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Abstract—We present a sample of problems in demand side
management in future power systems and illustrate how they
can be solved in a distributed manner using local information.
First, we consider a set of users served by a single load-serving
entity (LSE). The LSE procures capacity a day ahead. When
random renewable energy is realized at delivery time, it manages
user load through real-time demand response and purchases
balancing power on the spot market to meet the aggregate
demand. Hence optimal supply procurement by the LSE and the
consumption decisions by the users must be coordinated over two
timescales, a day ahead and in real time, in the presence of supply
uncertainty. Moreover, they must be computed jointly by the
LSE and the users since the necessary information is distributed
among them. We present distributed algorithms to maximize
expected social welfare. Instead of social welfare, the second
problem is to coordinate electric vehicle charging to fill the valleys
in aggregate electric demand profile, or track a given desired
profile. We present synchronous and asynchronous algorithms
and prove their convergence. Finally, we show how loads can
use locally measured frequency deviations to adapt in real time
their demand in response to a shortfall in supply. We design
decentralized demand response mechanism that, together with
the swing equation of the generators, jointly maximize disutility
of demand rationing, in a decentralized manner.

I. INTRODUCTION

There is a large literature on various forms of load side
management in the electricity grid from the classical direct
load control to the more recent real-time pricing [6], [5],
[7]. Almost all demand response programs today target large
industrial or commercial users, or, in the case of residential
users, a small number of them, for two, among other, important
reasons. First, demand side management is invoked rarely to
mostly cope with a large correlated demand spike due to
weather (e.g., during a few hottest days in summer) or a supply
shortfall because of faults. Second, the lack of ubiquitous
two-way communication in the current infrastructure prevents
the participation of a large number of diverse users with
heterogeneous and time-varying consumption requirements.
Both reasons favor a simple and static mechanism involving
a few large users that is sufficient to deal with the occasional
need for load control, but both reasons are changing, because
of renewable penetration and the deployment of a sensing,
control, and two-way communication infrastructure. In this
paper, we provide an overview of some of the demand side
management algorithms that we have developed in [1]–[4].
They illustrate that it is possible to optimally control loads
using decentralized algorithms.
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II. REAL-TIME DEMAND RESPONSE

A. Problem formulation
Consider a setN of N users that are served by a single load-

serving entity (LSE). Without loss of generality, we assume
each user i ∈ N operates a single appliance. Let qi denote its
energy consumption in the period of interest. An appliance i
is characterized by
• a utility function Ui(qi) that quantifies the utility that

user i obtains from using appliance i and consuming qi
amount of energy;

• consumption constraints: q
i
≤ qi ≤ qi.

For multi-period time-correlated case, see [1], [2].
The LSE procures energy for delivery in two steps. First,

one day in advance, it procures “day-ahead” capacities Pd and
pays cd(Pd) for the capacity. This entitles the LSE to purchase
up to Pd amount of energy the following day at a price pre-
determined by the day-ahead market. Let Po(t) denote the
amount of the day-ahead energy that the LSE actually uses
the following day and co(Po) denote its cost. The renewable
energy is a nonnegative random variable Pr and we assume its
cost is zero. At real time, the random variable Pr is realized
and used to satisfy demand. The LSE satisfies any excess
demand by using Po from the day-ahead capacity. If there
is still excess demand, the LSE purchases the balance Pb on
the real-time energy market at a cost cb(Pb).

The real-time decisions (Po, Pb) are made by the LSE so
as to minimize its total cost. Let Q :=

∑
i qi be the total

demand and ∆(Q) := Q − Pr be the excess demand, i.e., in
excess of the renewable generation. Given the excess demand
∆(Q(t)) and the day-ahead capacity Pd, the LSE’s decision
that minimizes its total energy cost is

P ∗o = [∆(Q)]Pd
0 ,

P ∗b = [∆(Q)− Pd]+.

The total supply cost that the LSE incurs is then a function
only of Pd and Q and given by

c(Q,Pd;Pr) = cd(Pd) + co

(
[∆(Q)]

Pd

0

)
+ cb

(
[∆(Q)− Pd]+

)
,

i.e., the total cost consists of the capacity cost cd, the cost co
of day-ahead energy, and the cost cb of the real-time balancing
energy.

We make the following assumptions:
A1: The utility functions Ui are strictly concave, increasing,

and continuously differentiable, and the cost functions
cd, co, cb are convex, increasing, and continuously dif-
ferentiable, with cd(0) = co(0) = cb(0) = 0.

A2: c′b(0) > c′o(Po) for all Po ≥ 0.



B. Optimal demand response

The welfare maximization reduces to the problem

max
Pd≥0

{
−cd(Pd) + E max

q∈[q,q]
W1(q;Pd, Pr)

}
, (1)

where the real-time welfare, given decision Pd and realization
of Pr, is

W (q;Pd, Pr) :=∑
i

Ui(qi)− co
(

[∆(Q)]Pd
0

)
− cb ([∆(Q)− Pd]+) . (2)

The expectation E in (1) is taken with respect to Pr. The
order of maximizations and expectation in (1) reflects the fact
that the decision Pd must be made a day ahead based on the
distribution of Pr, but the consumption decisions q should
be made in real time after Pr is realized. Given Pd and a
realization of Pr, W (q;Pd, Pr) is a deterministic function of
q. Hence our problem decomposes into two subproblems:

1) Real-time demand response: Optimize real-time welfare
W1 over consumptions q, given Pd, Pr:

max
q∈[q,q]

W (q;Pd, Pr) =
∑
i

Ui(qi)−

co

(
[∆(Q)]Pd

0

)
− cb ([∆(Q)− Pd]+) (3)

Let q(Pd, Pr) denote an optimizer.
2) Day-ahead capacity procurement: maximize expected

welfare over Pd:

max
Pd≥0

{ −cd(Pd) + EW1(q(Pd, Pr);Pd, Pr) }

We now consider each subproblem in turn.
For the real-time demand response subproblem, since Pd

has been committed, the cost cd(Pd) has been given. Hence,
(3) is equivalent to

W̃ (Pd;Pr) := max
q,yo,yb

{
∑
i

(δiUi(qi))− co(yo)− cb(yb)}

s.t. q
i
≤ qi ≤ q̄i,∀i,

0 ≤ yo ≤ Pd, yb ≥ 0,

Pr + yo + yb ≥
∑
i

qi.

Associate dual variables µ1 and µ2 with the last two con-
straints. Then a partial Lagrangian is

L(q, yo, yb;µ1, µ2)

=
∑
i

Ui(qi)− co(yo)− cb(yb) + µ1(Pd − yo)

+µ2(Pr + yo + yb −
∑
i

qi). (4)

Consequently, a primal-dual algorithm to solve problem (4) is
as follows.

Algorithm 1: Given Pd, Pr, compute real-time consump-
tion

Initially, user i sets q0
i ∈ [q

i
, q̄i]. The LSE lets µ0

1 = µ0
2 =

0, and y0
o = y0

b = 0. In iteration k + 1 = 1, 2, . . . , do the
following.

1) Each user i computes

qq+1
i =

(
qki + βk · [u′i(xki )− µk2 ]

)q̄i
q
i

,

where βk := 1
k+1 is the step size, and reports it to

the LSE through a communication network. That is, the
“price” posed to the users is µk2 .

2) The LSE computes

µk+1
1 = [µk1 + βk(yko − Pd)]+,
µk+1

2 = [µk2 + βk(
∑
i

qki − Pr − yko − ykb )]+,

yk+1
o = [yko + βk(−c′o(yko )− µk1 + µk2)]Pmax

0 ,

yk+1
b = [ykb + βk(−c′b(ykb ) + µk2)]Pmax

0 ,

where Pmax :=
∑
i qi. The LSE reports µk+1

2 to active
users.

It follows directly from convex optimization theory that

Theorem 1. Algorithm 1 converges to the set of optimal
solutions q∗ and and dual variables µ∗.

For the day-ahead capacity procurement subproblem, to
decide Pd to maximize expected social welfare, the LSE solves

max
Pd≥0
{E[W̃ (Pd;Pr)]− cd(Pd)},

where W̃ (.) is defined in (4). The gradient of the objective
function is g(Pd) := E(µ∗1) − c′d(Pd) (note that µ∗1 depends
on Pd, Pr). A stochastic subgradient algorithm that converges
to the set of optimal Pd is as follows.

Algorithm 2: Day-ahead energy
1) Initially, let P 0

d = 0.
2) In step m+1 = 1, 2, . . . , given a realization of Pr and δ

(denoted by Pmr , run Algorithm 1 to find µ∗1, and denote
it by µ∗m1 . Then, compute

Pm+1
d = {Pmd + αm[µ∗m1 − c

′

d(P
m
d )]}Pmax

0

where αm = 1/(m+ 1) is the step size.
Algorithm 2 can be run one day in advance by simulat-
ing the system (i.e., drawing samples of and Pr).

Theorem 2. Algorithm 2 converges to a welfare-maximizing
procurement P ∗d almost surely.

III. SCHEDULING OF EV CHARGING

A. Problem Formulation

Consider a scenario where an electric utility negotiates with
N electric vehicles (EVs) over T time slots of length ∆T
on their charging profiles. The utility is assumed to know
(precisely predict) the inelastic base electricity load profile
(aggregated non-EV load) and aims to shape the aggregated
charging profile of EVs to flatten the total load (base load
plus EV load) profile. Each EV can charge after it plugs in
and needs to be charged a specified amount of electricity by



its deadline. For instance, an EV may plug in for charging
at 9:00pm, specifying that it needs to be fully charged by
6:00am the next morning, or at least 80% full by 4:00am the
next morning. In each time slot, the charging rate of an EV is a
constant. Let D(t) denote the base load in slot t, rn(t) denote
the charging rate of EV n in slot t, rn := (rn(1), . . . , rn(T ))
denote the charging profile of EV n, for n ∈ N := {1, . . . , N}
and t ∈ T := {1, . . . , T}. Our goal is to flatten the total load
profile. This motivates the cost function

L(r) = L(r1, . . . , rN ) :=

T∑
t=1

U

(
D(t) +

N∑
n=1

rn(t)

)
. (5)

In (5), r := (r1, . . . , rN ) denotes a charging profile of all EVs.
The charging profile rn of EV n can take values in the

interval [0, rn] for some given rn � 0, i.e.,

0 ≤ rn(t) ≤ rn(t), n ∈ N , t ∈ T . (6)

In order to impose arrival time and deadline constraints, rn
is considered to be time dependent with rn(t) = 0 for slots
t before the arrival time and after the deadline of EV n. For
each EV n ∈ N , let Bn, sn(0), sn(T ) and ηn denote its
battery capacity, initial state of charge, final state of charge
and charging efficiency respectively. The constraint that EV n
needs to reach sn(T ) state of charge by its deadline is captured
by charging a pre-specified amount of energy over time

ηn
∑
t∈T

rn(t)∆T = Bn(sn(T )− sn(0)), n ∈ N . (7)

Define the charging rate sum

Rn := Bn(sn(T )− sn(0))/(ηn∆T )

for n ∈ N . Then, the constraint in (7) can be written as
T∑
t=1

rn(t) = Rn, n ∈ N . (8)

Definition 1. Let U : R → R be strictly convex. A charging
profile r = (r1, . . . , rN ) is

1) feasible, if it satisfies the constraints (6) and (8);
2) optimal, if it solves the optimal charging (OC) problem

OC



min
r1,...,rN

T∑
t=1

U

(
D(t) +

N∑
n=1

rn(t)

)
s.t. 0 ≤ rn(t) ≤ rn(t), t ∈ T , n ∈ N ;

T∑
t=1

rn(t) = Rn, n ∈ N .

3) valley-filling, if there exists A ∈ R such that∑
n∈N

rn(t) = [A−D(t)]
+
, t ∈ T .

Remark 1. Optimality of a charging profile r is independent
of the choice of the utility function U (proved in Theorem 4).
That is, if r is optimal with respect to a strictly convex utility
function, then it is optimal with respect to any other strictly
convex utility function. Therefore, we can choose U(x) = x2

without loss of generality, and see that optimal charging
profiles minimize the l2 norm of the total load profile. Since the
l1 norm is a constant for all feasible r due to (8), minimizing
the l2 norm “flattens" the total load profile.

Remark 2. If the objective is to track a given load profile
G rather than to flatten the total load, we can change the
objective function to

T∑
t=1

U

(
D(t) +

N∑
n=1

rn(t)−G(t)

)
without affecting the results [3]. For ease of presentation, we
focus on the objective function in (5).

B. Optimal Charging Profile

Theorem 3. If a feasible charging profile r is valley-filling,
then it is optimal.

Valley-filling is our intuitive notion of optimality. However,
it may not be always achievable. For example, the “valley” in
inelastic base load may be so deep that even if all EVs charge
at their maximum rate, the valley still cannot be completely
filled. Besides, EVs may have stringent deadlines such that the
potential for shifting the load over time to yield valley-filling is
limited. The notion of optimality in Definition 1 takes care of
these cases and agrees with the intuitive notion of optimality
when valley-filling is achievable.

Since the objective function U depends on r only through its
aggregate Rr, optimal charging profile are clearly nonunique.
Let O be the set of all optimal points.

Theorem 4. The set O of optimal charging profiles does not
depend on the choice of U . That is, if r∗ is optimal with respect
to a strictly convex utility function, then r∗ is also optimal with
respect to any other strictly convex utility function.

We now propose a decentralized algorithm for computing
optimal charging profiles as the solution to the optimal control
problem OC. By decentralized, we mean that EVs choose
their own charging profiles, instead of being instructed by a
centralized infrastructure. The utility only uses control signals,
e.g. prices, to guide EVs’ decisions. We assume that all EVs
are available for negotiation at the beginning of the scheduling
horizon (even though they are not necessarily available for
charging as reflected by time-varying rn). Figure 1 shows
the information exchange between the utility and the EVs
for the implementation of this algorithm. Given the “price”
profile broadcast by the utility, each EV chooses its charging
profile independently, and reports back to the utility. The utility
guides EVs’ decision-making by altering the “price” profile.
We assume U ′ is Lipschitz with the Lipschitz constant β > 0,
i.e.,

|U ′(x)− U ′(y)| ≤ β|x− y|

for all x, y.

Algorithm 3:
Given scheduling horizon T , base load profile D, the number
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Fig. 1: Schematic view of the information flow patterns
between the utility and the EVs. Given the “price” profile, the
EVs choose their charging profiles independently. The utility
guides EVs’ decision making by altering the “price” profile
based on total demand profile.

N of EVs, charging rate sum Rn and charging rate upper
bound rn for EV n ∈ N , pick a step size γ satisfying

0 < γ <
1

Nβ
.

1) Initialize the “price” profile and the charging profile as

p0(t) := U ′(D(t)), r0
n(t) := 0

for t ∈ T and n ∈ N , k ← 0.
2) The utility broadcasts γpk to all EVs.
3) Each EV n ∈ N calculates a new charging profile rk+1

n

as the solution to the following optimization problem

min
rn

∑
t∈T

γpk(t)rn(t) +
1

2

(
rn(t)− rkn(t)

)2
(9)

s.t. 0 ≤ rn(t) ≤ rn(t), t ∈ T ;∑
t∈T

rn(t) = Rn,

and reports rk+1
n to the utility.

4) The utility collects charging profiles rk+1
n from the EVs,

and updates the “price” as

pk+1(t) := U ′

(
D(t) +

N∑
n=1

rk+1
n (t)

)
(10)

for t ∈ T .
5) Iterate step (2)–(4) until convergence, and return rn for

all n in the last iteration as the charging schedule.

Algorithm 3 is in fact a gradient projection method for the
optimal charging problem in Definition 1. We now establish
its convergence to the set O of optimal charging profiles. Let
the superscript k for each variable denote its respective value
in iteration k. Let Rk :=

∑
n∈N r

k
n denote the aggregated

charging profile in iteration k.

Theorem 5. Charging profiles converge to optimal charging
profiles, i.e., rk → O as k → ∞. Furthermore, optimal
charging profiles have the same aggregate charging profile
Ropt, and aggregate charging profiles converge to it, i.e.,
Rk → Ropt as k →∞.

IV. OPTIMAL LOAD CONTROL

A. Problem formulation

Let R denote the set of real numbers and C denote the
set of complex numbers. A variable without a subscript
usually denotes a vector with appropriate components, e.g.,
d := (dl, l ∈ L(j)), ω := (ωj , j ∈ V), P := (Pij , (i, j) ∈ E).
For a matrix A, At denotes its transpose and A∗ its complex
conjugate transposed.

1) Transmission network model: The transmission network
is described by a graph G = (V, E) where V = {1, ..., N}
is the set of buses and E is the set of transmission lines
connecting the buses. We adopt the following assumptions 1

• The lines (i, j) ∈ E are lossless and characterized by
reactances xij .

• The bus voltage magnitudes |Vi| are constant.
• Reactive power is ignored.

We assume that E is directed, with an arbitrary orientation,
so that (j, i) 6∈ E if (i, j) ∈ E . We use (i, j) and i → j
interchangeably to denote a link in E . We also assume without
loss of generality that G is connected. To simplify notation, we
assume all variables represent deviations from their nominal
(operating) values and are in per unit.

The dynamics at bus i with a generator is modeled by the
swing equation

Mjω̇j = Pmj − P ej

where ωi is the frequency deviation from its nominal value, Mi

is the inertia constant of the generator, Pmi is the deviation in
mechanical power injection to bus i from its nominal value,
and P ei is the deviation in electric power from its nominal
value. Each bus may have two types of loads, frequency-
sensitive (e.g. motor-type) loads and frequency-insensitive (but
controllable) loads. The total change in frequency-sensitive
loads at bus i when the frequency deviation is ωi is d̂j :=
Djωj where Dj is the damping constant. Let L(j) denote
the set of frequency-insensitive, controllable loads at bus j,
and (dl, l ∈ L(j)) denote the deviations (from their nominal
values) of frequency-insensitive loads on bus j. Then the
electric power P ej is the sum of all frequency-sensitive loads,
frequency-insensitive loads, and power flows from bus i to
other buses

P ej = Djωi +
∑
l∈L(j)

dl +
∑
j→k

Pjk −
∑
i→j

Pij

Here Pij is the deviation (from its nominal value) of branch
flow from bus i to bus j. Our goal is to control the frequency-
insensitive loads dl in response to disturbances Pmi in gener-
ation power. The swing equation can thus be rewritten as

ω̇j = − 1

Mj

 ∑
l∈L(j)

dl +Djωj − Pmj + P out
j − P in

j

 , (11)

1This is similar to the standard DC approximation except that we do not
assume the phase angle difference is small across each link.



where P out
j :=

∑
j→k Pjk and P in

j :=
∑
i→j Pij are total

branch power flows out and into bus j, respectively.
We assume that the branch flows follow the dynamics

Ṗij = Bij ω
0 (ωi − ωj) , (12)

where ω0 is the common nominal frequency on which the
per-unit convention is based, and

Bij :=
|Vi||Vj |
xij

cos
(
θ0
i − θ0

j

)
. (13)

The dynamic model (12)–(13) is motivated by the following
model of deviations in branch flows Pij when the deviations
are small [8] [9, Chapter 11]:

Pij = Bij(θi − θj) (14)

where θi are the phase angle deviations of the bus voltages,
i.e., the voltage phasors are Vi := |Vi|ej(θ

0
i +θi) with the

nominal phase angles θ0
i . While the model (14) assumes that

the differences θi− θj of the deviations are small, it does not
assume the differences θ0

i − θ0
j of their nominal values are

small.
In summary, the dynamic model of the transmission network

is specified by (11)–(13). In steady state, the mechanical power
deviations Pmi are equal to the electric power deviations P ei ,
so ω̇i = 0 and Ṗik = 0.

2) Optimal load control: Suppose a step change Pm :=
(Pm1 , ..., PmN ) in generation is injected to the N buses.2 How
should the frequency-insensitive loads d := (dl, l ∈ L(i), i =
1, . . . , N) in the network be reduced (or increased) in real time
in a way that (i) balances the generation shortfall (or surplus),
(ii) resynchronizes the bus frequencies, and (iii) minimizes the
aggregate disutility of load control? We now formulate this as
an optimal load control (OLC) problem.

The disturbance Pm in generation causes a nonzero fre-
quency deviation ωi. This incurs a cost to frequency-sensitive
loads and suppose this cost is 1

2Di
d̂2
i in total at bus i. Suppose

the frequency-insensitive load l is to be changed by an amount
dl and this will incur a cost (disutility) of cl(dl). We assume
−∞ < dl ≤ dl ≤ dl < ∞. Our goal is to minimize the total
cost over (d, d̂) while balancing generation and load across
the network:
OLC

min
d≤d≤d,d̂

N∑
j=1

 ∑
l∈L(j)

cl(dl) +
1

2Dj
d̂2
j

 (15)

subject to
N∑
j=1

 ∑
l∈L(j)

dl + d̂j

 =

N∑
j=1

Pmj (16)

Remark 3. Note that (16) does not require balance of gener-
ation and load at each individual bus, but only balance across
the entire network. This is less restrictive and offers more
opportunity to minimize costs. Additional constraints can be

2If there is no generator at bus i, then Pm
i = 0.

imposed if it is desirable that certain buses balance their own
supply and demand, e.g., for economic or regulatory reasons.

We make the following assumptions:
C0: OLC is feasible.
C1: The cost functions cl are strictly convex and twice

continuously differentiable on
[
dl, dl

]
.

B. Load control and swing dynamics as primal-dual solution

The objective function of the dual problem of OLC is

N∑
j=1

Φj(ν) :=

N∑
j=1

min
dj≤dj≤dj ,d̂j

( ∑
l∈L(j)

(cl(dl)− νdl)

+

(
1

2Dj
d̂2
j − νd̂j

)
+ νPmj

)
.

Hence,

Φj(ν) :=
∑
l∈L(j)

(cl(dl(ν))− νdl(ν))

−1

2
Djν

2 + νPmj ,

(17)

where

dl(ν) :=
[
c
′−1
l (ν)

]dl
dl

. (18)

This objective function has a scalar variable ν and is not
separable across buses j. Its direct solution hence requires
coordination across all buses. A distributed version of the dual
problem where each bus j optimizes its own variable νj that
are constrained to be equal at optimality is the following.
DOLC

max
νj

Φ(ν) :=

N∑
j=1

Φj(νj)

subject to νi = νj for all (i, j) ∈ E .

Theorem 6. 1) DOLC has a unique optimal solution ν∗

with ν∗i = ν∗j = ν∗.3

2) OLC has a unique optimal solution (d∗, d̂∗) where d∗l =
d∗l (ν

∗) is given by (18) and d̂∗l = Diν
∗.

3) There is no duality gap.

Instead of solving OLC directly, Theorem 6 suggests solving
its dual DOLC and recovering the unique optimal solution
(d∗, d̂∗) of the primal problem OLC from the unique dual op-
timal ν∗. To derive a distributed solution for DOLC, consider
its Lagrangian

L(ν, π) :=

N∑
j=1

Φj(νj)−
∑
i→j

πij(νi − νj) (19)

where ν is the (vector) variable for DOLC and π is the
associated dual variable for the dual of DOLC. Hence πij ,
for all (i, j) ∈ E , measure the cost of not synchronizing

3We abuse notation and use ν∗ to denote both the vector and the common
value of its components.



the variables νi and νj across buses i and j. A primal-dual
algorithm for DOLC takes the form (using (17)–(18))

ν̇j = γj
∂L

∂νj
(ν(t), π(t))

= −γi

 ∑
l∈L(j)

dl(νj) +Djνj − Pmj + πout
j − πin

j

 ,

(20)

π̇ij = −ξij
∂L

∂πij
(ν(t), π(t)) = ξij(νi − νj) (21)

where γi > 0, ξij > 0 are step sizes, πout
j :=

∑
k:j→k πjk,

and πin
j :=

∑
i:i→j πij .

It is then remarkable that (20)–(21) become identical to
(11)–(12), if we identify ν with frequency deviations and π
with branch flows

νj(t) = ωj(t), πij(t) = Pij(t),

and step sizes γi, ξij with system parameters

γj = M−1
j , ξij = Bijw

0.

For convenience, we collect the system dynamics and load
control as

ω̇j = − 1

Mj

( ∑
l∈L(j)

dl(t) + d̂j(t)− Pmj (22)

+P out
j (t)− P in

j (t)

)
Ṗij = Bij ω

0 (ωi(t)− ωj(t)) (23)

d̂j(ωj(t)) = Djωj(t) (24)

dl(ωj(t)) =
[
c
′−1
l (ωj(t))

]dl
dl

for all l ∈ L(j),(25)

where P out
j (t) :=

∑
j→k Pjk(t) and P in

j (t) :=
∑
i→j Pij(t)

are total branch power flows out and into bus j, ω0 is the
common nominal frequency, and Bij are given by (13). The
dynamics (22)–(24) are automatically carried out by the power
system while the local control (25) need to be implemented
at each frequency-insensitive load. Let (d(t), d̂(t), ω(t), P (t))
denote a trajectory generated by the load control and the swing
dynamics (22)–(25).

Theorem 7. Any trajectory (d(t), d̂(t), ω(t), P (t)) converges
to a limit (d∗, d̂∗, ω∗, P ∗) such that

1) (d∗, d̂∗) is the unique vector of optimal load control for
OLC;

2) ω∗ is the unique vector of optimal frequency deviations
for DOLC;

3) P ∗ is a vector of optimal branch flows for the dual of
DOLC.

REFERENCES

[1] L. Jiang and S. Low, “Energy procurement and real-time demand response
with uncertain renewable energy,” in Proceedings of Allerton Conference
on Communication, Control and Computing, 2011.

[2] L. Jiang and S. Low, “Multi-period optimal procurement and demand
responses in the presence of uncertain supply,” in Proceedings of IEEE
Conference on Decision and Control, 2011.

[3] L. Gan, U. Topcu and S. Low, “Optimal decentralized protocols for
electric vehicle charging,” in IEEE Transactions on Power System, to
appear, 2012.

[4] C. Zhao, U. Topcu and S. Low, “Swing dynamics as primal-dual algorithm
for optimal load control,” sumbitted to IEEE SmartGridComm, 2012.

[5] M. H. Albadi and E. F. El-Saadany, “Demand response in electricity
markets: An overview,” in Proceedings of the IEEE Power Engineering
Society General Meeting, 2007.

[6] C. W. Gellings and J. H. Chamberlin, “Demand-Side Management:
Concepts and Methods,” Fairmont Press, 1988.

[7] M. D. Ilic, “Dynamic monitoring and decision systems for enabling
sustainable energy services,” in Proceedings of the IEEE, vol. 99, no.
1, pp. 58–79, 2011.

[8] A. J. Wood and B. F. Wollenberg, “Power Generation, Operation, and
Control,” 2nd edition, John Wiley & Sons, Inc., 1996.

[9] A. R. Bergen and V. Vittal, “Power Systems Analysis,” 2nd edition,
Prentice Hall, 2000.


