh = Bh

Nhd
are the number of descriptive

bits per element of wa and Wh. Because wa and Wh are unit

norm from (11) and (12), we have E[wH
a wa] = σ2

aNa = 1

and E[WH
h Wh] = σ2

hNhI = I. Thus, σ2
a = 1

Na
and σ2

h = 1
Nh

.

The MSE of the quantization errors is thus

σ2
∆a =

1

Na

2−
Ba
Na

σ2
∆h =

1

Nh

2
−

Bh
Nhd .

We assume that the quantization errors are independent of

the actual channels and quantization-error-free precoders. The

MSE averaged over the quantization errors for a given channel

realization is approximately1

E∆wh
[Rn] ≈

PIσ
2
∆hHbhH

H
bh

PSd(1 +Nhσ2
∆h)

+
1

PS

I

E∆wa,∆wh
[MSE]

≈ 1

1 +
λ2
pu

H
1 (E∆wh

[Rn])
−1

u1+tr
(

HH
ba(E∆wh

[Rn])
−1

Hba

)

σ2

∆a

1+Naσ
2

∆a

.

Given that the elements of Hba and Hbh are independent of

each other, the MSE averaged over all channel realizations can

be approximated as

EHbh
E∆wh

[Rn] ≈
d+ (PI + d)Nhσ

2
∆h

PSd(1 +Nhσ2
∆h)

I

MSE = EHba,Hbh
E∆wa,∆wh

[MSE]

≈ 1

1 +
PSd(1+Nhσ

2

∆h
)
(

λ
2

p+NbNaσ
2

∆a

)

(d+(PI+d)Nhσ
2

∆h)(1+Naσ
2

∆a)

,

where λp is the root mean square principal singular value

averaged over n prior channel realizations of Hba: λp =√
1
n

∑n

i=1 λ
2
p(i).

The optimal bit allocation problem can be expressed as

min
Ba,Bh

MSE =
1

1 +
PSd(1+2

−

Bh
Nhd )

(

λ
2

p+Nb2
−

Ba
Na

)

(

d+(PI+d)2
−

Bh
Nhd

)

(

1+2
−

Ba
Na

)

s.t. Ba +Bh = B

Ba, Bh ∈ Z
+,

where Z
+ is the set of non-negative integers. To solve this

problem, we first relax the integer constraint. This leads to

a standard convex optimization problem and can be solved

by standard methods. A numerical solution can be found by

solving the following equation based on the resulting KKT

conditions:

Nhd
2(λ

2

p −Nb)2
Bh
Nhd −NaPINb2

−
B
Na 2

Bh
Na

+Nhd(PI + 2d)(λ
2

p −Nb)−NaPI(Nb + λ
2

p)

+Nhd(PI + d)(λ
2

p −Nb)2
−

Bh
Nhd −NaPIλ

2

p2
B
Na 2−

Bh
Na = 0,

where we take a positive root of the equation. A closed-form

solution can be obtained when the transmitter and jammer

1Here we use the approximation: E[f(X)/g(X)] ≈ E[f(X)]/E[g(X)].
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Fig. 2. Average MSE versus Bh for B = 32. The proposed allocation is in
red.

precoders have an equal number of elements: Na = Nhd = N .

In this case, the number of bits allocated to the Helper is

Bh =

−N log2
(PI+d)Nb−dλ

2

p−

√

PI(Nb−λ
2

p)(1−2−
B
N )((PI+d)Nb−dλ

2

p2
B
N )

PIλ
2

p(1−2
B
N )−(PI+d)Nb+dλ

2

p

.

The integer bit allocation can then be found by rounding the

solution for Bh in the problems above to the nearest integer

less than or equal to B.

V. SIMULATION RESULTS

For the simulation results in this section, we assume Na =
Nh = 3, Nb = 2 and d = 1, so that the closed-form

solution can be applied. The power at Alice and Helper are

fixed at 100. In Fig. 2 and Fig. 3, simulation results based

on 100 channel realizations are shown for B = 32 and

B = 64, respectively. The average MSE is plotted versus Bh,

and our closed-form solution is indicated by the red line. In

both cases, our solution provides an allocation that essentially

yields the lowest possible average MSE. We see that the

Helper commands a larger fraction of the feedback bits than

Alice, indicating that interference leakage from the Helper is

more detrimental to the average MSE at Bob than reduced

beamforming gain from Alice. As the number of feedback

bits is decreased, a higher fraction of the total number of bits

is allocated to the Helper.
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