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Abstract—In multi-view stereo setting, pixel correspondence
problem and super resolution problem are inter-related in a sense
that the result of each problem could help to solve the other. In
this paper, we propose a novel method to solve two problems
together by optimizing a unified energy functional. Main differ-
ence from the previous works is that the consistency between
high resolution images is considered along with consideration
to the consistency of high-resolution and low-resolution image
pair with the same viewpoint. Experimental results show that
our method outperforms the naive combination of single image
super resolution and multi-view stereo method.

I. INTRODUCTION

The goal of super resolution is to obtain high-

resolution(HR) images from low-resolution(LR) images and

it has been widely studied during past decades[1], [2], [3],

[4], [5], [6]. One of the main approaches is to estimate one

HR image from a number of LR input and it has attracted

many researchers because of its theoretical clarity and neat

formula. However, its sensitivity to the noise in matching

between LR images limits its performance and prevents its

use in real application. On the other hand, in stereo problem,

another fundamental problem in computer vision, it is often

required that the input images be high-quality. The reason is, in

conventional binocular stereo, disparity or depth is estimated

based on the matching between two images and usually the

higher the resolution is, the better the matching become.

In this paper, we propose a method that solves super res-

olution and stereo problem in one unified framework. Unlike

previous work, we consider image consistency between HR

images as well as between HR image and LR image pairs.

To do that, HR depth maps are estimated instead of LR ones.

By considering geometric consistency between depth maps,

we can obtain more reliable matchings robust to noise in

images. These considerations prevent the error in one problem

from propagating to the other problem and effectively cut the

positive feedback loop of error accumulation. As a result, our

HR image output is free from any undesirable artifact, actually

increasing PSNR of reconstruction far higher than the simple

bilinear interpolation, and the depth estimates become very

accurate compared to the original multi-view stereo method

based on LR input. Furthermore, Experimental results show

that our method outperforms the naive combination of single

image super resolution and multi-view stereo method.

II. RELATED WORK

There are two main approaches to solve super resolution

problem. One is learning-based or exemplar-based approach.

In the methods that fall into this category, prior knowledge

about the HR images such as edge statistics [1], [2] or

patch correspondence between HR images and LR images are

learned with some training set [3], [4], [5]. These methods pro-

duce visually pleasing results. However, there is no guarantee

for the visually pleasing estimate obtained by these methods

to be actually closer to the real ground truth.

Another main approach for super resolution is to use

multiple LR images to reconstruct one HR image, which is

well surveyed in [6]. Ideally, by maximizing the consistency

between the HR image and the LR images, we can get the

result which contain all details that each LR image has. These

methods, however, are very sensitive to noise in matching and,

thus, hard to apply to non-planar scene where computation of

matching is complicated.

There are a few works that combine super resolution and

stereo problem. In [7], the authors propose one energy func-

tional which considers two problem simultaneously. However,

the accuracy of both the depth map and HR image are not

quite impressive, especially for super resolution result which

is contaminated by some mosaic artifacts. Another method

is to combine texture super resolution and 3D reconstruction

problem [8]. While it actually shows improvement on both the

reconstructed model and the texture map, it is hard to applica-

ble in real situation because it is targeting 3D reconstruction

not general stereo.

In this work, we propose energy functional that combine

super resolution problem and multi-view stereo in one frame-

work. We model the combined problem in a novel way so

that the HR estimates are forced to be consistent with each

other and LR input only have influence to its corresponding

HR output. This prevents the complex computation related to

warping and downsampling in matching in conventional super

resolution formula. In section III, the details of our method

will be discussed and the optimization technique will be briefly

introduced in IV. Also, qualitative and quantitative evaluation

of our method is done with some comparisons to the others

in section V.



III. PROPOSAL METHOD

The goal of our system is to recover HR images, IH , and

relevent HR depth maps, DH , from given LR images, IL. The

basic assumption about these images is that the target scene

should be static to facilitate stereo. Also, for the same reason,

we assume that the information about the camera for each

view is known up to similiraity transformation.

In the remaining parts of this paper, we use ILi to denote

the input LR image from the ith viewpoint, while ILi (x)
represents the color value of this image at pixel position

x. Note that both the pixel position and color value are in

vector form. Likewise, the notations for the corresponding HR

image and HR depth map have been defined as IHi and DH
i ,

respectively.

The energy functional of our method is defined as follows:

E
(

IH , DH |IL
)

=
∑

i

Em

(

DH
i , IHi |D̄H

i , ĪHi
)

+ Ec

(

IHi |ILi
)

+ Er

(

DH
i

)

,
(1)

where Em, Ec, and Er represent matching constraint, consis-

tency constraint, and regularization constraint for depth map

and image, respectively. These terms will be described one-by-

one in the following subsections. Note that some of the energy

terms defined in (1) is conditional, meaning the variables

appearing after the bar is given as constants. The variables

D̄H
i and ĪHi represent the DH − {DH

i } and IH − {IHi }.

A. Matching Constraint

The conventional multi-frame super resolution problem can

be modeled by a single equation using matrix-vector multipli-

cation [6], as follows:

ILi = SBiWjiI
H
j + ni. (2)

In (2), the images are represented as vectors. This equation

states that the HR image is firstly warped to viewpoint i by

using Wji and, then, is captured with low resolution. The

capturing process is modeled by multiplication of blur matrix,

Bi, and downsampling matrix, S, followed by addition of

pixelwise-independent white Gaussian noise ni.

A.V.Bhavsar and A.N.Rajagopalan [7] use this equation in

their method to solve super resolution and stereo simultane-

ously. However, the naive use of (2) could be problematic. Due

to the complex computation related to warping and downsam-

pling, the matching cost in [7] is computed under the uniform

depth assumption around the target pixel position and HR

images are estimated using Iterated-conditional-mode(ICM)

optimization, which has brought mosaic artifacts.

We come up with a different approach. Instead of comparing

the HR estimate with LR input images, we generate the HR

estimate of all the input images and the matching information

is computer based on the estimates instead of LR ones. Our

model is formulated as follows:

Em =
∑

x

∑

j∈N(i)

P
(

IHi (x) , IHj (Wji (x, Di (x)))
)

+

G (x,Wij (Wji (x, Di (x)) , Dj (Wji (x, Di (x))))) .
(3)

In (3), Wji (x, d) computes the projection of pixel x with

depth value d in image i onto image j based on camera

information of both frames. Function P (c, c′) and G (x,x′)
are defined as follows:

P (c, c′) =
‖c− c′‖

2

2σ2
c

, G (x,x′) =
‖x− x′‖

2

2σ2
g

, (4)

where the parameter σc and σg control the sensitivity to

difference in P and G, respectively. The geometric consistency

term, G, serves as soft one-to-one correspondence as in [9].

We also employ the temporal selection scheme firstly proposed

in [10] to handle occlusion more efficiently.

Using (3), we directly use HR information to compute the

depth maps without any downsampling process. Also, because

we impose photometric consistency between HR images, the

reconstruction result is consistent across the viewpoints.

B. Consistency Constraint

We assume that each HR image should be consistent only

with corresponding LR image. The benefit of this assumption

is that we can replace complex cross-view blur model, which

could possibly include motion blur, with much simpler one.

The energy functional for this constraint is as follows:

Ec
i =

∑

y

∣

∣

∣

∣

∣

∣

ILi (y)−
∑

x∈wy

B (y,x)IHi (x)

∣

∣

∣

∣

∣

∣

2

. (5)

In (5), B is assumed to be a simple averaging weighting

function representing box-filtering.

C. Regularization Constraint

Er in (1) are regularization function on a depth map. We

adopt simple truncated linear smoothness function used in [9]

as follows:

Er =
∑

x

∑

y∈N(x)

ws min
{∣

∣DH
i (x)−DH

i (y)
∣

∣ , η
}

. (6)

In 6, N (x) is a set of pixel around x and we assume simple

4-neighborhood system. Also, ws and η are the user-defined

parameters which represent the strength of smoothness and the

threshold for truncation, respectively.

IV. OPTIMIZATION

To minimize (1), we introduce iterative optimization ap-

proach, in which depth maps and HR images are updated by

turns.
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Fig. 1. The comparison of super resolution results. (a) Bilinear interpolation.
(b) Result of the SISR method [11]. (c) Result of the proposed method. (d)
Ground-truth HR image. (e),(f),(g), and (h) are enlarged view of red rectangles
in (a),(b),(c), and (d), respectively.

(a) (b) (c) (d)

Fig. 2. The comparison of multi-view stereo results. For (a), (b), and (d),
the input images are each fixed to the result of linear interpolation, result of
[11], and ground-truth HR images, respectively. The result of our method is
represented in (c). Best viewed in electronic version.

A. Iterative Update

In depth estimation phase, we assume all the other output

is fixed except for the target depth map, DH
i . Then the energy

functional becomes a pair-wise MRF for DH
i . We optimize

this MRF function by using tree-reweighted message passing

algorithm(TRW-S). The depth maps are updated frame by

frame.

For the update of HR images, we fix the depth variables as

constants and update images frame by frame. We employ the

optimization technique introduced in [12] utilizing the fact that

our energy term become the energy of Gaussian distribution.

Thanks to the use of this optimization, the super-resolved

images has no mosaic artifacts.

B. Initialization

An initialization is necessary for our iterative optimization

process to work. We simply upsample the LR images by using

biliear interpolation to initialize the HR estimates and the

corresponding initialization of depth maps can be obtained

via minimizing (1) fixing HR images. During the initialization

process, we define another matching constraint without G in

(3).

Em
i =

∑

x

∑

j∈N(i)

P
(

IHi (x) , IHj (Wji (x, Di (x)))
)

. (7)

In this equation, the geometric consistency term is removed,

because we cannot evaluate the consistency between depth

maps which is not computed yet.

V. EXPERIMENTAL RESULTS

In order to evaluate the performance of the proposed al-

gorithm, several experiments are carried out on the popular

Middlebury data sets[13], [14]. Through all the experiments,

the original input multi-view images are first downsampled

and the original images are used as ground-truth data. Also.

in our experiments, we set the parameters for regularization

term, ws and η, same as in [9]. That is, if we denote the

depth range as [dmin, dmax], then ws = 5/(dmax−dmin) and

η = 0.05(dmax − dmin). The other remaining parameters in

our method are set as follows: σc = 15, σd = 1.

To show the effect of combined framework, the results are

compared to those of the same algorithms as ours except for

the HR estimates are fixed to (1) initialization using bilinear

interpolation(referred to as Bilinear+MVS), (2) ground-truth

HR images(referred to as GT+MVS), and (3) the result of

[11](referred to as SISR+MVS). The last one is to compare

our results to those of naive combination of single image super

resolution and multi-view stereo.

These results are shown in Fig. 1 and Fig. 2 for temple

dataset. As it is shown, the HR estimate of our method is

close to the ground-truth HR image, comparable to that of

[11]. It should be mentioned that [11] actually gives overly

complex textures in some regions. Note that there are no

mosaic artifacts in results of our method, unlike [7]. For

quantitative comparison of super resolution performance, the

PSNR score for each case is represented in Table I. In

Fig. 2, depth estimation result of our method is. Our method

outperforms the all the three other cases, including GT+MVS,

surprisingly. The reason is thought to be the denoising effect

of our algorithm obtained by adjusting color values to be

consistent across the viewpoints. The result of SISR+MVS

is more noisy even than Bilinear+MVS, due to the view-

independent texture synthesis.

The quantitative analysis of our method in terms of multi-

view stereo, is done for the Art, Dolls, Reindeer, Moebius,

and Books datasets[14]. The results are illustrated in Fig. 3,

and the quantitative evaluation is represented in Table II and

TABLE I
AVERAGE PSNR(DB) OF RECONSTRUCTED HR IMAGES FOR temple[13]

Method temple

Proposed 38.65

Bilinear Interpolation 36.99

SISR[11] 38.41



Fig. 3. The results of our method with Middlebury 2005 datasets. From left to right, each column shows ground-truth HR images, bilinear interpolation of
LR images, HR estimates of our method, depth estimates of our method, and ground-truth depth map. The resuls are shown only for Art and Dolls datasets.

TABLE II
PSNR(DB) OF HR IMAGES FOR Middlebury 2005 DATASETS[14]

Method Art Dolls Reindeer Moebius Books

Proposed 33.43 32.48 33.47 33.25 29.93

Bilinear Interpolation 31.30 30.44 31.84 32.17 28.42

SISR[11] 33.78 32.66 33.54 33.75 29.72

TABLE III
DISPARITY ERROR RATIOS(%) FOR Middlebury 2005 DATASETS[14]

Method art dolls reindeer moebius books

Proposed 3.81 3.22 0.99 2.72 6.66

Bilinear+MVS 3.97 3.60 1.70 3.12 6.76

SISR+MVS 4.30 3.49 2.09 3.24 7.69

Table III. We used all seven views with the same illumination

and exposure. As it can be seen from the table, while our

method always outperforms the bilinear interpolation in terms

of both super resolution and multi-view stereo, the use of HR

image obtained by single image super resolution for multi-

view stereo turns out to be problematic. Note that, although

the PSNR scores are mostly best when using single image

super resolution[11], ours are fairly comparable to theirs.

VI. CONCLUSIONS

In this paper, a new approach for the combining super

resolution and stereo problem is proposed. Our method solve

both problem in one framework by optimizing a unified

energy functional. Unlike previous methods, we directly use

HR images in matching, while imposing consistency between

LR images and HR images only for the same viewpoint.

This novel formulation improves accuracy of both multi-view

stereo and super resolution results and, especially, eliminates

mosaic artifacts from the HR output caused by use of ICM

optimization. Experimental results show that the qualities of

super resolution and stereo results are better than that of the

case where each are handled independently.
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