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Abstract— The shift from the traditional energy grid to the
SmartGrid makes the features of scale invariance and long-range
dependence, traditionally examined in reference to communi-
cation networks, extremely relevant to the modeling, analysis
and design of modern energy grids. The present paper reviews
mathematical concepts and tools central for the understanding
and analysis of these phenomena and contextualizes them to
the energy scenario. The framework proposed herein enables,
in addition to a more accurate modeling and design of smart
energy grids, the definition of novel algorithms for the detection
of events, e.g., anomalies, in SmartGrids.

I. INTRODUCTION

The SmartGrid [1], [2] is significantly different from the

traditional energy grid. The latter is a hierarchical and mono-

directional network conveying energy from controllable power

plants to consumers. Driven by the need for a reduction of the

use of fossil fuels and a more efficient use of the available

resources, the SmartGrid incorporates a significant amount of

renewable-energy production and pushes intelligence to the

edge of the grid. The use of renewable-energy poses novel

technological challenges that need to be addressed to guarantee

stability of the grid [3]. In fact, whereas the production of fos-

sil fuel-based plants can be planned ahead, the production of

renewable energy plants, private or utility-owned, is inherently

stochastic, as the amount of energy produced is a function

of non-controllable factors such as sun exposure and wind

strength. This introduces an additional source of randomness

with respect to traditional energy grids, where the principal

source of randomness is represented by the demand of energy.

One of the strategies proposed to guarantee stability in this

more involved scenario is to increase the level of control

on energy consumption by implementing smart algorithms

on the demand side [4]. These algorithms react to pricing

and control signals by tuning the consumption of individual

buildings (smart buildings). In many envisioned frameworks,

the algorithms take the form of schedulers storing energy tasks

requested by the consumer in a queue and plan the activation

of devices according the price of energy and the control

signal transmitted by the utility (e.g., [5]–[7]). Similar control

rationales are applied to electric vehicle charging, where the

acceptance of vehicles and the charging speed is scheduled by

algorithms reacting to the load level [8]. Distributed energy

production and energy market induce further control-reaction

interactions. The dynamics in the SmartGrid, thus, are much

more complex than in the traditional energy grid. The frame-

work presented herein is based on two main observations:

• different from the traditional grid, where energy is con-

sumed as the user activate the device, in the SmartGrid,

energy consumption is determined by a queueing model,

where energy tasks are buffered and then served accord-

ing to a scheduling algorithm;

• the SmartGrid intelligence is based on a large collection

of algorithms actively reacting to events, feedback and

control signals.

These intrinsic characteristics of the SmartGrid need to be

taken into account for a proper modeling of its operations, as

well as for meaningful design of the grid and the algorithms

controlling its operations.

The queued service model is significantly different from

an instantaneous consumption model. The design and dimen-

sioning of the system (e.g., maximum energy consumption,

buffer size) clearly depends on the consumer activity, and af-

fects the Quality-of-Service (QoS) measured at the consumer.

Queueing models are also relevant to the energy market and

electrical vehicle charging [9], [10]. The complex interactions

occurring between the distributed algorithms controlling en-

ergy consumption, pricing and energy markets may challenge

estimation and detection of critical events in the SmartGrid. In

fact, the identification of the dynamics driving the SmartGrid

system might require a long observation time and the response

of the SmartGrid may be not fast enough to avoid failure.

In [11], we proposed a model-detection framework based on

wavelet analysis and sparse approximation theory which grants

a significant reduction in terms of observation time. In this

work, we observe that scaling phenomena may occur in the

SmartGrid, and that not only they will affect the performance

of the grid, but that they will need to be considered when

designing detection frameworks. In fact, algorithms operating

on the grid and queueing systems may rescale sequences

related to events (e.g., failure or anomalous behavior) or inputs

(e.g., energy requests).

An intuitive example of rescaling is the smoothing effect

of energy schedulers on energy price peaks. A high price

induces a reduction of the energy tasks scheduled and an

increase of the number of energy requests in the queue. The

queued requests are then served at a slower rate until the

price decreases. Thus, the number of energy requests in the

queue of a scheduler can be seen as a dilated version of

the pricing sequence. However, the smoothing effect is also

a function of the consumer preferences and external factors

such as weather. The queueing process itself can be seen

as an intrinsic rescaling of the input sequence generated by



the consumer. Detection and estimation algorithms may be

acquiring sequences of measurements associated with rescaled

versions of the events and processes they aim to detect and

estimate. The use of tools resilient to the rescaling effect is,

therefore, crucial to design accurate algorithms.

Connected to the notion of scale, long-range dependence is

a key feature in stochastic models for arrival processes. The

energy request sequences generated by consumers are likely be

driven by stochastic processes inducing long-range dependen-

cies. Individual sources might present long-range dependence

due to the strong correlation in the behavior of consumers. At

a coarser scale, large aggregates of sources will be affected

by long-range dependence. In fact, whereas aggregates of

Poisson processes are still Poisson (and thus memoryless), the

aggregate of simple On/Off sources with Poisson generation in

the On periods present long-term dependencies in the amount

of requests in the queue of the schedulers [12]. Long-range

dependence deeply affects the performance and stability of

the SmartGrid. In fact, long periods of intense generation of

energy requests may result in buffer overflow, so that many

energy requests generated by the consumers will be lost. Note

that peaks in the number of stored requests will also affect

delay in their completion. During long periods of no activity,

most of the energy tasks requested will be depleted resulting

in a low overall load. This may lead to wasting renewable

energy resource. The identification of long-range dependence

is, then, critical for the design of control sequences such as

energy pricing.

The contributions of this paper are

• a review of the notions of self-similarity, scale invariance

and long-range dependence, as well as connected math-

ematical tools such as the Mellin transform;

• a thorough discussion on how self-similarity, scale in-

variance and long-range dependence will be present in

stochastic processes modeling the behavior of the Smart-

Grid;

• a review of the tools for the detection of scale invariance

and long-range dependence;

• numerical results showing the effect of long-range depen-

dence on the loss rate of energy tasks in a queued energy

model.

The rest of the paper is organized as follows. We first review

the Mellin transform, the definition of self-similar and scale-

invariant stochastic processes and the notion of long-range

dependence in Section II and III. We then proceed connecting

them to the operations of the SmartGrid. Section V discusses

how self-similarity and scale-invariance will characterize the

behavior of the SmartGrid. In Section IV, the long-range

dependence generated by the aggregation of a large number

of On/Off sources generating energy requests is described.

Section V discusses the design of tools for estimation and

detection of events in the light of the rescaling effect. Numer-

ical results showing the effect of long-reange dependence on

the congestion level of the grid are presented in Section VI.

Section VII concludes the paper.

II. MELLIN TRANSFORM

We first review the Mellin transform [13], a mathematical

tool central in the analysis of self-similar and scale-invariant

stochastic processes. The Mellin transform of a function f on

the positive real axis is defined as

M(f, s)
.
=

∫ ∞

0

f(t)ts−1dt. (1)

In general, the function M(f, s) exists only for complex

values of s=a+j b such that a1<a<a2, where a1 and a2

depend on the function f . The inversion formula is

f(t)=
1

2jπ

∫ a+j∞

a−j∞

M(f, s)t−sds. (2)

The Mellin transform has been introduced primarily to handle

harmonic sums of the kind
∑

i≥0

cif(ωit) (3)

for some sequences ci and ωi such that the sum is convergent.

The transform of the harmonic sum is
(

∑

i≥0

ciω
−s
i

)

M(f, s)(s). (4)

Moreover, the asymptotic analysis of a function f(t) when t
tends to 0 and ∞ is equivalent to the analysis of the singu-

larities of the Mellin transform M(f, s)(s) on the boundaries

of the strip where the transform exists. As explained later,

this property is relevant in the analysis of the queue length

distribution, and thus on the delay analysis, of energy tasks

in the On/Off sources scenario. The Mellin transform is a

powerful tool for the computation of functionals involving the

scaling of a variable. Define the dilation operator

Dr
c : f(t) → (Dcf)(t)=cr+1f(ct), (5)

where c is a positive number and r is a given real number.

We have

M(Dcf, β) = r−2πjβM(f, β), (6)

where, referring to the definition in Eq. (1)

s − 1 = 2πjβ + r. (7)

III. STOCHASTIC SELF-SIMILARITY, SCALE INVARIANCE

AND LONG-RANGE DEPENDENCE

In this section, we review the notions of self-similarity, scale

invariance and long-range dependence in stochastic processes.

These features will occur in stochastic processes modeling the

behavior of the SmartGrid and influence the Quality-of-Service

offered to consumers.

Self-similarity expresses the notion that a certain property

of an object or a dynamical system is preserved with respect

to scaling in space and/or time. Stochastic self-similarity mea-

sures the similarity of certain statistics of rescaled stochastic

processes. The autocorrelation function is an example of a

statistic with respect to which scale invariance can be defined.

Considering the finite dimensional distributions of continuous

processes, the definition of self-similarity is as follows.



Definition 1 A process X(t) is self-similar with self-similarity

parameter H (H-ss), 0<H<1 if, for all r>0 and t>0 we have

X(t)=d r−HX(rt), (8)

that is, X(t) and its time scaled and normalized version

r−HX(rt) have the same distribution.

Interestingly, there is a strong connection between self-

similarity and stationarity: this result is referred to as the

Lamperti theorem [14] and can be stated as follows:

Theorem 2 If {X(t), t∈R
+} is H-ss, then

Y (t) = e−HtX(et), t ∈ R, (9)

is stationary. Conversely, if {Y (t), t∈R
+} is stationary, then

X(t) = tHY (log(t)) (10)

is H-ss.

The central argument of the derivation of the Lamperti theorem

is that the Lamperti transform [14] maps a time-shifted process

to the dilated version of the Lamperti transform and vice-versa,

where the Lamperti transform is defined as

(LX)(t)
.
= tHX(log(t)), t ∈ R

+, (11)

(L−1X)(t)
.
= e−HtX(et), t ∈ R. (12)

There is a strong connection between Fourier, Lamperti and

Mellin transforms. We have

F(X)(f) = M(LHX,H + 2jπf). (13)

Thus, in the case of a self-similar process the Mellin transform

has a similar effect with respect to scaling than the Fourier

transform has with respect to shifting.

A weaker form of self-similarity, namely discrete self-

similarity, was introduced in [15]. A process {X(t), t∈R
+}

has Discrete Scale Invariance (DSI) with scaling exponent H
and scale λ ((H,λ)-DSI) if

X(λt)=d λ−HX(t), (14)

In [15] it is shown that if a process is (H,λ)-DSI, then its

Lamperti transform is cyclostationary and vice-versa. How-

ever, self-similarity can be defined on second-order statistics.

Definition 3 X(t) is exactly second-order self-similar with

parameter H , 1/2<H<1 if

γ(k) =
σ2

2
((k + 1)2H − sk2H + (k−1)2H), (15)

for all k≥1. X(t) is asymptotically second-order self-similar

if

lim
m→∞

γ(m)(k) =
σ2

2
((k + 1)2H − sk2H + (k−1)2H), (16)

where σ2=E [(X(t) − µ)2], µ=E [X(t)], γ(k) is the autoco-

variance of X(t) and γ(m)(k) is the autocovariance of

X(m)(q) =
1

m

mq
∑

t=m(q−1)+1

X(t). (17)

Note that X(m) is the process corresponding to the average

of X(t) over time intervals of size m.

As explained later, the algorithms operating in the SmartGrid

may have a re-scaling effect

A feature strongly connected to self-similarity is long-range

dependence:

Definition 4 The process X(t) is long-range dependent if its

autocorrelation function r(k)=γ(k)/σ2 is not summable

+∞
∑

k=−∞

r(k) = ∞. (18)

If X(t) is second-order self-similar with parameter 1/2<H<1
then r(k) asymptotically behaves as ck−β , with c>0 and

0<β<1, and the process is long-range dependent [16]. Long-

range dependence induces strong correlation in the behavior

of a stochastic process. As explained later in the paper, in the

SmartGrid, long-range dependence in the generation of energy

requests by consumers can lead to poor performance in terms

of delay in the completion of the energy tasks and a high loss

rate due to buffers overflow.

IV. ENERGY QUEUEING WITH ON/OFF SOURCES

The queueing model that characterizes the SmartGrid may

significantly change the properties of the stochastic process

modeling energy consumption. Understanding the character-

istics of these processes is crucial to properly designing the

system and measuring the performance at the consumer. The

overall consumption is the result of a large number of indi-

vidual smart buildings and homes1 controlled by automated

systems. Fig. 1 shows the schematic of a smart home. Energy

requests triggered by the consumer are collected in a queue.

The scheduler then controls the activation of the appliances

as a function of energy pricing and grid signaling. Constraints

can be included in the model to force the activation of specific

appliances. Quality of Service can be measured as a function

of delay of activation and financial cost.

Self-similar bursts of traffic and memory effects were mea-

sured in internet traffic (e.g., [18]). In particular, long-range

dependence was identified in the traffic traces. Self-similarity

and long-range dependence can be caused by a heavy-tailed

distribution of the tasks to be deployed by the server. How-

ever, in [19] it was shown that an aggregation of sources

with memoryless profiles can also generate long-dependence

effects. Poisson processes are widely used to model arrival

processes as the resulting frameworks are easily analyzable.

The Poisson process is generated by the aggregation of N
i.i.d. random processes generating events at rate λ/N for N
asymptotically large. The distribution of the interarrival time

τ is then

P(τ > x)=eλx. (19)

Consider a consumer generating energy requests whose dura-

tion is exponentially distributed according to a Poisson process

with intensity λ. If the service rate is equal to 1 and the buffer

1As well as a smaller number of, more predictable, industry sites.
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Fig. 1. Schematics of a smart home: the consumer activates appliances, that
generate energy requests queued in a buffer. The energy tasks are scheduled
as a function of energy pricing and grid signaling. The output of the scheduler
determines the overall demand to the grid and is fed-back to the appliances.

is infinite, then the probability that the number of tasks to be

completed and stored in the queue is larger than n is λn. The

distribution of the queue length is related to the delay between

by the Little’s law [17]:

W =
Q

λ
, (20)

where W is the average waiting time in the queue and Q is

the average queue length. Queueing processes with Poisson

arrivals have good properties as the distribution of the queue

size exponentially decays. However, the generation of energy

requests is unlikely follow a simple Poisson process.

Consider now the On/Off source model described as follows

(Fig. 2):

• the transition from On to Off and Off to On occurs with

probability v0 and v1, respectively (the length of On and

Off periods are exponentially distributed);

• in the On period the source generate energy requests with

rate λ;

• in the Off period the source generate energy requests with

rate 0.

Even if the individual source is memoryless, the aggregate of a

large number of these sources induces long-range dependence

for some ranges of parameters. As observed in [12], buffering

the tasks generated by a large collection of these sources

results in a polynomial distribution of the queue length. As

a consequence, the buffer needs to be much larger than in

time

ON OFF ON ONOFF

Fig. 2. On/Off source model. Grey regions correspond to On periods. Dots
represent energy tasks arrivals.

the pure Poisson case to have the same probability of buffer

overflow, and the average delay considerably increases. The

Mellin transform is central in the analysis of the statistics of

the queue in [12]. In [12], the Mellin transform is used to

derive the asymptotic behavior of the aggregate of sources.

These considerations are of particular interest in the Smart-

Grid scenario, where the overall energy demand is generated

by a very large number of sources. Although the On/Off

source model described before may not perfectly fit the

generation of energy demands, it enlightens the fact that bursty

activity, that is likely to characterize a key part of the energy

demand generation, induces correlation in scenarios with a

large number of sources. We will show in Section VI that long-

range dependence deeply impacts the performance of queued

SmartGrid system. This effect needs to be considered when

designing the provided service rate, and the peak consumption.

V. SELF-SIMILARITY, RESCALING AND ESTIMATION IN

THE SMARTGRID

The scaling phenomena widely observed in telecommunica-

tion networks will occur in SmartGrid systems. The interaction

between generation of energy requests, energy tasks queueing

and scheduling, energy pricing can induce rescaling of input

processes when observed in other domains. The scenario

introduced in the previous section is emblematic: the large

number of sources generating energy demand can induce self-

similarity and long-dependence even if the individual source

is memoryless. However, another important application is the

detection of rescaling to estimate properties of the original

input signals. Load controllers and smart home schedulers

filter input sequences such as pricing and energy requests,

that in turn may be functions of other events in the grid.

For instance, the size of the queue of the scheduler is a

rescaled version of the input sequence of energy requests

where the dilation function is determined by external factors

such as energy pricing. Note that while self-similarity of

energy demand induces scale invariance, rescaling due to

queueing and dilation may involve a given scale or induce

DSI.

The identification of scaling behavior is crucial. In fact, by

detecting the presence or absence of scaling, one can decide

whether measurements should be analyzed with traditional

techniques or with methodologies accounting for the presence

of scaling. This section discusses estimation of the scale of

self-similar and DSI processes.

A. Mellin-based Methods

In [15] an interesting framework is proposed for the analysis

of DSI processes based on the Mellin transform. The Lamperti

transform connects the dilation operator to a time-shift oper-

ator. In fact,

(L−1D−r+1
λ LX)(t)=(Slog λX)(t), (21)

where

(ST X)(t) = X(t + T ). (22)



The Lamperti transform of DSI processes, then, is a cyclosta-

tionary process and vice-versa, and the correlation function

R(t, τ) = E [X(t)X(τ)] (23)

of (H,λ)-DSI processes has the Fourier series expansion

R(t, kt) = kHt2H
+∞
∑

n=−∞

Cn(k)t
2jπn

log λ . (24)

Based on these observations, [15] proposed a decomposition in

scale of the correlation function of multiplicative harmonizable

processes where the following holds:

R(t, τ) =

∫ ∫

tH+2jπβτH−2jπσΦ(σ, β)dσdβ. (25)

The spectral distribution Φ(σ, β)dσ can be found as the inverse

Mellin transform of Eq. (24) if R(t, τ) is known, that is

Φ(σ, β) =

∫ ∫

t−H−2jπβs−H+2jπσR(t, τ)
dtdτ

tτ
. (26)

The following holds

Φ(σ, β) =
∞
∑

n=−∞

C̃n(σ)δ
(

β − γ −
n

log λ

)

, (27)

where C̃n(σ) is the Mellin transform of Cn(k). In fact,

harmonizable cyclostationary processes have spectral function

non-zero only on parallel lines where ν−f = n/T , and T is

the period of the process.

Based on these results, a series of methods based on the

Mellin transform for the estimation of the scaling parameter

λ and of the correlation function are proposed in [15]. As the

Mellin transform is weakly sensitive to the amplitude factor

r, one can use r=1/2 in the Mellin transform and obtain

spreaded versions of Dirac function in the transform. The

multiplicative spectral function in Eq. (27) can be used to

formulate a scale-decomposition similar to the time-frequency

decomposition in [20] for the estimation of the correlation

function. The parameter λ can be retrieved by using an

estimate of Φ(σ, β) to compute the peak of the marginal [15]
∫

Φ(ν −
βc

2
, ν +

βc

2
). (28)

The coefficients C̃n(σ) in the resulting decomposition can be

constructed as in [21].

B. Wavelets-based Methods

Wavelets-based approaches can be used for the identifi-

cation of scaling behavior and the estimation of the scaling

parameter [16], [22]. Wavelet families posses a scale-invariant

construction and, thus, are suitable for the analysis of scaling

phenomena. Multi-Resolution Analysis provides a representa-

tion of a signal X(t) as

X(t) =
∑

j,k

Cj,kφβ,τ (t), (29)

where φj,k is a scaled and shifted version of the mother

wavelet function φ0 of the form

φj,k(t) = 2−j/2φ0(2
−jt − k), (30)

and Cj,k= < φj,k,X >. If X(t) is a self-similar process

with parameter H , the coefficients Cβ,τ exactly reproduce self-

similarity [22]:

Cj,k = 2j(H+1/2)C)0, k. (31)

The wavelet coefficients with a fixed scale coefficient j form

a stationary process [22]. If X(t) is second-order self-similar

with parameter H then the coefficients located at different

positions are small as soon as N>H+1/2, where N is the

number of vanishing moments of φ0 [16]. In particular, the

following holds:

E [Cj,kCj′,k′ ]∼|2jk−2j′k′

|2H−2N , |2jk−2j′k′

| → ∞. (32)

The advantage of building estimators in the wavelet domain,

instead of operating in the time domain, is that the coefficients

Cj,k are short-range stationary processes weakly dependent

among themselves. In this representation, the scaling coeffi-

cient is the slope of the log-log plot of

µj =
1

nj

nj
∑

k=1

|Cj,k|
2 (33)

on the scale j. Details are provided in [16].

VI. NUMERICAL RESULTS

In this section, we present numerical results showing the

impact of long-range dependence on a queued energy system

with multiple sources generating energy requests. Long-range

dependence2 significantly affect the evolution of the queue

and, thus, the performance of the system. In fact, long bursts of

activity of the sources may result in buffer overflow, whereas

long bursts of inactivity may lead to periods with very low

energy consumption and, thus, waste of available renewable

resources. Algorithms detecting the presence of long-range

dependence are, therefore, critical for the correct design of

control sequences (e.g., energy pricing) that, by influencing the

scheduling of energy tasks, influence the temporal evolution

of the SmartGrid system.

The schematic of the considered system is depicted in

Fig. 3. A set of N On/Off sources submit energy tasks to a

scheduler. During their On period, the sources generate energy

tasks according to a Poisson distribution with rate η. The

energy tasks are queued in a finite First-Input First-Output

queue of size Q. In each time unit, the scheduler serves a

number of units of energy distributed according to a Poisson

distribution whose rate depends on the price of energy. The

temporal evolution of the energy price is modeled as a Markov

process in order to capture temporal correlation. This system

emulates a basic queued energy system where the load, that

is, the energy spent per unit of time, is controlled by the price

of energy. The model can be applied to different scales of

the SmartGrid. A small number of sources presenting strong

long-range dependence can be seen as an individual building

where sources are appliances and the scheduler is a residential

Demand Response system. At a larger scale, a large number

of sources can be seen as a collection of buildings generating

requests of allocation of energy to a micro-grid controller.

2We remark that long-range dependence and self-similarity are strongly
connected.
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Fig. 3. Schematic of the system: N sources submit energy tasks to the queue
of the scheduler. The service rate of the scheduler is a function of the energy
price, whose evolution is modeled as a Markov process.

In order to assess the impact of long-range dependence we

consider two cases. In the first case the On/Off periods of

the sources are exponentially distributed with parameter λon

and λoff , respectively. Thus, the probability that the duration

IOn(Off) of an On(Off) interval is smaller than x is

Fexp(x)=P(Ion(off) ≤ x)=1−e−λon(off)x. (34)

The exponential distribution is memoryless, that is:

P(Ion(off) > x + x′|Ion(off) > x)=P(Ion(off) > x′). (35)

In the second case, we consider On/Off intervals distributed

according the Pareto distribution. Then, we have

Fpareto(x)=P(Ion ≤ x)=1−

(

kon

x

)αon

. (36)

An analogous expression can be written for the Off intervals.

The Pareto distribution is a heavy-tailed distribution and

presents long-range dependence and self-similarity. The pa-

rameter αon/off and k are called the shape and scale parame-

ters, respectively. If αon/off≤1, then the intervals have infinite

mean. If α≤2, then the intervals have infinite variance. Note

that αon/off is related with the Hurst parameter H . In fact,

H=(3 − αon/off)/2.

TABLE I

SIMULATION PARAMETERS

Parameter Value

N 2

η 1/N

αon = αoff 1.2

kon = koff 1.2

Q 40

p(low, low) 0.8

p(high, high) 0.8

µlow 0.6

µhigh 3

In order to have a fair comparison, we set αon, αoff>1 and

we fix

λ−1
on = kon

αon

1 − αon
, (37)

λ−1
off = koff

αoff

1 − αoff
. (38)

Thus, the average duration of the intervals is the same in the

two cases. Thus, in the two cases, the sources generate the

same amount of energy tasks on average. Numerical results

show that even if the number of generated energy tasks is

the same, long-range dependence results to a larger number

of energy tasks lost due to a full buffer. We also observe

that long-range dependence also results to a larger delay

in the completion of the tasks and may lead to consumers

dissatisfaction.

In the numerical results, we consider a binary low/high price

sequence. The scheduler serves the energy tasks at rate µlow

and µhigh if the price is low or high, respectively. The statistics

of the sequence are determined by a Markov process with

transition probability matrix
(

p(low, low) 1 − p(low,high)
1 − p(high, low) p(high,high)

)

, (39)

where p(low, low) and p(high,high) are the probabilities that

the process remains in the low price state and in the high

price state, respectively. The generation rate is set to η=1/N .

Thus, the generation rate is split among the sources as N
increases, and on average the same amount of energy requests

is generated for any N . The value of the parameters are listed

in Table I unless specified otherwise in the figures.

Fig. 4 shows the overall number of energy tasks lost due to

buffer overload in a scenario with 2 sources. It can be observed

that On/Off intervals with Pareto distribution generates a much

larger number of discarded energy tasks than On/Off intervals

with exponential distribution. This is due to the heavy-tail of

the Pareto distribution. In fact, the heavy-tale, that is, non-

negligible probability of very large intervals, correlates the

On/Off process. Thus, there is a larger probability that a source

persists in the On or Off state with respect to the exponential

distribution. During a long On interval, the price sequence

may hit a period of high price state, where the scheduler can

complete the energy tasks at a slower rate than their arrival

rate. In this case, the buffer may fill and energy tasks may

be discarded due to buffer overload. Long Off intervals may

only partially reduce this effect, as the scheduler may empty

the queue and lose available energy resources.

Fig. 5 shows the overall number of energy tasks lost due

to buffer overload in a scenario with 40 sources. We remark

that the arrival rate of the energy tasks is split among the

sources, so that the overall load is the same. The overall

number of energy tasks lost is much smaller than in the case

N=2. In fact, a larger number of lighter sources produces

a more homogeneous arrival process. Thus, the scheduler

can continuously serve energy tasks and whole the available

resource is used. Moreover, the gap between the Pareto and

exponential distribution is smaller. In fact, a large number

of memoryless sources may generate long range dependence.

Thus, even in the large scale, the design of the dimension of the
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Fig. 4. Number of tasks lost as a function of time for the Pareto and
exponential distribution. The number of sources is equal to 2.
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Fig. 5. Number of tasks lost as a function of time for the Pareto and
exponential distribution. The number of sources is equal to 40.

buffer must take into account this effect. Fig. 6, where the loss

rate of the energy tasks is depicted as a function of the number

of sources, further corroborates these two observations.

Finally, Fig 7 shows the loss rate of the energy tasks as a

function of the shape parameter α. We remark that α is re;ated

to the Hurst parameter, and thus, to the long-range dependence

of the On/Off intervals. It can be observed that the long-range

effect vanishes as α is increased.

These results show the impact of long-range dependence

and self-similarity of the functioning of the SmartGrid. A

controller aware of the presence of these phenomena can

design the energy pricing sequence in order to avoid buffer

overflow and low energy usage periods. We leave the design

of scale and long-range detectors and of the pricing strategies

to future work.

VII. CONCLUSIONS

A discussion on the relevance of scale invariance, self-

similarity and long-range dependence in SmartGrid systems.

The interaction between input sequences such as energy re-

quests, pricing, and physical and control systems can induce

rescaling effects that need to be considered when designing

estimation algorithms. Moreover, long-range dependence can

arise when a large collection of On/Off memoryless sources

contributes to the generation of energy requests. The esti-

mation of the parameters characterizing these processes and
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Fig. 6. Task loss rate as a function of the number of sources for the Pareto
and exponential distribution.
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Fig. 7. Task loss rate as a function of the shape parameter α. The number
of sources is equal to 2.

effects is critical for a proper dimensioning of the system and

the detection of failures and anomalies. A detailed discussion

on estimation frameworks for was provided. Numerical results

show that long-range dependence significantly affect the per-

formance of the SmartGrid system. The detection of scaling

phenomena is, therefore, critical for designing effective control

strategies.
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