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ABSTRACT
In the past few years there have been a tremendous growth
in distributed PV generation on commercial and residential
buildings. Increasing distributed PV generation has raised
concerns about the stability of the distribution grid due to
the intermittency of solar PV energy. Before smart grid
optimization and control algorithms can be formulated we
must obtain a better understanding of the behavior of the
distributed PV energy contributions to the electrical grid.
This paper develops stochastic models to model each dis-
tributed energy source using both spatial and temporal pro-
cessing. A goal is to develop simple stochastic models that
accurately model the distributed energy produced from the
PV sources with possible storage so that key events (e.g.
ramp downs due to cloud cover can be characterized). The
production of energy from PV panels is modeled as a queue
with inputs being the nonstationary solar irradiation, the en-
ergy produced modeled by a deterministic function, and a
queue modeled by storage which can be sold to the grid or
used by local loads. A second queue models solar irradi-
ation with inputs being weather conditions (sunny, partly
cloudy, cloudy).

1. INTRODUCTION

In recent years there has been a substantial interest in devel-
oping smart microgrids that combine distributed renewable
energy generation with adoption of energy efficient princi-
ples such as demand response (DR) to promote more in-
telligent energy management practices. By microgrids we
mean small scale versions of the current centralized elec-
trical grid [1]. By smart microgrids these grids will have
local goals such as reliability, carbon emission reduction,
diversification of energy sources, and cost reduction [1] es-
tablished by the community. To achieve these goals we need
to understand the behavior of the distributed renewable en-
ergy generation (DREG) by developing appropriate sensor

and monitoring networks to collect data from the environ-
ment and outputs of the DREG and to then develop effective
stochastic models where we can analyze the DREG. Dis-
tributed solar photovoltaic (PV) systems are already playing
a large role in DREG implementation. This paper develops
stochastic spatial and temporal models for distributed solar
(PV) and discusses both sensing and monitoring as well as
modeling and analysis efforts at the University of Hawai‘i
at Manoa (UHM) and the Georgia Institute of Technology
(GIT).

Increasingly at Universities and testbed locations both in
the United States and internationally conversions are being
made to smart microgrids. Some examples include the Illi-
nois Institute of Technology with their Perfect Power pro-
gram [2], University of California at San Diego where they
generate about 85% of their energy on campus [3], and the
University of Texas at Austin where they collaborate with
their industry partners on the Pecan Street initiative [4]. The
University of Vermont is working with Sandia National Lab-
oratories to build a smart grid in Vermont [5]. Internation-
ally, South Korea is building a smart grid testbed on Jeju
island [6]. Each program combines academic, industry, and
government partners, however each microgrid location has
its own unique energy profile and set of challenges. Efforts
are underway to construct a smart microgrid at UHM with
the first steps being sensing and monitoring of data followed
by developing models and analysis tools.

The emergence of a large number of smart microgrids
is expected to change fundamentally how our energy grid
operates in the future (see [7][8] and references therein).
Currently, centralized control dominates generation and dis-
tribution of energy [9]. In contrast, DREG such as rooftop
solar panels and solar farms generate energy locally at mi-
crogrids. DREG can thus be utilized, shared, and traded
locally, which moves microgrids towards more energy self
sufficiency. The state of Hawai‘i currently relies on oil as
the dominant source of energy for electricity generation with
more than 90% produced from fossil fuels. The Hawaii
Clean Energy Initiative is a memorandum of understand-



ing between the state of Hawaii and the Department of En-
ergy that sets targets of 70% of energy (40% from renewable
sources and 30% of energy savings to come from energy ef-
ficient practices) by 2030 [10]. The University of Hawai‘i
at Manoa which pays some of the highest electricity rates
in the country is working on developing a smart campus
microgrid at UHM to reduce energy costs by having more
DREG (through solar PV) and energy efficient practices.

Decentralized energy generation and consumption at mi-
crogrids raise significant technical challenges for modeling
and sensing. Renewable energy sources such as solar draw
power from nature. The energy generated is thus intermit-
tent, i.e., varying randomly and dynamically, depending on
weather conditions[11]. For example, solar energy from
Photovoltaic (PV) can go from peak production to zero en-
ergy in a few minutes with cloud coverage. This results in
the so-called ramping state [11], where energy outputs ex-
hibit non-stationary (random and dynamic) behaviors. Such
non-stationary behavior plus dynamic loads challenge mod-
eling, optimization and control of a large number of micro-
grids [9].

Figure 1: A microgrid with renewable solar source.

The goal of this work is to develop analytical models for
microgrids as a foundation of optimization and control. We
first develop a dynamic queuing model, i.e., GI(t)/G(t)/∞
queue [12], that characterizes renewable sources, storage
and loads. Such a model quantifies intermittent renewable
energy as a non-stationary random process. The Transient
Littles Theorem is then applied to relate generated and dis-
patched renewable energy in a simple fashion. We then
extend the model to a virtual queue that characterizes im-
pacts of weather on renewable energy generation. Tran-
sient Little’s Theorem then quantifies ramping states result-

ing from exogenous weather. We use pertinent quantities
from the queuing model to motivate learning from sensory
data. Real-data is being collected at University of Hawaii on
renewable sources, and will be used to learn model param-
eters. This contributes to novel models for the microgrid as
well as weather impacts, relating dynamic network queues
with learning from data.

Section 2 discusses parameters of the microgrid illus-
trating the relationships between DREG (solar PV), battery
storage, the electrical grid, and loads. Section 3 presents a
model of solar energy with storage as a dynamic queueing
model. Section 4 incorporates the effects of weather on the
solar energy. Section 5 discusses how we can learn param-
eters from data and Section 6 discusses getting solar data
and energy readings and further directions for this research
in modeling multiple distributed solar sources. Section 7
summarizes results of this paper.

2. MICROGRID

At a macroscopic level, a microgrid consists of a (physi-
cal) network and exogenous weather as shown in Figure
1. A necessary first step for modeling is to identify het-
erogeneous variables relating to the network and exogenous
weather. A physical network consists of the following com-
ponents and variables:

• (a) A renewable source1, e.g., solar for this work, that
generates energy X(t) locally. X(t) enters a storage
device, where parts of the energy can be distributed to
the load or sold to the grid, equivalent to the special
case of zero storage time.

• (b) A storage device has renewable energy X(t) as its
input. The storage device then dispatches a portion of
the energy X1(t) to load and X2(t) to be sold back to
the grid.

• (c) Load that consumes energy from either the renew-
able or external sources.

Exogenous weather include the following variables:

• (a) solar radiation R(t) at a solar panel;

• (b) other weather variables W (t) such as cloud for-
mation, temperature, wind speed and direction. These
variables impact solar radiation R(t).

1A microgrid can have multiple renewable sources but can be aggre-
gated into one for simplicity of formulation.



Figure 2: Network: A GI(t)/G(t)/∞ queue.

3. DYNAMIC NETWORK MODEL

3.1. Transient Queue

We model the physical network of a microgrid as a dynamic
queue that includes a renewable source, storage, and load as
shown in Figure 1. Here, renewable energy X(t) is consid-
ered as a deterministic function f() of solar radiation, i.e.,
X(t) = f [R(t)], where a solar panel converts solar radi-
ation R(t) to energy X(t). As solar radiation R(t) varies
randomly and dynamically with weather, X(t), the energy
generated is considered as a random process with an arbi-
trary arrival time distribution GI(t).

Consider an increment of energy ∆X(t) = X(t+δt)−
X(t) is stored for S(t) time-duration before being dispatched.
Assume that X(t) is an independent increment process, i.e.,
the increments at disjoint time intervals are independent.
Assume that storage duration S(t) has a general probability
density function g(v|t), where g(v|t) means that the proba-
bility density function of storage duration can be non-stationary,
i.e., varies with respect to time t of its generation. For ex-
ample, if the peak generation and the peak demand do not
coincide in time, storage duration can be longer at the peak
generation for high penetration of the renewables. Hence
g(v|t) characterizes and determines the control, e.g., dis-
patch aspect of a microgrid. Different dispatches schemes,
e.g., on how to satisfy demands and how to trade with the
grid, result in different g(v|t). Hence, g(v|t) represents ag-
gregated effects of dispatching. The probability for the stor-
age duration to exceed time t0 is

Pr(S(t) > t0) =

∞�

t0

g(v|t)dv, (1)

where Pr(S(t) > t0) varies with time t.
Given the above quantifies, the physical network can be

modeled as a transient GI(t)/G(t)/∞ queue as shown in
Figure 2. The arrival process to the queue is renewable en-
ergy X(t). Here renewable energy X(t) is considered as
a non-stationary random process [13][12]. The departure
process corresponds to dispatch X1(t) + X2(t). Both ar-
rivals and departures exhibit general and time-varying dis-
tributions. ∞ means that dispatching energy can experience
delays ranging from zero to infinity; and there is no loss in
energy storage.

GI(t)/G(t)/∞ queue was analyzed by Bertsimas et. al.
in [12]; and recently applied to model large-scale outages

of power distribution by Wei. et.al. [14]. A recent work
applies a queuing model to study the effect of limited energy
storage by Walid et.al. [15] .

3.2. Transient Little’s Theorem for Network

A transient queue with general arrival and departure pro-
cesses does not allow simple solutions [12]. However, if the
first moment is considered, GI(t)/G(t)/∞ queue provides
an analytically tractable approach in form of the Transient
Little’s Theorem [12].

To apply the transient Littles Theorem to the physical
network, we consider the rate of energy generated λ(t) at
time t. λ(t) characterizes the expected increment of gener-
ated energy in a unit time, i.e.,

λ(t) = lim
∆t→0

E[∆X(t)]

∆t
. (2)

Let N(t) be the amount of energy in storage at time t.
The Transient Littles Theorem characterizes the expected
value of N(t) through the rate of energy generation and the
probability of storage time, where

E[N(t)] =

t�

0

λ(u) Pr(S(u) > t− u)du. (3)

Here, intuitively, λ(u)du is energy generated at duration
du at time u, and Pr(S(u) > t−u) is the probability that the
generated energy is stored for at least t−u duration. Hence,� t
0 λ(u) Pr{S(u) > t − u}dv is the total average amount

of energy that is in storage until time t. The mathemati-
cal proof of the theorem can be found in [12]. Therefore,
two quantities, rate function λ(t) and probability of storage
time Pr(S(t) > t0), completely determine the expected en-
ergy in storage. These two quantities can be estimated from
measurements.

4. WEATHER AND RENEWABLE SOURCE

We now focus on the renewable solar source and weather.
Weather variables W (t) impact solar radiation R(t) and
thus solar energy generated X(t). As weather is not com-
pletely predictable, solar radiation R(t) assumes to relate to
weather randomly. For example, given weather forecasts or
measurements Ŵ (t), W (t) = Ŵ (t) + Z(t), where Z(t) is
a random forecast- or measurement-error.

Weather conditions determine states of renewable sources,
and thus the rate λ(t). For example, a renewable solar source
can be viewed as in three states: (1) Low (l) generation cor-
responding to cloudy weather, where the rate λ(t) = λl is a
small constant λl ≥ 0; (2) high (h) generation correspond-
ing to sunny conditions where rate λ(t) = λh is a large



constant λh > λl; (3) ramp up/down (r) generation result-
ing from clouds that move in and out, where rate λ(t) varies
between λl to λh. For simplicity, we only focus on a ramp-
ing state, and assume that occurs at interval [0, t] for t > 0.
In the ramping state when clouds move in and out, a source
generates energy at a variable rate λr(w), w ∈ [0, t].

Now consider exogenous weather variables W (t) as a
random process with an arbitrary time-varying distribution.
When and how long a renewable source is in ramping is
random and impacted by weather. Let Xr(t) be the amount
of energy in ramping at time t. Let Pr(Sr(u) > t − u)
be the probability for a solar source to stay in ramping in
interval (u, t). The transient Littles Theorem can be used
once more, where the expected value of Xr(t) is

E[Xr(t)] =

� t

0
λr(u) Pr(Sr(u) > t− u)du, (4)

where λr(u)du is the average amount of energy generated
in a ramping state in duration du at time u. Pr(Sr(u) >
t−u) is the probability for the solar source to stay in ramp-
ing in interval (u, t). Note that these two quantities are both
function of weather variables. In other words, weather vari-
ables need to be characterized in theory to completely de-
termine average rate λr(u) of the energy generated and the
probability Pr(Sr(u) > t− u) in a ramping state.

In summary, two GI(t)/G(t)/∞ queues model both the
(physical) network and the ramping states of renewable en-
ergy generation. The first queue models usage and dispatch
of the generated solar energy in a microgrid. The second
queue models the impact of weather to the renewable solar-
energy generation. Weather can be random and dynamic,
i.e., non-stationary. So is the solar energy generated and dis-
patched. Thus the arrival and departure processes of these
questions are non-stationary in general.

5. LEARNING FROM DATA

The above models motivate learning from data. In particu-
lar, we focus on weather and renewable energy generation
for learning because weather is not controllable but possibly
learnable.

Two quantities emerge as pertinent to characterize non-
stationary behaviors of ramping,

• rate function λr(t),

• probability Pr(Sr(u) > t− u) of ramping duration.

The probability of staying in ramping, Pr(Sr(u) > t −
u), is determined by weather measurements. Given such
measurements, the problem becomes density estimation, i.e.,
learning a probability distribution from data [16]. Many
learning algorithms can be applied (see [16] and references

therein). Empirical rate function can be learned using in-
crements of energy generated also. Weather measurements
are important for providing the knowledge of when and how
long a ramping state is going to be.

When weather measurements are not available, such a
probability of staying in ramping as well as the rate function
can be learned using sensor measurements, i.e., solar irradi-
ation. An advantage for using such measurements is sim-
plicity, where low cost sensors can be used for data collec-
tion at solar panels instead of costly equipment for weather
data. A disadvantage is that solar radiation then depends
on symptoms of ramping rather than root causes that are
weather variables. Therefore, it is not clear whether data on
solar radiation can enable prediction on when and how long
a source shall be in a ramping state.

Learning characteristics of solar sources from weather
measurements has been conducted in the prior work (see[17]
[18][7] and references therein). This work differs from the
prior work in combining analytical models with learning:
We identify intrinsic randomness and dynamic resulting from
exogenous weather, and the corresponding quantities to learn
from the queuing models. This avoids learning “symptoms”.
Combined modeling and learning also reduces complexity
in learning so that physical characteristics of system com-
ponents such as solar energy conversion can be treated by
design rather than learning.

6. DISCUSSION

This Section consists of two parts. We first discuss methods
extension of the single DREG model to multiple sources
and models of the microgrid. We then discuss methods that
we are using to get solar irradiation and energy data using
sensing and monitoring at UHM.

6.1. Multiple sources and models of the microgrid

Extension can be made to multiple distributed renewable
energy generation (DREG) by having a queue for each dis-
tributed PV energy source. For source k, the arrival rate
λk(t) again depends on weather variables W (t), but also
depends spatially on other arrival rates λj(t) where j �= k.
The aggregate arrival rate given by Λ(t) = [λ1(t), . . . ,λm(t)]T

where m is the number of distributed sources is a vector ran-
dom process. The process can be characterized by parame-
ters of assumed models (e.g. a vector markov process).

The state of the microgrid can then be modeled as a
queueing network with generation from substations, DREG,
and loads. This can be modeled as a bi-directional graph
with sources (DREG and generation from substations) and
destinations (loads). This is a subject of current research in-
volving not only models for generation, but also for loads.
Analysis and verification of models is through simulations



and getting access to data.

6.2. Sensing and monitoring deployment

At the University of Hawaii sensors and monitors are being
deployed on rooftops of buildings around campus to mon-
itor environmental resources such as solar irradiation, tem-
perature, humidity, and wind speed and direction. This will
allow for modeling of Λ(t) from data and the use of weather
models. Once distributed PV is deployed on rooftops of
buildings energy produced by the PV will be monitored and
the parameters of the queueing model discussed here for
the University of Hawaii site can be determined. We are
also reading meters of energy consumption on buildings and
more monitors will be deployed on the campus microgrid
such as advanced metering infrastructure (AMI) to more ac-
curately model the electrical grid. Then a queueing network
model can be formulated to model the energy generation
and usage on the University of Hawaii campus microgrid.
The Georgia Institute of Technology also has deployed so-
lar PV and data will be gathered from the environment and
energy produced so that parameters of the queueing model
for the Georgia Institute of Technology site can also be de-
termined.

7. SUMMARY

This paper discusses using queueing models to model en-
ergy produced by solar PV with inputs being parameters
such as solar irradiation and outputs being energy produced
by the PV. The solar irradiation can be modeled by a sec-
ond process with inputs being weather conditions and other
parameters such as solar irradiation from other sources dis-
tributed spatially. We envision that these models will be
ultimately useful in forming stochastic models for energy
generation and usage on a microgrid. This will be helpful in
the formulation of optimization and control algorithms for
developing demand side management algorithms to more
efficiently use energy, reduce costs, and stabilize the grid.
The models will be confirmed by using the University of
Hawaii and the Georgia Institute of Technology as testbeds.
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