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Abstract—In this paper, we propose an image super-resolution
approach based on gradient enhancement. Local constraints
are established to achieve enhanced gradient map, while the
global sparsity constraints are imposed on the gradient field
to reduce noise effects in super-resolution results. We can then
formulate the image reconstruction problem as optimizing an
energy function composed of the proposed sharpness and sparsity
regularization terms. The solution to this super-resolution image
reconstruction is finally achieved using the well-known variable-
splitting and penalty techniques. In comparison with the existing
methods, the experimental results highlight our proposed method
in computation efficiency and robustness to noisy scenes.

I. INTRODUCTION

Due to increasing applications in printers, digital TV, movie
restoration and video surveillance, image super-resolution (S-
R) techniques are extensively studied in image processing and
computer vision fields. In this paper, we focus on single image
SR method.

The key objective of single image super-resolution is to
reconstruct a high-resolution (HR) image based on a low-
resolution (LR) image. Previous works on single-image super-
resolution can be roughly divided into three categories:
interpolation-based, learning-based and reconstruction-based.

The interpolation-based methods like bi-linear and bi-cubic
interpolation are simple and fast but tend to blur high frequen-
cy details. Some other interpolation methods were proposed
to achieve performance improvements, such as edge-adaptive
NEDI [1], improved NEDI [2], iterative curvature based
interpolation [3, 4] and auto-regression based interpolation
[5]. These interpolation-based methods can obtain upscaled
images with fewer artifacts while preserving relevant image
textures. The learning based methods [6, 7, 8] can recover high
frequency details from a training set of HR/LR image pairs.
The relationship between HR and LR patterns can be learned
from input examples. Since the similarity between the training
set and the test set is variable and important, it is hard to find
a general training set for any LR images with arbitrary scaling
factors. To reduce the dependence on the selection of training
sets, self-example-based methods were proposed in [9, 10, 11,
12] whose training set was acquired by resizing the original LR
images into different scales. Following a local self-similarity
assumption, SR image is achieved by extracting patches from
similar regions in this set. However, this kind of approach
is computationally expensive in fractional interpolation and
searching algorithm.

The reconstruction-based methods enforce the similarity
constraint between the original LR image and the down-
sampling counterpart of the HR image. Smoothness regular-
ization is another commonly-used constraint. Recently, some
other regularization terms have been advanced as prior models:
Gradient profile was introduced as a kind of prior to constrain
the reconstructed HR image’s gradient field [13, 14], while
edge smoothness prior was introduced in [15], and Jia et
al. chose the logarithmic density of gradients as another
prior model [16]. Compared with the other two kinds of
super-resolution approaches, the advantage of reconstruction-
based method is that it can be conveniently integrated with
other image processing functions in many image enhancement
tasks, such as de-noising [17], de-blurring [18] and contrast
enhancement [15].

In this paper, we take efforts to improve current
reconstruction-based super-resolution methods by establishing
rational constraints on the gradient field to achieve promising
HR images. Considering edge sharpness is an important factor
for image quality perception, a patch-based edge enhancement
model is proposed according to human vision systems property
to achieve sharpened gradient field. In addition, the sparsity
regularization of gradient field is advanced to suppress noise
effects during the edge enhancement procedure. As a result,
we can recover a high-quality HR image and reduce its noise
effects simultaneously. Meanwhile, it is encouraging that the
proposed SR algorithm could achieve desirable results in a
few seconds.

The rest of the paper is organized as follows. Section
II introduces the proposed patch-by-patch edge enhancement
prior model and the sparsity constraint of HR gradient field.
Section III gives the implementation details of the super-
resolution scheme. Section IV gives some experimental results.
Conclusions are given in Section V.

II. GRADIENT ENHANCEMENT PRIOR MODEL AND NOISE
REDUCTION

The assumption of low-resolution imaging process can be
modeled as follows:

L = (f ∗H) ↓d +n, (1)

where f denotes a discrete Point Spread Function (PSF)
which usually is modeled as a Gaussian filter, H is the
reconstructed HR image, ∗ denotes the convolution operator,



↓d is a subsampling operator with factor d and n represents
noise appeared in the LR image.

For designing a good super-resolution scheme, the essential
issue is how to apply an effective prior or constraint on the HR
image because of the ill-posedness of getting H . Currently, the
gradient-based constraint has been widely used. It makes the
reconstruction equation as follows,

E(H) = Edata + λE(OH), (2)

where

Edata =
∥∥∥f ∗H − Ĥ∥∥∥2

2
, Ĥ = L ↑d . (3)

Here E(·) is the expression of energy function, H is the
reconstructed HR image which is our goal, OH denotes its
gradient field, Ĥ is the upsampled version of input LR image
and λ controls weight. So, the term Edata is the reconstruction
constraint in the image domain for making the smoothed and
down-sampled HR image consistent with the LR image by
minimizing E(H), while E(OH) is a regularization term.

Most works focus on how to formulate E(OH). The
gradient distribution prior [16, 18] and the gradient profile
prior [13] have been proven useful. However, all of these
methods focus merely on either the global feature or the local
feature of image’s gradient, which may not lead to the optimal
results. What’s more, noise effects are often ignored as an
independent problem and would deteriorate HR images visual
quality during image detail enhancement. To overcome these
flaws, we present a fast patch-by-patch edge enhancement
model, regrading E(OH) as a combination of a local term
Elocal(OH) and a global term Eglobal(OH), where the local
term is for gradient enhancement and the global term is for
suppressing noise effects.

A. Local Regularization Based On Patch-by-Patch Gradient
Enhancement

Considering HR image reconstruction as an inverse problem
from degradation process (1), previous works [13, 15, 16]
exploited the gradient regularity constraint to make HR recon-
struction problem well-posed. Although it is hard to generalize
a specific equation to describe gradient field degradation
process, we can roughly assume such process should make
gradient field flatter and smoother, as shown in Fig.1. So the
first regularization consists of a gradient-enhanced map for
constraining local gradient features.

Generally, the gradient profile of an image can be modeled
as Generalized-Gaussian-distribution. Based on this assump-
tion, gradient profile prior [13] is established as the prior
model of natural image gradients, which achieves image super-
resolution by enhancing the sharpness of image gradient. In
spite of this work, we propose a prior model on gradient
patch to achieve sharper image gradient. The patch-by-patch
gradient transformation is defined as follows,

Gnew =

√
‖G0‖22
‖Gα0 ‖

2
2

·Gα0 , (4)

Fig. 1: Illustration of gradient degradation. (a) Gradient field
of HR image. (b) Gradient field of corresponding LR image.

where G0 represents each patch of OĤ and Gnew is its trans-
formed version; α, in our case, represents sharpness which

measures the degree of enhancement; the coefficient
√

‖G0‖2
2

‖Gα0 ‖22
is used to keep energy conservation during transformation
procedure. It can be observed that this transformation would
enhance edge’s sharpness and smooth homogeneous regions.

Differing from the work in [13], we perform gradient
sharpness enhancement patch by patch instead of pixel-wise
operation. Compared with searching for each pixel’s belonged
directional gradient profile in [13], our patch-based method
greatly reduces computational complexity. Another improve-
ment of our method is that we achieve joint super-resolution
and contrast enhancement by adding a multiplication coeffi-
cient β to the transformation (4), that is, the reconstructed HR
image would have larger dynamic range of gradient than its
LR image. The patch-by-patch gradient transformation model
is further refined as,

Gnew = β ·

√
‖G0‖22
‖Gα0 ‖

2
2

·Gα0 , (5)

where β is usually greater than 1. Such gradient enhancement
is conducted on overlapped patches to prevent block artifacts
in HR reconstruction results. The patch size is typically chosen
as 8×8 or 16×16 pixels. Fig. 2 gives an illustration of the
gradient enhancement effect.

After applying the transformation to each patch of OĤ , we
get a new estimation of the gradient of HR image, (OH)new.
So, the Elocal(OH) is defined as following,

Elocal(OH) = ‖OH − (OH)new‖22. (6)

For getting proper values of α and β, 200 HR natural
images are collected. We denote the gradient patch set of these
images as {GHR}. Then these images are down-sampled with
different factors, and we perform the transformation in (5)
to their up-sampled versions with corresponding factor. We
denote the gradient patch set of such versions as {Gnew}.
Using sum-of-squares, we can measure the difference between
the two patch sets,

Error({GHR} , {Gnew}) =
∑
i

‖GHRi −Gnewi‖
2
2 , (7)

where i denotes corresponding patch index for {GHR} and
{Gnew}. Because β controls contrast, usually it cannot be too



Fig. 2: Illustration of transformation in (5). The blue line
represents the original 1-D gradient magnitude. Blue dots are
corresponding pixels. The black line shows the transformed
1-D gradient magnitude by gradient profile transformation in
[13]. The red line shows the transformation using our method.

large, in our test, we set β to 1.0∼1.3. Under this assumption,
Fig. 3. illustrates that the error is minimized when α=3∼4 for
down-sampling factor 4 and α=2∼2.5 for factor 2.

The whole transformation effects on natural image are
shown in Fig. 4. It can be seen that our method has com-
parable visual result with the method in [13], both presenting
sharp edges with rare ringing artifacts. However, our patch-
based method does not need to conduct gradient sharpness
enhancement pixel by pixel, which saves much computation
time. Moreover, contrast enhancement is meanwhile achieved.
As a result, considering the whole complexity, we choose
patch-based gradient enhancement in our SR reconstruction
scheme.

Fig. 3: Error computed for different α with β fixed. (a) 4X
factor. (b) 2X factor.

B. Global Regularization based on Gradient Sparsity and
Robustness to Noise

It is notable that noise magnification during super-resolution
is often ignored in previous works. For noisy LR images, nois-
es might produce local maximums in the gradient domain, in
which case gradient enhancement would make them magnified
as edges, especially in the smooth regions.

To deal with noisy input LR images, current works usually
divide the reconstruction process into two disjoint steps: firstly

(a) (b) (c)

(d) (e) (f)

Fig. 4: Gradient field transformation on patches and its effects.
(a) Gradient map of the observed LR image. (b) Transformed
gradient map using [13]. (c) Our transformed gradient map.
(d) The observed LR image. (e) The reconstructed image using
[13]. (f) Our reconstructed image.

denoising and then super-resolution. However, any artifacts
during denoising on the LR image will be kept or even
magnified in the latter super-resolution process. For example,
over-smoothing will destroy LR image’s high-frequencies,
which in turn increases the difficulties of super-resolution.
Here we introduce sparsity constraint to achieve promising
denoising results.

Considering gradient magnitudes’ abeyance to a heavy
tailed distribution, the hyper-Laplacian distribution is often
used as a gradient prior in super-resolution [16], denoising
[18], and de-convolution [19], etc. By applying Maximum-
a-Posterior rule, the form of Laplacian distribution can be
converted to L-1 norm, i.e. sparsity term [19]. Thus, we
propose to employ such sparsity as another regularization in
our framework for suppressing noise.

According to the analysis above, it is reasonable to rewrite
reconstruction equation (2) by adding the sparsity term.

E(H) = Edata + λ1Elocal(OH) + λ2Eglobal(OH), (8)

where

Elocal (OH) = ‖OH − (OH)new‖22 , (9)
Eglobal (OH) = ‖OH‖1 . (10)

Here λ1 and λ2 measure the weight of each regularization
term.

As (8) shows, Elocal constrains OH to be close to the
transformed gradient field (OH)new and Eglobal constrains
marginal distribution of OH . Using the two extra constraints,
the reconstructed image’s gradient domain would be sharper,
while noises are suppressed by the sparsity term.

III. SOLUTION TO HR IMAGE RECONSTRUCTION

In section II, we enforce the constraints in both image
domain and gradient domain, and then formulate the HR image



reconstruction as minimization of the energy function (8), it
can be further expanded as:

H = argmin
∥∥∥f ∗H − Ĥ∥∥∥2

2
+ λ1 ·

(
‖∂xH −Gx‖22 +

‖∂yH −Gy‖22
)
+ λ2 ·

(
‖∂xH‖1 + ‖∂yH‖1

)
.

(11)
Here Gx, Gy and ∂xH , ∂yH respectively represent the direc-
tional components of (OH)new and (OH) along x-axis and
y-axis.

Solving this problem involves the half-quadratic penalty
method[16, 18, 20], so we introduce auxiliary variables µ =
(µx, µy) to separate the optimization of (11) into two steps.
Each step involves a sub-minimization problem which is a
quadratic function easy to solve. The whole algorithm is in
Table I. The convergence is speeded up by increasing λ3

TABLE I: Algorithm

Introduce µ = (µx, µy) to separate the optimization of (11) into:

H = argmin
∥∥∥f ∗H − Ĥ∥∥∥2

2
+ λ1

(
‖µx −Gx‖22 + ‖µy −Gy‖22

)
+λ2(‖µx‖1 + ‖µy‖1) + λ3(‖µx − ∂xH‖22 + ‖µy − ∂yH‖22)

Iteration begins:
1) µ sub-problem, fix H and extract all the terms involving µ:

E(µ) = λ1(‖µx −Gx‖22 + ‖µy −Gy‖22) + λ2
(
‖µx‖1 +

‖µy‖1
)
+ λ3(‖µx − ∂xH‖22 + ‖µy − ∂yH‖22).

Minimize E(µx) and E(µy) on each pixel separately to get µ =
(µx, µy).
2) H sub-problem, fix µ = (µx, µy) and minimize energy involving
H:

E(H) =
∥∥∥f ∗H − Ĥ∥∥∥2

2
+ λ3(‖µx − ∂xH‖22 + ‖µy − ∂yH‖22).

Applying FFT to the above derivation to remove convolution operator,
and then solve a quadratic minimizing problem to get Fourier transform
of H , the final H is computed as FFT−1(H). Meanwhile, increase
λ3.
Iteration ends.

in each step and there are in all only 3×n+1 FFTs for n
iterations. So the optimization in Table I can be conducted
in seconds, experimental results are given in the next section.
Also note, when the input LR image is noise-free, we can
simply set λ2 equal to 0.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

We have described an image super-resolution scheme that is
assumed to be conceptually simple, fast and noise-resistant. In
this section, we prove its high-quality results by experiments.

Firstly, we compare our approach with the state-of-the-art
methods to show the performance of super-resolution. In this
experiment, we choose ICBI[3] for interpolation result Ĥ in
(3) and set λ1 = 1.5 ,λ2 = 0. The initial value of λ3 is

1
2000 , for each iteration λ3 is multiplied by 2

√
2 and the

iteration number n is set to be 6. The Gaussian kernel f is
empirically chosen according to Table II. Also according to

the statistical analysis in section II, we set α = 3, β = 1.2
for an upscaling factor of 4 in this experiment. In Fig. 5,
Bi-cubic, Glasner2009[12] and Fattal2007[15] are chosen for
comparisons. From the experimental results, our proposed
method is quite comparable in quality to these algorithms.

TABLE II: Empirical Kernel size and deviation for
different upscaling factor

Factor=2 Factor=4 Factor=8
Gaussian Kernel Size 5*5 11*11 15*15

Deviation 1.0 1.4 2.0

For the child face in Fig. 6, we show the comparison re-
sults with Bi-cubic, Shan08[16] and Sun11[13], our proposed
method presents a better visual result. What’s more, the root-
mean-square (RMS) values are computed for most state-of-art
methods using the ground truth of the child face. They are
listed in Table III, and our method has the lowest RMS value.

Secondly, we show the ability of noise resistance. By tuning
λ1 and λ2 in (11), where the first weight controls how sharp
the output edges would be and the second weight decides
sparsity degree, we can produce a high-quality output with
greatly reduced noisy effects. In Fig. 7, the input image ”Lena”
(128×128) is added with noise of deviation σ = 0.02. For
the upsampling factor of 4, we empirically set λ1 = 2 and
λ2 = 0.15. As shown in Fig. 7, the sparsity term avoids
noise magnification during gradient enhancement step, so the
result acquired using the sparsity term provides more pleasant
visualization.

TABLE III: RMS values of different methods for the child
face in Fig. 6.

Method RMS Method RMS
Youv10 [11] 23.467 Shan08 [16] 15.392

ICBI [4] 18.397 Glasener09 [12] 20.137
Freeman02 [10] 20.146 Fattal07 [15] 20.099

NEDI [1] 17.840 Sun11 [13] 16.920
Fattal11 [9] 20.480 Our Method 15.079

In Table IV, we add noise with different deviation to
the 128×128 ”Lena” input, and compute PSNR values for
different SR methods using the ground truth. The results
indicate that our method is resistant to small noise. We show
the visual details in Fig. 8. Some other examples for noisy
input LR images are presented in Fig. 9, we can see the
robustness of our method.

Thirdly, we show the speed of the proposed method. As both
the patch-based gradient enhancement and the convergence
of (11) can be conducted in seconds, our method is time-
saving. In Table V, we list the time for upsampling the 128*128
”Lena” with factor 2 and 4 using different methods. All the
experiments of NEDI[1], Sun11[13] and our methods run on
3.10GHz CPU using matlab, and the results of Shan08[16]



(a) Input (b) Bi-cubic (c) Glasner (d) Fattal (e) Ours

Fig. 5: Image upscaled with a factor of 4. (a) Input 128×128 LR image. (b) Bi-cubic interpolation. (c) Glasner09[12]. (d)
Fattal07[15]. (e) our method.

(a) Input (b) Bi-cubic (c) Shan (d) Sun (e) Ours

Fig. 6: Image upscaled with a factor of 4. (a) Input 128×128 LR image. (b) Bi-cubic interpolation. (c) Shan08[16]. (d)
Sun11[13]. (e) Our method.

(a) (b) (c) (d)

Fig. 7: Noised ”Lena” (σ=0.02) upscaled with a factor of 4. (a) Our method without sparsity term. (c) Our method with sparsity
term. (b) and (d) are gradient maps of (a) and (c).

(a) (b) (c) (d) (e)

Fig. 8: Close-up of noised ”Lena” (σ=0.02) upscaled with a factor of 4 using different methods. (a) Bi-cubic. (b) Shan08[16].
(c) NEDI[1]. (d) Our method without sparsity constraint. (e) Our method with sparsity constraint.



TABLE IV: PSNR values for different methods in noisy scenes

Bi-cubic NEDI Shan08[16] Our SR SR+sparsity
(dB) (dB) (dB) (dB) (dB)

σ=0.01 27.53 25.07 27.18 27.27 27.59
σ=0.015 27.32 24.98 27.04 27.23 27.43
σ=0.02 27.15 24.87 26.84 26.62 27.18
σ=0.05 24.80 23.67 23.84 23.49 24.54

TABLE V: Computation time for up-scaling input image of
128×128 pixels

NEDI Shan08[16] Sun11[13] Our SR
2X(256×256) 16.8 s 3.1 s 6.67s 1.7s
4X(512×512) 77.42 s 10.2 s 25.65s 6.24s

Fig. 9: More SR results with the up-scaling factor of 4. All
input images are polluted by Gaussian noises with σ=0.02.

run on their own software1. As we can see, our method
outperforms the other three with much less time.

V. CONCLUSIONS

In this paper, a single image super-resolution based on
gradient regularizations is proposed. By performing Patch-

1The software can be downloaded from http://www.cse.cuhk.edu.hk/
∼leojia/projects/upsampling/index.html and we choose the CPU mode for
comparison.

by-Patch Gradient Enhancement, we get a sharpened gradient
map using a local regularization procedure. Also, considering
that input images might be noisy, we introduce the sparsity
constraint as a global regularization term for suppressing
noise effects. Combining these two constraints, we can get
a promising SR result in a few seconds. For achieving better
super-resolution results, our future work may focus on how
to make gradient transformation adaptive to different image
contents and trying to extend such model to video applications.
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