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Abstract— The proportionate normalized least mean square
(PNLMS) algorithm, a popular tool for sparse system identifica-
tion, achieves fast initial convergence by assigning independent
step sizes to the different taps, each being proportional to the
magnitude of the respective tap weight. However, once the active
(i.e., non-zero) taps converge, the speed of convergence slows
down as the effective step sizes for the inactive (i.e., zero or near
zero) taps become progressively less. In this paper, we try to
improve upon both the convergence speed and the steady state
excess mean square error (EMSE) of the PNLMS algorithm,
by introducing a l1 norm (of the coefficients) penalty in the
cost function which introduces a so-called zero-attractor term in
the PNLMS weight update recursion. The zero attractor induces
further shrinkage of the coefficients, especially of those which
correspond to the inactive taps and thus arrests the slowing
down of the convergence of the PNLMS algorithm, apart from
bringing down the steady state EMSE. We have also modified
the cost function further generating a reweighted zero attractor
which helps in confining the “Zero Attraction” to the inactive
taps only.

Index terms–Sparse Adaptive Filter, PNLMS Algorithm,
RZA-NLMS algorithm, convergence speed, steady state per-
formance.

I. INTRODUCTION

Sparse systems are encountered in several important ap-
plications like network echo cancelation, acoustic echo can-
celation in hands free telephony, HDTV, wireless multipath
channels and underwater acoustic communications. Conven-
tional system identification algorithms like the LMS and the
normalized LMS (NLMS) [1] do not, however, make use
of the a priori knowledge of the sparseness of the system
and thus perform poorly both in terms of steady state excess
mean square error (EMSE) and convergence speed. This has
resulted in a flurry of research activities [2] in the last decade
for developing sparsity aware identification algorithms, promi-
nent amongst them being the proportionate normalized LMS
(PNLMS) algorithm [3] and its several variants [4]-[7]. In the
PNLMS algorithm, each tap weight is updated independently
by a step size that is proportional to the magnitude of the
weight. This results in accelerated initial convergence of the
algorithm though the rate of convergence becomes somewhat
slower at a later stage. In a separate development, an alter-
native approach to identify sparse systems has been proposed
[8], which introduces a l1 norm (of the coefficients) penalty
in the cost function which favors sparsity. This results in a
modified LMS update equation with a zero attractor for all the

taps, named as the Zero-Attracting LMS (ZA-LMS) algorithm.
The presence of the zero attractor results in shrinkage of
the coefficients, especially the inactive taps, giving rise to
lesser steady state EMSE for sparse systems. In [8], the
ZA-LMS algorithm was further modified to the so-called
“Reweighted ZA-LMS” (RZA-LMS), where the zero attractors
were reweighted by the inverse of the tap magnitude, thereby
restricting the shrinkage mostly to the inactive taps only. In
[9], the RZA concept was applied to the NLMS algorithm, in
order to exploit the advantages that the NLMS algorithm offers
vis-a-vis the LMS like faster rate of convergence, especially
against colored input.
While both the PNLMS and the RZA-NLMS algorithms

exploit the system sparsity to improve upon the identification
performance, their working principles and objectives are, how-
ever, complementary to each other. In the case of the PNLMS
algorithm, as the algorithm starts, the effective step sizes for
the active taps grow rapidly which accelerates the convergence
of the active taps, resulting in a very fast overall convergence
rate during the initial period. Subsequently, i.e., after the active
taps have converged, the rate of convergence of the algorithm
gets governed primarily by the convergence rate of the inactive
taps, which, however, becomes slower as the effective step
sizes in this case become progressively less. The RZA-NLMS
algorithm, on the other hand, aims at lesser steady state EMSE
by bringing in an additional force in the update equation in
the form of zero attractor which confines the inactive taps to
a small range around zero value.
In this paper, we extend the RZA concept to the PNLMS

algorithm in order to avail the benefits of both the PNLMS
and the RZA-NLMS algorithms. In particular, once the initial
period of fast convergence of the PNLMS algorithm is over,
we aim to use the zero attractors as an additional force in order
to “attract” the coefficients to zero. This will help in arresting
the slowing down of the convergence of the PNLMS and also
will lead to a lesser steady state EMSE. Towards this, we
develop a ZA-PNLMS algorithm first, which is later modified
to incorporate the reweighting of the zero attractors. Detailed
computer simulations providing insights on the working of the
proposed algorithm are also provided.
The paper is organized as follows : in section II, we

present a brief overview of the PNLMS and the RZA-NLMS
algorithms and in section III, the proposed algorithms are
derived. Section IV presents a performance evaluation of the
proposed algorithms by computer simulation.



II. A BRIEF REVIEW OF THE PNLMS AND THE

RZA-NLMS ALGORITHMS

A. PNLMS Algorithm

Consider a PNLMS based adaptive filter that takes x(n)
as input and updates a N tap coefficient vector w(n) =
[w0(n), w1(n), · · · , wN−1(n)]

T as [3],

w(n+ 1) = w(n) +
µG(n)x(n)e(n)

xT (n)G(n)x(n) + δP
, (1)

where x(n) = [x(n), x(n − 1), · · · , x(n − N + 1)]T is the
input regressor vector,G(n) is a diagonal matrix that modifies
the step size of each tap, µ is the overall step size, δP is a
regularization parameter and e(n) = d(n) − w

T (n)x(n)
is the filter output error, with d(n) denoting the so-called
desired response. In the system identification problem under
consideration, d(n) is the observed system output, given as
d(n) = w

T
opt x(n)+v(n), where wopt is the system impulse

response vector (supposed to be sparse), x(n) is the system
input and v(n) is an observation noise which is assumed to
be white with variance σ2

v and independent of x(m) for all n
and m.
The matrix G(n) is evaluated as

G(n) = diag(g0(n), g1(n)....gN−1(n)), (2)

where,

gl(n) =
γl(n)

�N−1
i=0 γi(n)

, 0 ≤ l ≤ N − 1, (3)

with

γl(n) = max[ρg max[δ, | w0(n) |, .. | wN−1(n) |],

| wl(n) |]. (4)

The parameter δ is an initialization parameter that helps to
prevent stalling of the weight updating at the initial stage
when all the taps are initialized to zero. Similarly, if an
individual tap weight becomes very small, to avoid stalling
of the corresponding weight update recursion, the respective
γl(n) is taken as a ρg fraction of the largest tap magnitude. By
providing separate step size to each tap, the PNLMS algorithm
achieves a very fast initial convergence rate (for highly sparse
systems), but this high rate is not maintained at a later stage
of the adaptation process [5],[6].

B. RZA-NLMS Algorithm

The filter coefficient update equation of the RZA-NLMS
algorithm is given by [9]

wi(n+ 1) = wi(n) +
µx(n− i+ 1)e(n)

xT (n)x(n) + δN

− ρ
sgn(wi(n))

1 + ε | wi(n) |
, i = 0, 1, · · · , N − 1,(5)

where sgn(.) is the well known signum function (i.e.,
sgn(x) = 1 (x > 0), 0 (x = 0), −1 (x < 0) and δN
is the so-called regularization parameter to avoid a division
by zero. The last term of (5), named as reweighted zero
attractor, provides a selective shrinkage to the taps. Due to

this reweighted zero attractor, the inactive taps with zero
magnitudes or magnitudes comparable to 1/ε undergo higher
shrinkage compared to the active taps which enhances the
performance both in terms of convergence speed and steady
state EMSE.

III. PROPOSED ALGORITHM

We consider the following constrained optimization problem
based on the principle of minimum disturbance with an l1
norm regularization as shown below :

min
w(n+1)

� w(n+1)−w(n) �2
G−1 +γ � G

−1
w(n+1) �1 (6)

subject to

d(n)−w
T (n+ 1)x(n) = 0, (7)

where γ is a very very small constant and the short form
notation “G−1” is used to indicate G−1(n) (also, the notation
� x �2

A
indicates the generalized inner product xT

Ax). Note
that in (6), we have introduced a l1 norm penalty of w(n+1)
after scaling its elements by G

−1(n) (the above scaling makes
the l1 norm penalty governed primarily by the inactive taps).
Using Lagrange multiplier λ, the cost function for the above
minimization problem can be defined as

J(n+ 1) =� w(n+ 1)−w(n) �2
G−1 +γ � G

−1
w(n+ 1) �1

+λ(d(n)−w
T (n+ 1)x(n)) (8)

Setting ∂J/∂w(n+ 1) = 0 and ∂J/∂λ = 0, we get

w(n+ 1) = w(n)− [γsgn(w(n+ 1))− λG(n)x(n)] (9)

and

d(n) = w
T (n+ 1)x(n) (10)

From (9) and (10), we can solve for the Lagrange multiplier
λ as

λ =
e(n) + γxT (n)sgn(w(n+ 1))

xT (n)G(n)x(n)
(11)

Replacing λ in (9) by above,

w(n+ 1) = w(n) +
e(n)G(n)x(n)

xT (n)G(n)x(n)

−γ

�

I −
x(n)xT (n)G(n)

xT (n)G(n)x(n)

�

sgn(w(n+ 1)) (12)

The above equation does not provide the desired weight update
relation, as the R.H.S. contains the unknown term sgn(w(n+
1)). In order to obtain a feasible weight update equation,
we approximate sgn(w(n + 1)) by an estimate, namely,
sgn(w(n)) which is known. This is based on the assumption
that most of the weights do not undergo change of sign as
they get updated. This assumption may not, however, appear
to be a very accurate one, especially for the inactive taps that
fluctuate around zero value in the steady state. Nevertheless, an
analysis of the proposed algorithm (not covered in this paper)
shows that this approximation does not affect the convergence
behavior of the proposed algorithm.



Making the above substitution in (12),

w(n+ 1) = w(n) +
e(n)G(n)x(n)

xT (n)G(n)x(n)

−γ

�

I −
x(n)xT (n)G(n)

xT (n)G(n)x(n)

�

sgn(w(n)). (13)

It is easy to see that the elements of the matrix x(n)xT (n)G(n)
xT (n)G(n)x(n)

have magnitudes much less than 1, especially for large order
filters. Neglecting this in comparison to the identity matrix, in-
troducing algorithm step size µ and a regularization parameter
δP , for a large order adaptive filter, the above update equation
may be written as

w(n+ 1) = w(n) +
µe(n)G(n)x(n)

xT (n)G(n)x(n) + δP
− ρsgn(w(n))

(14)
where ρ = µγ. In (14), which describes the proposed ZA-
PNLMS algorithm, the second term on the R.H.S. is the usual
PNLMS update term whereas the last term acts as the zero
attractor.
Next we extend the reweighting concept to (14) to obtain a

RZA version of the proposed ZA-PNLMS algorithm. For this,
we replace the l1 regularization term � G

−1
w(n + 1) �1 in

(8) by a log-sum penalty
�N

i=1
1

gi(n)
log(1+ | wi(n+ 1) | /�)

where gi(n) is the i-th diagonal element of G(n) and follow
the same procedure resulting in the RZA-PNLMS weight
update equation as given by

wi(n+ 1) = wi(n) +
µgi(n)x(n− i+ 1)e(n)

xT (n)G(n)x(n) + δP

− ρ
sgn(wi(n))

1 + ε | wi(n) |
, i = 0, 1, · · · , N − 1.

(15)

IV. NUMERICAL SIMULATIONS

The proposed algorithm was simulated for identifying a
sparse system with impulse response shown in Fig. 1. The
system has a total of 120 taps / impulse response coefficients
of which only 4 are active, i.e., non-zero and the system input
x(n) was taken to be a zero mean, unit variance white random
process.
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Fig. 1. Impulse response of the sparse system

Both the proposed ZA-PNLMS and the RZA-PNLMS al-
gorithms were simulated and compared against the PNLMS
algorithm. The simulation was carried out for a total of
4000 iterations, with µ = 0.5, ρ = 0.00001, � = 10,
δP = 0.01, ρg = 0.01 and σ2

v = 0.001. For all the three
algorithms, µ was chosen to be the same to maintain the
same initial rate of convergence. The simulation results are
shown in Fig. 2 by plotting the EMSE against the iteration
index n (obtained by averaging e2(n) over 200 experiments)
for the proposed RZA-PNLMS (green line) and ZA-PNLMS
(red line) algorithms against the standard PNLMS (pink line)
algorithm. It is easily seen that even though all the three
algorithms start with identical, fast convergence rate, the
convergence of the PNLMS algorithm slows down after about
250 iterations or so. This implies that in the case of the
PNLMS algorithm, the active taps converge very fast, in about
250 iterations, but the convergence of the inactive taps slows
down as the effective step sizes for them become less and
less progressively. In the case of the RZA-PNLMS and ZA-
PNLMS algorithms, however, the inactive taps come under the
influence of an additional force, exerted by the zero attractors,
which try to pull them towards their true value, i.e., zero. As
a result, both the RZA-PNLMS and ZA-PNLMS algorithms
retain much of their initial fast convergence rates even after
n = 250. Apart from this, both the RZA-PNLMS and the ZA-
PNLMS algorithms also maintain lesser steady state EMSE
vis-a-vis the PNLMS algorithm, as seen easily from Fig. 2.
Note that from Fig. 2, it may appear that the performance
of both the RZA-PNLMS and the ZA-PNLMS algorithms are
identical. This, however, happens when the active taps have
sufficiently large magnitudes, as, in such cases, the effect of
the zero attractors on the active taps after their convergence
is negligible and as a result, one gets similar performance
irrespective of whether the action of the zero attractors on
the active taps is present (as in the ZA-PNLMS algorithm) or
suppressed (as in the RZA-PNLMS algorithm).
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Fig. 2. The EMSE versus number of iterations for the standard PNLMS
(pink), the RZA-PNLMS (green) and the ZA-PNLMS (red) algorithms.

The convergence behavior of the proposed algorithms is also
sensitive to the choice of the parameter ρg. We demonstrate
this in Fig. 3 by considering the ZA-PNLMS algorithm (we
do not consider the RZA-PNLMS algorithm here in order to



avoid crowding, after noting from above that its performance
is almost identical to that of the ZA-PNLMS algorithm)
for ρg = 0.01, 0.05, 0.1. For comparison, we also plot the
learning curve (EMSE-vs-iteration index n) of the PNLMS
algorithm for ρg = 0.01. It is seen that the steady state EMSE
of the ZA-PNLMS algorithm decreases as ρg increases. This
can be easily explained by first noting from (4) that in the
steady state, as the inactive tap weights attain values very
close to zero, the corresponding γl(n) is given by ρg times
the maximum tap weight magnitude. From this and the fact
that

�N−1
i=0

gl(n) = 1, it follows that as ρg increases, the
gain gl(n) and thus the effective step sizes for the active taps
decrease. As a result, their contribution to the EMSE decreases
(for the inactive taps, however, the marginal increase in the
EMSE that an increasing ρg could give rise to is offset by
the zero attractors). Of course, the reduction in the effective
step sizes for the active taps tries to slow down the initial fast
convergence somewhat. However, as can be seen from Fig. 3,
such slowing down effect is marginal.
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Fig. 3. The effect of ρg on the steady state EMSE of the ZA-PNLMS
algorithm.

V. CONCLUSION

In this paper, we have presented a new sparse adaptive
filter algorithm, namely, the zero attracting PNLMS and its
reweighted version by introducing a l1 norm penalty in the
cost function of the standard PNLMS algorithm. The proposed
techniques outperform the PNLMS algorithm in terms of both
the convergence speed and the steady state EMSE, which is
also verified by extensive simulation studies.
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