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Abstract—This paper explores criteria for unique recovery
from blind deconvolution under sparsity priors. Additionally
regularizing functions stemming from this problem framework
are developed. For key cases, it is possible to ensure unique
recoverability given the regularized problem statement. The
uniqueness results are informed by a matrix completion-based
viewpoint of blind deconvolution. Furthermore, this perspec-
tive enables characterization of why blind deconvolution with
two sparse inputs is an inherently hard problem. Two blind
deconvolution algorithms are proposed which do not rely on
alternating between the estimation of one input signal, while
holding the other constant. Evaluation of the algorithms is
done via simulation and shown to significantly outperform a
previously proposed method. Furthermore, numerical illustration
of recovery failure considering sparsity of input signals that do
not satisfy the recovery constraints is also provided.

Index Terms—sparse recovery, blind deconvolution, underwa-
ter acoustic communications

I. INTRODUCTION

Underwater acoustic communication (UAC) systems have the
potential to enable or enhance key ocean–related applications
such as: scientific data collection, pollution monitoring, tactical
surveillance and disaster prevention [1]. Cooperative commu-
nication with multi–hopping for terrestrial sensor networks
has been extensively studied enabling power savings and
improved fidelity [2]. Given the significant attenuating effects
in underwater acoustics [3], cooperative communications are
of major interest. Most schemes (such as distributed space-
time coding and equalization in [4]) require channel state
information. In a previous paper [5], we developed a structured
channel model based on the multichannel approximation for
the second hop in a relay assisted communication topology
shown in Fig. 1. Herein, we develop two channel estimation
approaches explicitly exploiting this channel structure along
with an investigation of uniqueness of the estimate. We
observe that the network topology in Fig. 1 naturally leads
to a blind deconvolution problem where both signals are
known to be sparse. It is well known [6] that, without
additional regularization, blind deconvolution falls into the
category of nonlinear ill-posed inverse problems, showing
poor stability to the recovery process and admitting multiple
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Fig. 1. Two hop relay assisted communication link topology with four
cooperating nodes.

solutions (the number of solutions could grow exponentially
in length of the convolved output). We derive regularizers
specific to our scenario for the blind deconvolution problem
(under mild assumptions). In particular, we investigate whether
physical deployment of relays in a network can make the blind
deconvolution problem well-posed.

Blind deconvolution under smoothness priors and statistical
priors has been well studied in the signal processing as well
as wireless communications literature (e.g. see [7], [8]). Only
recently has signal sparsity been exploited for inverse problems
in image processing [9]. Our interest is motivated by the fact
that point to point links in underwater acoustic communications
exhibit sparse channels [10]. Much recent work on blind
deconvolution with sparsity priors [5], [11]–[13] takes an
algorithmic approach based on the very popular alternating
minimization heuristic, i.e. estimating one sparse signal while
holding the other fixed and iterating. Although the alternating
minimization approach to blind deconvolution is guaranteed to
converge to a local minimum of the objective function [6], the
point of convergence is highly dependent on initialization.

Blind deconvolution was also examined in [14]. We shall
adopt several observations from [14] relating to the operation
of convolution herein. However, there is a key difference in
that [14] allows for a random linear precoding operation which
enables a mapping to more classical compressed sensing [15]
problems. The relevant linear map for our recovery problem
thus does not possess the same desirable properties as that
of [14]. As such, the question of establishing uniqueness for
recovery remains open.

The contributions of this work are as follows:

1) We map the two hop cooperative communication problem



to that of blind deconvolution.
2) We identify good regularizers for this problem.
3) We show that a matrix rank minimization approach

towards blind deconvolution allows us to provide a clean
answer to the unique recoverability question.

4) We argue using matrix completion ideas that a sparsity
prior on both input signals leads to poor recovery
performance.

5) We provide results on unique recoverability for both the
“well separated” as well as the “not well separated” cases
of blind deconvolution.

6) We propose two different channel estimation algorithms
for the second hop estimation, neither of them based on
alternating minimization or convex relaxation techniques,
and provide a numerical comparison to an alternating
minimization based technique with significant improve-
ment.

This paper is organized as follows. In Section III, the system
model for the UWA relay channel is developed along with a
discussion of possible regularizers. We investigate conditions
for unique recoverability for the regularized versions of the
blind deconvolution problem in Section IV. We also show that
blind deconvolution of two sparse signals is inherently hard. We
provide uniqueness results for both “well separated” and “not
well separated” scenarios of the problem. Section V describes
two channel estimation algorithms for the second hop and
numerical comparisons are provided in Section VI. Section VII
concludes the paper. Appendix A provides a uniqueness proof
for the “not well separated” scenario.

II. NOTATION

We shall use lowercase boldface alphabets to denote column
vectors (e.g. z). The kth element of a vector z will be denoted
by zk or (z)k. In contrast, zk denotes the kth vector in a
sequence of vectors (which is not the same as (z)k). For a
vector z, Nz shall denote the length of z.

Matrices are denoted by uppercase boldface letters (e.g. A).
The (i, j)

th element of the matrix A will be denoted by Aij ,
Ai,j , (A)ij or (A)i,j . The jth column of the matrix A will
be denoted by (A)j . The uppercase and lowercase boldface
versions of the same alphabet, respectively representing a matrix
and a vector (e.g. H and h), are unrelated unless explicitly
mentioned otherwise.

The Schur product will be denoted by � and the standard
Euclidean inner product will be denoted by 〈·, ·〉 (for matrices
it denotes the trace inner product). For a set M , |M | shall
denote its cardinality. The sign of a real number x will be
denoted by sgn(x) and is defined as,

sgn(x) ,


1, x > 0,

0, x = 0,

−1, x < 0.

(1)

Unless otherwise specified, functions defined on real numbers
are assumed to be extended to operate elementwise on vectors
as well as matrices. For example, given a vector z and a m×n

matrix A, the vectors |z| and sgn(z) and the matrices |A| and
sgn(A) are defined by

(|z|)k = |zk| , (sgn(z))k = sgn(zk) ,
(|A|)ij = |Aij | and, (sgn(A))ij = sgn(Aij) ,

(2)

for all 1 ≤ k ≤ Nz , 1 ≤ i ≤ m and 1 ≤ j ≤ n. For a vector
z and a matrix A, the support will be denoted by supp(z) and
supp(A), and defined as,

supp(z) , |sgn(z)| and, supp(A) , |sgn(A)| , (3)

respectively. The `0-pseudonorm, which counts the number of
nonzero elements in its argument, will be denoted by ‖·‖0 for
both vectors and matrices. Specifically, for any vector z and
m× n matrix A, we have

‖z‖0 ,
∑
k

supp(z) and, ‖A‖0 ,
∑
i,j

supp(A) , (4)

for all 1 ≤ k ≤ Nz , 1 ≤ i ≤ m and 1 ≤ j ≤ n.

III. SYSTEM MODEL

We shall consider the two-hop relay assisted communication
topology shown in Fig. 1. We show that the signal model in
[5] maps to blind deconvolution. We derive regularizers for
the inverse problem. We make some sparse recovery related
terminology precise via the following definitions:

Definition 1. The support of a vector z, denoted by supp(z),
is defined as the binary vector,

supp(z) , |sgn(z)| . (5)

We say that z is supported on x, or equivalently, x is the
support vector for z if x = supp(z).

Definition 2. A vector z is said to be exactly N -sparse, or
equivalently, z is said to have sparsity N if

‖z‖0 = N. (6)

We say that z is “sparse” in the standard basis if ‖z‖0 � Nz .

We make the following assumptions about our system:

Assumption 1. Each point-to-point link is sparse in the time
domain.

Assumption 2. All relay-destination channels on the second
hop have a common sparse support.

Assumption 3. All relays use a common training sequence
for the purpose of channel estimation at the destination.

Assumption 4. The relays transmit at equal power and can
compensate for relative phase differences.

Assumptions 1 and 2 are justified in [5]. Assumption 3 is
justified by practical considerations (e.g. see [16]). Assump-
tion 4 can be justified by recent developments in full duplex
wireless (e.g. see [17]).

For our two-hop link in Fig. 1, there are, in fact, two
different channel estimation problems to be solved. The first
hop estimation problem is that of a single-input-single-output



(SISO) source-relay channel impulse response (CIR) which
can be solved using standard sparse recovery techniques (e.g.
see [15]) and shall not be examined here. The second hop
estimation problem involves estimating each of the relay-
destination point-to-point links at the destination and, unlike
the first hop estimation problem, the estimation tasks for the
relay-destination channels are, in general, not independent. In
particular, the channel seen by the destination is a multiple-
input-single-output (MISO) channel with structural relations
given by Assumption 2.

Assuming K participating relays, we denote the K SISO
relay-destination CIRs by h1,h2, . . . ,hK and their common
sparse support vector by b. We also define the square diagonal
matrix Hk = diag(hk), for each 1 ≤ k ≤ K. We have by
definition,

hk � b = hk =Hkb, ∀ 1 ≤ k ≤ K. (7)

Let the propagation delays for the K relay-destination links
in the tapped-delay line model be denoted respectively by
τ1, τ2, . . . , τK . Let the τ -delay (τ -downshifting) matrix opera-
tor be denoted by Dτ which is defined by,

(Dτ )ij =

{
1, i− j = τ,

0, otherwise,
(8)

for non-negative integers τ . The second hop MISO CIR, as seen
by the destination, will be a superposition of delayed versions
of the K SISO relay-destination CIRs h1,h2, . . . ,hK with the
delays being τ1, τ2, . . . , τK respectively. Denoting the second
hop MISO CIR by β we have,

β =

K∑
k=1

Dτkhk =

K∑
k=1

DτkHkb = Lb, (9)

where L is a tall banded matrix and is defined as,

L =

K∑
k=1

DτkHk. (10)

By virtue of the above definition, L will be zero above its first
(main) diagonal and below its last diagonal. Further, atmost
K diagonals in L can have nonzero elements. Finally, if such
a diagonal (with nonzero elements) is written out as a column
vector, then this vector is supported on b.

As the channel is finite-impulse-response (FIR), the output
to the common training sequence is a convolution. Let the
common training sequence be denoted by the lower triangular
Toeplitz matrix T . Then the noiseless received signal at the
destination is given by,

K∑
k=1

DτkThk =

K∑
k=1

TDτkhk = T

(
K∑
k=1

Dτkhk

)
= Tβ.

(11)
Note that if T is an invertible matrix, then our second hop
channel estimation problem is the same as the inverse problem
of estimating L and b from the observation of β = Lb taking
into account the structural properties of L and b described
previously.

By some elementary manipulations, we can convert the
expression β = Lb into a form which is linear in the unknown
with a rank constraint on the domain. An analogous observation
was made in [14]. Let the kth diagonal of the matrix L be
written out as a row vector and form the kth row of a matrix
W . In particular we have,

Wij = Lj,i+j−1, (12)

for the appropriate range of indices i and j. It is easy to see
that the elements of the vector β are given by the matrix inner
product expressions,

βk = 〈W ,Sk〉 , (13)

where the matrices Sk are given by,

(Sk)ij =

{
1, i+ j = k + 1,

0, otherwise,
(14)

for 1 ≤ k ≤ Nβ.
We note that each row of W is supported on the sparse

support vector bT so that the matrix W is column-sparse, i.e.
only a few columns of W have nonzero elements. A similar
argument also applies if the roles of the rows and columns of
W are interchanged, since W has at most K nonzero rows
by construction, which makes W row-sparse as well. These
row and column sparsity features of W form our first set of
regularizers for the inverse problem. Under the assumption
of similar multipath propagation environments for each relay-
destination link (see Assumption 2) the CIRs h1,h2, . . . ,hK
are roughly expected to be scalar multiples of each other. This
means that the rows of W are approximately scalar multiples
of a single row which gives us a low rank (rank-1) regularizer
for the inverse problem.

By Assumption 4, the CIRs h1,h2, . . . ,hK are observed
to have the same phase at the destination. Combined with the
rank-1 approximation of W already described this would mean
that all nonzero rows of W are equal (or approximately equal)
resulting in yet another regularizing constraint for our inverse
problem.

IV. DESIGN CONSIDERATIONS FOR UNIQUE RECOVERY

Based on the rank-1 domain constraints discussed in Sec-
tion III, we could pose our inverse problem as,

find W

subject to rank(W ) = 1,

〈W ,Sk〉 = βk, ∀1 ≤ k ≤ Nβ,
(P0)

Given the specific structure of the matrices Sk, for all
1 ≤ k ≤ Nβ, and the rank-1 constraint on the domain of
W , it is not difficult to see that Problem (P0) translates into
deconvolving β into the two vectors x and y which respectively
form appropriately scaled versions of (W )1 and

(
W T

)
1

(a
blind deconvolution problem). Thus, Problem (P0) restated in
terms of the optimization variables x and y, becomes,

find x,y

subject to x ? y = β.
(P1)



It was noted in Section III that W , as an optimization
variable in Problem (P0), is row-sparse as well as column-sparse.
To make this notion concrete, we introduce the pseudonorms
‖W ‖r,0 and ‖W ‖c,0 respectively denoting the number of
nonzero rows and the number of nonzero columns in W .
If matrix W is of dimension m× n, ‖W ‖r,0 and ‖W ‖c,0 are
defined as,

‖W ‖r,0 ,

∥∥∥∥∥
m∑
i=1

(
|W |T

)
i

∥∥∥∥∥
0

(15)

and,

‖W ‖c,0 ,

∥∥∥∥∥∥
n∑
j=1

(|W |)j

∥∥∥∥∥∥
0

. (16)

Both ‖·‖r,0 and ‖·‖c,0 exhibit the same properties as the `0-
pseudonorm, i.e. they satisfy all properties of a norm except
positive homogeneity. We thus expect ‖·‖r,0 (respectively ‖·‖c,0)
to encourage row sparsity (respectively column sparsity) in the
regularized version of Problem (P0), similar to the way ‖·‖0
encourages sparsity in standard compressed sensing.

A. Column Sparsity Regularization

In the column-sparse regularized version of Problem (P0)
we have the following recovery problem,

minimize
W

‖W ‖c,0

subject to rank(W ) = 1,

〈W ,Sk〉 = βk, ∀ 1 ≤ k ≤ Nβ.

(P2)

For ease of exposition, we also define a condition which
we call the non-overlapping constraint. A similar (albeit more
restrictive) condition was also proposed in [11] to avoid circular
shift ambiguities for the blind circular deconvolution problem.
Practically, this condition can be interpreted as “no inter-tap
interference”.

Definition 3. For the vectors x, y and z satisfying the
relationship: z = x ? y, we say that vectors x and y satisfy
the non-overlapping constraint w.r.t. z if the following holds,

supp(z) = supp(x) ? supp(y) . (17)

Here, ? denotes the linear convolution operator. Further, if
Nx < Ny and each pair of nonzero taps in y is atleast Nx taps
apart then x and y are said to be “well separated” w.r.t. z.

We state, without proof, the following sufficient condition
for the solution of Problem (P2) to be unique:

Theorem 1. If there exists an optimal solution W∗ to Prob-
lem (P2) for which (W∗)1 and

(
W T
∗
)
1

are well separated w.r.t.
β, then W∗ is the unique solution to Problem (P2).

It is worthy of notice that the optimal solution to Prob-
lem (P2) tends to be a row-dense matrix. This is explained by
the fact that ‖β‖0 = ‖W ‖r,0 ·‖W ‖c,0 when (W )1 and

(
W T

)
1

satisfy the non-overlapping constraint w.r.t. β. Thus if one of
‖W ‖r,0 or ‖W ‖c,0 decreases then the other must increase as
‖β‖0 is a constant.

B. Joint Effect of Row and Column Sparsity

In [13], the authors developed the BCD algorithm for blind
deconvolution; an observation made therein, based on numerical
results, was that assuming a sparisty prior on both input signals
yielded degraded performance relative to the assumption on
only one input. We endeavor to formalize this result for the
general case, independent of recovery algorithm, using ideas
from matrix completion [18].

The matrix completion problem studied in [18] has several
similarities with our recovery set up in Problem (P0). In
particular, the matrices Sk describing the linear constraints in
Problem (P0) are pairwise orthogonal, sparse in the standard
Euclidean basis and their elements assume values from the set
{0, 1}. These characteristics are also true for the matrices
describing the linear constraints in the matrix completion
problem in [18].

We modify Problem (P2) to include row-sparse constraint
and state it as the following recovery problem,

minimize
W

‖W ‖c,0

subject to ‖W ‖r,0 = K,

rank(W ) = 1,

〈W ,Sk〉 = βk, ∀ 1 ≤ k ≤ Nβ.

(P3)

Consider a rank-1 matrix W which is very sparse in both
‖·‖r,0 and ‖·‖c,0 pseudonorms, and (W )1 and

(
W T

)
1

satisfy
the non-overlapping constraint w.r.t. β. As W is rank-1, it is
quite sparse in the standard Euclidean basis which leads to
high coherence between the sparsity bases for the projection
operators Sk and the matrix W in the Problem (P3). From
the arguments in [18], it is now easy to see that the recovery
of such a matrix is expected to fail with high probability
(due to non-uniqueness of recovery) in the absence of further
constraints, regardless of which recovery strategy is used. As
‖β‖0 = ‖W ‖r,0 · ‖W ‖c,0, the above mentioned situation arises
when the MISO CIR at the destination is quite sparse.

C. Constraints from Assumption 4

We shall adopt the notion of feasibility of an optimization
problem and the definition of a feasible point as described in
[19]. We denote by S(z), the set of all distinct nonzero values
assumed by the elements of a vector z. We let x(z) denote
the polynomial equivalent of vector x, i.e.

x(z) =

Nx∑
j=1

xjz
j−1 (18)

As noted in Subsection IV-B, we need additional constraints
to determine the correct support for W . To this end, we invoke
Assumption 4 and restrict (W )1 to be a binary vector. Then,



in terms of the optimization variables x and y, Problem (P3)
becomes,

minimize
x,y

‖y‖0
subject to ‖x‖0 = K,

x ? y = β,

x ∈ {0, 1}Nx .

(P4)

Remark 1. If Problem (P4) is feasible then K divides ‖β‖0.
Remark 2. If (x̃, ỹ) is a feasible point for Problem (P4), with
x̃ and ỹ satisfying the non-overlapping constraint w.r.t. β, then
S(β) = S(ỹ).

Theorem 2. Let K∗ be the maximum value of K such
that Problem (P4) has a feasible point (x̃, ỹ) with x̃ and ỹ
satisfying the non-overlapping constraint w.r.t. β. For K = K∗,
Problem (P4) has a unique solution.

Proof: See Appendix A.

V. ALGORITHMIC APPROACHES TO SIGNAL RECOVERY

We shall consider two recovery strategies. The first one is
specific to the set up described in Subsection IV-C (where one
of the vectors being convolved is a binary vector) and is called
“Decoupled MAP Estimation” (DMAP). The second strategy is
based on jointly estimating both input vectors in an iterative
fashion different from the alternating minimization approach
and is dubbed “Stable Projection” (SP).

A. Decoupled MAP Estimation

Suppose that the convolved vectors are y and x with x
binary and ‖x‖0 = K known at the destination. DMAP is
a step by step estimation algorithm based on sequentially
estimating/detecting S(y), supp(y) and x in that order, where
S(y) denotes the set of distinct nonzero elements in y. We
shall assume that |S(y)| = ‖y‖0, i.e. all nonzero values in y
are distinct. Under the assumption of no noise,

M = ‖y‖0 =
‖β‖0
‖x‖0

=
‖β‖0
K

, (19)

is known at the receiver. For noisy observation of β, we assume
that we have a good estimate of M .

1) Estimation of S(y):
a) Take the M ·K largest magnitude tap values from
β and sort in descending order in α.

b) Let S(y) = {y1, y2, . . . , yM} with yi > yj for
i > j. We estimate yj ,∀1 ≤ j ≤M as,

ŷj =
1

K

K∑
i=1

α(j−1)·K+i. (20)

Assuming correct ordering of the noiseless contri-
butions, this is the maximum likelihood estimate
for additive Gaussian noise.

2) Estimation of supp(y):
c) Let Pr(Hij) denote the a priori probability that

the hypothesis Hij : βj = ŷi + ηij is true, where

ηij denotes additive noise and 1 ≤ j ≤ Nβ. Then
a posteriori probability pij of hypothesis Hij being
true is calculated as,

pij =
Pr(βj |Hij) Pr(Hij)

M+1∑
i=1

Pr(βj |Hij) Pr(Hij)

, (21)

where ŷM+1 = 0.
d) We calculate the average expected delay of the

channel tap value ŷi as,

Ĝi =
1

K

Nβ∑
j=1

j · pij . (22)

e) If τj represents the delay between tap values ŷj
and ŷj−1 in the vector y, then τ̂j = Ĝj − Ĝj−1.
Assuming first nonzero tap in y has zero delay, an
estimate of supp(y) is completely determined by
the estimates τ̂2, τ̂3, . . . , τ̂M .

3) Estimation of x:
f) We denote the sub-vector formed by
βi, βi+1, . . . , βj as β(i : j) and the vector
supp(y)�β(j : j + Ny − 1) by γj . Let Pr(γj | ŷ)
denote the probability of observing γj from additive
noise corruption of ŷ. Initialize set C = ∅.

g) We repeatedly update set C as,

C = C ∪ argmax
j∈{1,...,Nx}\C

Pr(γj | ŷ) , (23)

until the stopping criterion |C| = K is reached.
Then, the values in set C are the nonzero tap
locations of x.

Under the assumption of no noise, the algorithm would yield
the true values of yj which results in perfect reconstruction of
supp(y) and hence a perfect estimate of x as well. If we relax
the assumption of |S(y)| = ‖y‖0, then estimation of supp(y)
is not perfect. Rather, if one tap value is associated with two
different locations i and j in y, then the estimated index for
that tap value would be some weighted average of i and j
and would be associated with a nontrivial discrete probability
distribution. It is not possible to address this problem in a one
step estimation approach for supp(y) and we have to resort
to iterations based on belief propagation technique. One step
estimation performance for noisy measurements is provided in
Section VI-D.

B. Stable Projection
This is a joint estimation algorithm based on projecting the

current estimate onto a convex domain at each iteration to
obtain the next estimate. Let Y and X denote the Toeplitz
matrices which act as convolution operators w.r.t. y and x
defined as,

Y x =Xy = y ? x. (24)

This algorithm exploits the fact that elements of y and x
are bounded and without loss of generality, we assume that
‖y‖∞ ≤ 1 and ‖x‖∞ ≤ 1.



The gradient of the convolved output with respect to the
inputs is given by,

∇ (y ? x) =

[
∇y (y ? x)
∇x (y ? x)

]
=

[
∇y (Xy)
∇x (Y x)

]
=

[
XT

Y T

]
. (25)

Let ỹ and x̃ be intermediate estimates to the true values of y
and x at any given step and Ỹ and X̃ be the corresponding
operators for the convolution operation with ỹ and x̃ respec-
tively. Then, the error in the convolved output is β − ỹ ? x̃.
To design an iterative update strategy we note that for small
enough step size µ, this error is approximated by the first term
of the Taylor series of y ? x as,

µ (β − ỹ ? x̃) ≈ ∇ (ỹ ? x̃)
T
[
δy
δx

]
=
[
X̃Ỹ

] [δy
δx

]
. (26)

Observing that,

2 (ỹ ? x̃) =
[
X̃Ỹ

] [ỹ
x̃

]
, (27)

a simple update rule for the next iterate is obtained by adding
together (26) and (27),

µβ + (2− µ) ỹ ? x̃ ≈
[
X̃Ỹ

] [y
x

]
, (28)

where y = ỹ + δy and x = x̃+ δx.
The Stable Projection strategy is outlined below.
1) Initialize y and x randomly in their respective domains.
2) Calculate the matrices Y and X .
3) Calculate the maximum singular value σmax of the matrix[

XY
]
. Set step size µ = max

{
1,

1

σmax

}
.

4) Solve the quadratic program,

minimize
x̃,ỹ

∥∥∥∥[XY ] [ỹx̃
]
− (µβ + (2− µ)y ? x)

∥∥∥∥
2

subject to
∥∥∥∥[ỹx̃

]∥∥∥∥
∞
≤ 1.

(P5)
to obtain the next estimate for y and x in ỹ and x̃.

5) Go back to Step 2 and iterate till convergence is achieved.
Observe that we do not add an `1-norm penalty term to our

objective function due to the discussion in Subsection IV-B.

VI. NUMERICAL RESULTS

A. Data Generation

We generated signals with dimensions given by Nx = 500
and Ny = 100. We define the normalized sparsity of a vector
x as the quantity ‖x‖0 /Nx and denote it by ρx. We fixed
ρy = 0.05 and varied ρx from 0.01 to 0.05 in steps of 0.01.
For each value of ρx considered, we generated 100 random
realizations of vector pairs (x,y) which satisfy (17). We found
that for ρx > 0.05 it was computationally prohibitive to
randomly generate enough vector pairs (x,y) which satisfy
(17). For simulating estimation performance in the presence
of noise, we generated 100 additive white Gaussian noise
(AWGN) corrupted realizations for each random (x,y) vector
pair realization.

B. Comparison Metrics

We considered two comparison metrics which are described
below. The first one tends to capture error energy and represents
the conventional way to measure estimation performance. The
second one is based on the `1-norm of the estimation error
and tends to penalize support detection errors more that the
former metric.

1) Normalized Root Mean Square Error: For a fixed realiza-
tion of the vector pair (x,y), the squared error between the true
value of the concatenated vector

(
xT,yT

)
and the estimated

value of the concatenated vector
(
x̂T, ŷT

)
is calculated. In the

noiseless setting, this squared error value is averaged over all
100 realizations of the vector pair (x,y) generated under the
same value of ρx to obtain the mean squared error. In the noisy
setting the averaging is done over both, the AWGN realizations
as well as the (x,y) vector pair realizations. The square root
of this mean squared error is divided by Ny + Nx = 600 to
obtain the normalized root mean squared error.

2) Normalized Mean Deviation Error: For a fixed realization
of the vector pair (x,y), the `1-norm of the error between
the true value of the concatenated vector

(
xT,yT

)
and the

estimated value of the concatenated vector
(
x̂T, ŷT

)
is calcu-

lated. In the noiseless setting, this `1-norm value is averaged
over all 100 realizations of the vector pair (x,y) generated
under the same value of ρx to obtain the mean deviation. In
the noisy setting the averaging is done over both, the AWGN
realizations as well as the (x,y) vector pair realizations. This
mean deviation error is divided by Nx + Ny = 600 to obtain
the normalized mean deviation error.

It was observed in our experiments that both metrics tend to
show similar results with the differences being usually more
pronounced for the Normalized Mean Deviation Error. Thus,
we have presented results for this metric alone.

C. Noiseless Estimation Performance

1) Performance Comparison: The Dense-h Block Coor-
dinate Descent (DhBCD) algorithm from [13], the DMAP
estimation algorithm from Subsection V-A and the SP algorithm
from Subsection V-B were compared when measurement noise
was absent. For the DhBCD algorithm we set the number of
source signals to one. The results are presented in Fig. 2 with
a logarithmic scale for the error axis.

It was observed that the DMAP algorithm perfectly recovers
the vector pair (y,x) in this setting. This is to be expected
as the algorithm was designed to arrive at the unique solution
if one exists via the sufficiency conditions in Theorem 2. It
is also observed that the other two algorithms perform much
worse than DMAP and among them SP tends to perform
better than DhBCD. This can be explained in part by the
fact that both simulation based and real life signals tend to
be bounded which is not exploited correctly by DhBCD as
it relies on energy renormalization alone. This was verified
during simulations with the observation that estimated channel
taps from the DhBCD algorithm would often assume very large
values leading to instability of the algorithm. The SP ensures
algorithmic stability by limiting the step size at each iteration
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Fig. 2. Comparison of performance of the DhBCD, SP and DMAP estimation
algorithms under noiseless setting.
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Fig. 3. Comparison of performance gain for DhBCD and SP algorithms on
thresholding at final step.

as well as bounding the `∞-norm of the estimated vectors at
the end of each iteration.

2) Thresholding at Final Step: To improve the performance
of the DhBCD and SP algorithms, we introduce a thresholding
operation as an end step for both algorithms. This step tries to
exploit the binary nature of x (x ∈ {0, 1}Nx) so an intuitive
choice for the threshold is 0.5. The performance improvement
turns out to be negligible at best, as can be seen in Fig. 3.

D. Noisy Estimation Performance

Because the DhBCD and the SP algorithms perform much
much worse than the DMAP algorithm in the noiseless setting,
we shall only consider the DMAP algorithm when measurement
noise is present. We study the following two cases.

1) ‖y‖0 known accurately at receiver: Fig. 4 shows the
noisy estimation performance for the DMAP algorithm for
different levels of normalized sparsity ρx under the assumption
of ‖y‖0 being known accurately at the receiver. The estimation
performance degrades with increasing noise power as well as
with increasing ρx. Indeed, increasing ρx means more taps
need to be estimated and hence there is a degradation in overall
estimation performance.

2) ‖y‖0 estimated at the receiver: Fig. 5 shows the noisy
estimation performance of the DMAP algorithm under both
metrics for different levels of normalized sparsity ρx when
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Fig. 4. Performance of DMAP estimation algorithm under noisy setting with
prior knowledge of ‖y‖0.
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Fig. 5. Performance of DMAP estimation algorithm under noisy setting
without prior knowledge of ‖y‖0.
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Fig. 6. Effect of prior knowledge of ‖y‖0.

prior knowledge of ‖y‖0 is not available at the receiver.
Beyond small levels of noise power, estimation performance
is independent of ρx. This suggests that support detection
of y and sparsity estimation of x is the major performance
bottleneck. Fig. 6 directly compares estimation performance
when ‖x‖0 is known versus when it is unknown for two values
of ρx. This clearly shows that detecting support of y forms
the major performance bottleneck when ‖y‖0 is unknown at
the receiver.



VII. CONCLUSIONS

In this paper we investigated some regularizers for the blind
deconvolution problem which arise from physical consider-
ations in underwater acoustic communication channels and
proposed some conditions on unique recoverability under these
settings. Using an elegant comparison with the low rank matrix
completion problem, we argued that imposing sparsity priors
on both the input signals is expected to lead to poorer recovery
performance, a fact that was discovered in an earlier work but
for which no explanation was provided. In this process we also
establish the importance of a matrix completion viewpoint for
the blind deconvolution problem, an approach not explicitly
considered before. We provide results for unique recoverability
for the blind deconvolution problem under both the “well
separated” and “not well separated” scenarios. To the best of our
knowledge, results for the “not well separated” setting have not
been proposed before in this context. Two channel estimation
strategies have been proposed for the second hop estimation
problem apart from the popular alternating minimization and
the convex relaxation techniques. We also provide numerical
results for comparing estimation performance of the proposed
algorithms and demonstrate the failure of assuming sparsity
priors on both inputs simultaneously.

An important direction of our future endeavours would be
to weaken the strict non-overlapping constraint and extend the
ideas developed herein to other ill-posed inverse problems
which conform to a bilinear structure (e.g. blind circular
deconvolution, matrix factorization, etc.).
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APPENDIX A
PROOF OF THEOREM 2

We shall employ contradiction. Let K = K∗ and
(x̃(z) , ỹ(z)) be a feasible point for Problem (P4). Suppose
S(ỹ) = {ỹ1, ỹ2, . . . , ỹr} for some 1 ≤ r ≤ K∗ with
‖x̃‖0 = K∗. We have,

ỹ(z) =

Ny∑
j=1

(ỹ)j z
j−1 =

r∑
j=1

ỹjpj(z) (29)

for some polynomials pj(z) ∈ F2[z] where F2 is the binary
field. We put x̃(z)pj(z) = qj(z). Then independent of the
feasible point (x̃(z) , ỹ(z)), the unique representation of β(z)
in terms of polynomials in F2[z] is,

β(z) = x̃(z) ỹ(z) =

r∑
j=1

ỹjx̃(z)pj(z) =

r∑
j=1

ỹjqj(z) (30)

The uniqueness of representation in (30) is due to x̃ and ỹ
satisfying the non-overlapping constraint w.r.t. β. Let q(z) =
gcd(q1(z) , q2(z) , . . . , qr(z)). It is clear that x̃(z) r(z) = q(z)
for some polynomial r(z). Because q(z) divides β(z), let
s(z) q(z) = β(z). Then (q(z) , s(z)) is a feasible point of
Problem (P4). If degree of r(z) equals zero then we have a
unique solution to Problem (P4). If degree of r(z) is greater
than zero then ‖q‖0 > ‖x̃‖0 = K∗. This would imply
that Problem (P4) is feasible for some K > K∗ which is
a contradiction. Hence degree of r(z) equals zero and we have
a unique solution to Problem (P4).


