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Abstract—The paper presents a fully distributed framework
for sequential recursive state estimation in inter-connected elec-
trical power systems. Specifically, the setup considered involves
a grid partitioned into multiple control areas that communicate
over a sparse communication network. In the absence of a global
sensor data fusion center (the conventional centralized SCADA)
and with sensing model uncertainties, an adaptive distributed
state estimation approach, the DAE , is proposed in which the sys-
tem control areas engage in a collaborative joint (model) learning
and (state) estimation procedure through sequential information
exchange over the pre-assigned communication network. The
proposed distributed estimation methodology is recursive, in that,
each system control area refines its state estimate at a given
sampling instant by suitably combining its past estimate with
the newly collected local measurement(s) and the information
obtained from its communication neighbors. Under rather weak
assumptions of global observability and connectivity of the
control area communication network, the proposed distributed
adaptive scheme is shown to yield consistent system state esti-
mates (i.e., estimates that converge to the true system state in
the large sample limit), the convergence rate being optimal in the
Fisher information sense. As discussed, the proposed approach
based on local communication and computation is suitable for
real-time implementation as opposed to conventional centralized
SCADA based estimation architectures with periodic data gath-
ering and processing, thus being potentially more responsive and
adaptive to sensed data generated by advanced non-conventional
sensing resources like the PMUs with significantly higher system
sampling rates.

I. INTRODUCTION

A. Motivation
With the continued penetration of highly intermittent and

vastly distributed wind and solar renewables, the power grid
is rapidly evolving towards a complex interconnect of het-
erogenous distributed modules. While this offers huge po-
tential to sustain our increasing energy needs, it necessitates
a massive transformation of the existing highly centralized
system to a distributed and responsive intelligent grid that
will carefully exploit the opportunities offered by advances
in power electronics, active load management, smart meter-
ing and communication-computation technologies ([1], [2]).
Technically, enabled by advanced control, communication, and
computation, wide area monitoring systems (WAMS) of the
future will likely involve large numbers of fast information
gathering and processing devices [3]. Institutionally, the power
industry deregulation has led to the creation of multiple
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regional control areas (CAs), each only operating a fraction
of the large interconnected power grid [4]. The technical and
institutional changes suggest the need for more decentralized
estimation and control in wide area power system operations
[5].

The future operation paradigm will be largely based on
distributed transactions and energy management, thus re-
quiring pervasive system intelligence for efficient decision-
making. The design of distributed state estimators is indeed
key to providing such ubiquitous intelligence and sustaining
the evolving demands and functionalities of the grid [6], [7],
[8], [9], [10], [11], [12]. In particular, while large power inter-
connections such as the eastern/western interconnections are
usually operated by several CAs, advanced applications such
as WAMS and control require the state of the entire system to
be available at all the CAs [13], [5]. Indeed, the conventional
power system state estimation paradigm, in which centralized
supervisory control and data acquisition (SCADA) systems
periodically (roughly in intervals of about 5 minutes,see,
for example, the New England ISO [14]) collect network-
wide measurements through remote terminal units (RTUs),
needs to be transformed into a centerless distributed platform
where in real-time the different CAs exchange information
to engage in a collaborative sequential state estimate update
process. This is further motivated by the incorporation of non-
conventional sensing resources in the grid, notably phasor
measurement units (PMUs) [15] and intelligent electronic
devices (IEDs) [16], [17], that are more accurate with con-
siderably higher system sampling rate and that further provide
real-time system information in terms of local protection and
control data. Thus, for real-time system state monitoring, these
heterogenous sensing data (with higher sampling rates) should
be processed as and when they are captured, rather than
communicating the huge volume of measured data to a center
periodically. Clearly, a distributed approach is more appealing
in this regard, as it is based on real-time information sharing
among the CAs through peer-to-peer exchanges1 leading to
sequential estimate refinement as and when new information
enters the system.

The traditional centralized SCADA based state estima-
tion [19], [20] and bad data detection [21], [22] approaches

1Note that inter-agent communication is typically much faster than synchro-
nized data forwarding to a central SCADA and several real-time peer-to-peer
type communication architectures are already in place, for example, the IEC
61850 standard, a protocol for inter-IED communication [18].



that are based on periodic snapshots of the system using
conventional low sampling rate measurements are clearly
unable to exploit the potentials offered by the non-conventional
sensing resources with much faster sampling rates. For ex-
ample, each PMU is capable of obtaining samples of the
order of hundreds per second [23] rendering the transmission
of all network measurements to a center periodically almost
infeasible. Moreover, for efficient processing of the sensed
measurements and real-time estimate update, a sequential
information processing approach that fuses new data as soon
as it is acquired is preferred over a periodic batch processing
approach. Similarly, conventional approaches to mitigate the
effect of corrupted measurements (resulting, for instance, from
sensing anomalies) on the estimation performance, often called
bad data detection and localization techniques, are essentially
small-sample statistical tests based on normalized chi-squared
residuals [21], [22], or more involved techniques such as
combinatorial group testing [24] and hypothesis testing identi-
fication [25]. In general, the information content of a sensing
resource may not be well predicted from a single sample and
better results are likely to be obtained by studying their long
term trend or large sample characteristics. Especially, given the
abundance of sensing resources in the future grid with higher
sampling rates, more general real-time sequential learning ap-
proaches should be adopted in order to reassess the contextual
value of sensed information, so that the measurement data may
be appropriately fused to yield more accurate state estimates.

Motivated by the challenges and requirements in the future
smart grid, in this paper we consider adaptive and distributed
state estimation procedures that: (1) exploits in real-time
the sensing diversity offered by non-conventional sensing
resources with higher accuracy and faster system sampling
rate; (2) adapts to (stochastic) uncertainties in the information
content of the sensing resources through online learning in
conjunction with the estimation procedure, so as to effec-
tively combine (fuse) the sensed data from different sensing
methodologies by properly weighting their measurements; and
(3) provides pervasive network-wide intelligence to improve
the performance of the local protection units and controllers
by appropriately distributing the information processing and
communication overhead among the various network entities.

The rest of the paper is organized as follows. We start by in-
troducing the distributed measurement model (with sensing un-
certainties) resulting from a geographically distributed spread
system of interest partitioned into several control areas (CAs)
in Section II. As a benchmark for future comparison, in the
same section, we further quantify the estimation performance
of a hypothetical real-time centralized estimator (optimal)
with access to all CA measurements at all times and perfect
information about the physical and sensing parameters. In
Section III we propose a generic distributed adaptive method-
ology, DAE , for distributed state estimation with parametric
uncertainties, in which the various CAs exchange information
in real-time leading to recursive state estimates that instanta-
neously respond to the sensed data rather than waiting for a
centralized SCADA to process the network-wide information

periodically, as is done in existing centralized state estimation
architectures. The main result of the paper characterizing the
convergence of the DAE scheme is presented in Section IV.
Finally, Section V concludes the paper.

B. Notation

We denote the k-dimensional Euclidean space by Rk. The
set of reals is denoted by R, whereas R+ denotes the non-
negative reals. For a, b ∈ R, we will use the notations a ∨ b
and a ∧ b to denote the maximum and minimum of a and
b respectively. The set of k × k real matrices is denoted by
Rk×k. The corresponding subspace of symmetric matrices is
denoted by Sk. The cone of positive semidefinite matrices is
denoted by Sk+, whereas Sk++ denotes the subset of positive
definite matrices. The k× k identity matrix is denoted by Ik,
while 1k,0k denote respectively the column vector of ones and
zeros in Rk. Often the symbol 0 is used to denote the k × p
zero matrix, the dimensions being clear from the context. The
operator ‖·‖ applied to a vector denotes the standard Euclidean
L2 norm, while applied to matrices denotes the induced L2

norm, which is equivalent to the matrix spectral radius for
symmetric matrices. The notation A⊗B is used to denote the
Kronecker product of two matrices A and B.

Spectral graph theory: The inter-agent communication
topology may be described by an undirected graph G =
(V,E), with V = [1 · · ·N ] and E the set of CAs (agents) and
communication links (edges),respectively. The unordered pair
(n, l) ∈ E if there exists an edge between nodes n and l. We
consider simple graphs, i.e., graphs devoid of self-loops and
multiple edges. A graph is connected if there exists a path2,
between each pair of nodes. The neighborhood of node n is

Ωn = {l ∈ V | (n, l) ∈ E} (1)

Node n has degree dn = |Ωn| (the number of edges with n
as one end point.) The structure of the graph can be described
by the symmetric N × N adjacency matrix, A = [Anl],
Anl = 1, if (n, l) ∈ E, Anl = 0, otherwise. Let the
degree matrix be the diagonal matrix D = diag (d1 · · · dN ).
By definition, the positive semidefinite matrix L = D − A
is called the graph Laplacian matrix. The eigenvalues of L
can be ordered as 0 = λ1(L) ≤ λ2(L) ≤ · · · ≤ λN (L),
the eigenvector corresponding to λ1(L) being (1/

√
N)1N .

The multiplicity of the zero eigenvalue equals the number
of connected components of the network; for a connected
graph, λ2(L) > 0. This second eigenvalue is the algebraic
connectivity or the Fiedler value of the network; see [26] for
detailed treatment of graphs and their spectral theory.

II. PROBLEM FORMULATION

A. Sensing Model

For definiteness, in this paper, we address the problem of
distributed and adaptive static state estimation in a power
system comprising of several CAs, that are coupled by the

2A path between nodes n and l of length m is a sequence (n =
i0, i1, · · · , im = l) of vertices, such that (ik, ik+1) ∈ E ∀ 0 ≤ k ≤ m−1.



physical interactions. The state of the overall system is rep-
resented by a vector x ∈ RM , which, for (linearized) DC
state estimation, corresponds to the vector of bus angles. Let
t denote time3 and T the estimation horizon for static state
estimation4. Assuming that the system state x stays constant
over the estimation horizon [0, T ], the measurements at the n-
th CA may be represented as a time series {yn(t)}Tt=0, such
that,

yn(t) = Hnx + wn(t), (2)

where: i)
{
yn(t) ∈ RMn

}
is the independent and identically

distributed (i.i.d.) observation sequence for the n-th CA; and
ii) for each n, {wn(t)} is a zero-mean temporally i.i.d. noise
sequence with covariance matrix Rn. Moreover, the sequences
{wn(t)} and {wl(t)} are mutually uncorrelated for n 6= l.
Generally each CA observes only a subset of Mn of the com-
ponents of x, with Mn �M . It is then necessary for the CAs
to collaborate by means of occasional local message exchanges
to achieve a reasonable estimate of the state x. Moreover, due
to inherent uncertainties in the deployment and the sensing
environment, the statistics of the observation process (i.e., of
the noise) is likely to be unknown apriori. For example, the
exact observation noise variance depends on several factors
beyond the control of the deployment process and should be
learnt over time for reasonable estimation performance. In
other words, prior knowledge of the spatial distribution of
information content (i.e., which agent is more accurate than
the others) may not be available, and the proposed estimation
approach should be able to adaptively learn the true value
of information leading to an accurate weighting of the various
observation resources. We emphasize that, for meaningful state
estimation, the sensed data obtained during the estimation
interval of interest must be simultaneously used to: (1) learn
the current values (states) of the uncertain parameters; and (2)
estimate the system state x of interest. This necessitates the
design of adaptive estimation schemes, i.e., schemes that adapt
themselves to switching parameters and provide reasonable
estimation performance by using the sensed data to learn the
unknown parameters in conjunction to the estimation task.

Finally, keeping in mind the distributed nature of our
sensing model and the estimation methodology (to be proposed
soon), we make the following assumptions on (global) system
observability and the inter-CA communication topology:

(A.1): The true observation noise covariance matrix Rn is
positive definite for each n. We do not require observability at

3Note that time increments (t to t + 1) in this paper correspond to the
sampling instants of the sensing device with the highest sampling rate. In
particular, if the PMU is the fastest measurement device in the system, we
assume that samples are collected at each time instant t.

4Note that T is measured in terms of multiples of the time increments, the
latter corresponding to the measurement frequency of the device with highest
system sampling rate. In general, T corresponds to roughly the 5 minute
estimation horizon (see [14]) in which the static state assumption holds. Given,
that T is measured in terms of multiples of discrete time increments and the
devices in question have quite high sensing rate (for example, the PMU has
the potential to gather samples in the order of hundreds per second [23]), T
is generally quite large. Noting that T also denotes the number of observation
samples collected by a non-conventional sensing device in the static estimation
horizon, the above implies that T is quite large generally.

the local level, but impose the following global observability,
i.e., the (normalized) Grammian matrix

Σc =
1

N

N∑
n=1

HT
nR
−1
n Hn (3)

is invertible. Also, to begin with, each CA n has knowledge of
its own local observation matrix Hn only, and the observation
noise covariances Rn’s are unknown apriori.

(A.2): In digital communications, packets may be lost at
random times. To account for this, we let the links (or
communication channels among the CAs) to fail, so that the
edge set and the connectivity graph of the inter-CA network
are time varying. Accordingly, the communication network
at time t is modeled as an undirected graph, Gt = (V,Et)
and the graph Laplacians as a sequence of i.i.d. Laplacian
matrices {Lt}. We do not make any distributional assumptions
on the link failure model. Although the link failures, and so
the Laplacians, are independent at different times, during the
same iteration, the link failures can be spatially dependent,
i.e., correlated. This is more general and subsumes the erasure
network model, where the link failures are independent over
space and time. Wireless agent networks motivate this model
since interference among the wireless communication channels
correlates the link failures over space, while, over time, it is
still reasonable to assume that the channels are memoryless or
independent.

Connectedness of the graph is an important issue. We do
not require that the random instantiations Gt of the graph be
connected; in fact, it is possible to have all these instantiations
to be disconnected. We only require that the graph stays
connected on average. Denoting E[Lt] by L, this is captured
by assuming λ2

(
L
)
> 0. This weak connectivity requirement

enables us to capture a broad class of asynchronous communi-
cation models; for example, the random asynchronous gossip
protocol analyzed in [27] satisfies λ2

(
L
)
> 0 and hence falls

under this framework. On the other hand, we assume that the
inter-agent communication is noise-free and unquantized in
the event of an active communication link; the problem of
quantized data exchange in networked control systems (see,
for example, [28], [29], [30] is an active research topic.

(A.3): The sequences {Lt} and {wn(t)}n∈V are mutually
independent.

B. Performance Benchmark: Centralized Sequential Estimator

A major drawback of the existing periodic SCADA es-
timator is that it is implemented only once at the end of
the estimation interval [0, T ]. The estimator, as such, is not
responsive to instantaneously acquired data and given that
T may be quite large it does not provide real time system
monitoring. In practice, it is often desirable to detect abnormal
system behavior (manifested by deviations of the system state
from its nominal value) as early as possible, so that appropriate
control action may be taken in real time thus mitigating critical
system phenomena. In view of this, an idealized estimator
should be updated in real time and should instantaneously
reflect the information in the sensed data. The centralized real



time estimator may then be defined as a sequential process
{x̂R(t)}Tt=0, where x̂R(t) corresponds to the (real-time) system
state estimate at time t based on all sensed information till (and
including) time t, i.e.,

x̂R(t) = argminx∈RMQt (x) , (4)

where

Qt (x) =

t∑
s=0

N∑
n=1

(yn(s)−Hnx)
T

(Rn)
−1

(yn(s)−Hnx) .

(5)
With perfect knowledge of the model parameters, Hn’s and
the Rn’s, the real time estimator is indeed optimal as it
provides the most up-to-date system state information at all
time instants based on the sensed data gathered so far. The se-
quence {x̂R(t)}Tt=0 exhibits nice statistical properties, such as
consistency and asymptotic normality [31], under reasonable
structural and analytical assumptions on the sensing model.
These are generally formulated as T →∞, i.e., as the interval
of stationarity is relatively large or, alternatively, the number
of sensed measurements per estimation period (the sampling
rate) is high, which is typically the case with non-conventional
sensing resources such as the PMUs. In fact, the following is
well-known for the sequence {x̂R(t)}Tt=0 as T →∞ (see, for
example, [32]):

Lemma 1: Let (A.1) hold. Then, the estimate sequence
{x̂R(t)} is consistent, i.e., x̂R(t) → x as t → ∞ al-
most surely (a.s.) Moreover, the estimate sequence {x̂R(t)}
is asymptotically normal, i.e., as t → ∞, the normalized
residual

√
t (x̂R(t)− x) converges in distribution to a zero-

mean Gaussian random vector with positive definite covariance
Σ−1

c , with Σc = NΣc, the latter quantity being defined in (3).
The asymptotic normality essentially means that the mean-
squared estimation error (m.s.e.) decreases roughly as
(1/t)Σ−1

c with the number of samples t. In a sense, the
asymptotic (co)variance Σ−1

c may be intuitively viewed as
the inverse of the signal-to-noise ratio (SNR). The covariance
is lower bounded by the inverse of the Fisher information
rate [31] of the measurement model and coincides with the
latter if the measurement noise is Gaussian.

Although optimal, the usefulness of the centralized real-
time estimate {x̂R(t)} is masked by the severe requirements it
imposes on communication and computation. Implementation
of the sequence {x̂R(t)} would require accumulating all sensed
data at all time instants to a fusion center (or the centralized
SCADA), which may not be feasible in real time, especially
in the context of the future grid equipped with a plethora of
sensing devices with high sampling rates but constrained by a
bit limited communication medium. Moreover, the complexity
of the optimization problem (4)-(5) blows up with the avail-
ability of more and more sensed data making it unscalable with
growing network size. Finally, the above idealized estimate
may only be constructed with prior knowledge of the sensing
model parameters, which may not be the case as perturbations
in the grid topology and the sensing process often cause them
to switch from time to time.

This motivates us to consider more feasible estimation
approaches that are scalable in terms of computation and
communication, but nonetheless achieve the performance of
the ideal centralized real time estimator {x̂R(t)}. The esti-
mation approach that we propose in this paper will largely
resolve these limitations by being: (1) distributed, so that the
communication burden imposed by real time transmission of
all sensed data to a fusion center is shared by the different CAs
through local low data rate sequential information exchanges
among them; (2) recursive, so that the CA estimates are
sequentially updated in real time as new data (innovation)
enters the system, rather than overwhelming a fusion center
(SCADA) with huge amounts of data to be processed all at
once (4)-(5); and (3) adaptive, so that simultaneously with
the distributed estimate update process, the uncertain sensing
parameters are learnt online with a view to ascertaining the
right measurement fusion (combination) rules for estimation.

III. DAE : AN ADAPTIVE DISTRIBUTED STATE
ESTIMATION FRAMEWORK

Recall the distributed sensing model in (2). In this paper we
study sensing uncertainties only, i.e., uncertainties in the mea-
surement noise covariances Rn’s, but, otherwise, assume that
the local model matrix Hn is perfectly known at the n-th CA
for each n. The uncertain noise covariances may correspond to
faulty sensors due to natural wear and tear, or may even reflect
useless sensor readings caused by unpredictable grid topol-
ogy changes. Without prior knowledge of the measurement
covariances (and hence the relative measurement qualities),
implementing the least squares estimator of x is challenging
(even in the centralized case) as the correct measurement
fusion weights, being a function of the true covariances, are
unavailable apriori. Thus, for successful state estimation, it
is necessary to learn the covariances from sensed data, so
that the estimation procedure may be updated over time with
successive refinements of the covariance information. To this
end, we present the following adaptive distributed estimation
approach:

Estimate Update: The estimate update at agent n then
proceeds as follows:

xn(t+ 1) = xn(t)− βt
∑

l∈Ωn(t)

(xn(t)− xl(t))

+αtKn(t) (yn(t)−Hnxn(t)) . (6)

In the above, {βt} and {αt} represent appropriate time-
varying weighting factors for the agreement (consensus) and
innovation (new observation) potentials, respectively, whereas,
{Kn(t)} is an adaptively chosen matrix gain process. Also,
Ωn(t) denotes the time-varying random neighborhood of agent
n at time t.

Covariance Learning and Gain Update: The adaptive gain
update at sensor n involves another {Ft} adapted distributed
learning process that proceeds in parallel with the estimate
update. In particular, we set

Kn(t) = (Gn(t) + γtIM )
−1
HT
n (Qn(t) + γtIMn

)
−1 (7)



where {γt} is a sequence of positive reals, such that γt → 0
as t→∞. The {Qn(t)} and {Gn(t)} evolve as:

Qn(t+ 1) =
1

t

t∑
s=0

yn(s)yTn (s)

−

(
1

t

t−1∑
s=0

yn(s)

)(
1

t

t−1∑
s=0

yn(s)

)T
, (8)

Gn(t+ 1) = Gn(t)− βt
∑

l∈Ωn(t)

(Gn(t)−Gl(t))

+αt

(
HT
n (Qn(t) + γtIN )

−1
Hn −Gn(t)

)
(9)

These matrices are positive semidefinite with initial conditions
Qn(0) and Gn(0), respectively.

Note, in the above, the sequence {Qn(t)} is the sample
covariance (unbiased) and serves as a consistent estimate of
the local noise covariance Rn. In fact, the sample covariance
estimates are not particularly necessary and any sequence
{Qn(t)} such that Qn(t)→ Rn is sufficient for our purpose.
Moreover, the following optional collaborative covariance re-
finement procedure may be performed at each agent n if it is
of interest to obtain more efficient (faster convergence) local
covariance estimates:

R̂n(t) =
1

t

t−1∑
s=0

(yn(s)−Hnxn(s)) (yn(s)−Hnxn(s))
T

(10)
In the following we introduce some additional assumptions

on the observation noise process and the algorithm weight
sequences to be in force unless otherwise stated.

(A.4): There exists ε1 > 0, such that, for all n,
Eθ∗

[
‖ζn(t)‖2+ε1

]
<∞, i.e., the measurement noise possesses

moments of order greater than 2. Most of the reasonable noise
models satisfy the above condition, the typically assumed
Gaussian noise in fact possesses moments of all orders (and
hence, satisfies the above condition).

(A.5): The weight sequences {αt} and {βt} are given by

αt =
a

(t+ 1)τ1
and βt =

b

(t+ 1)τ2
, (11)

where a, b > 0, 0 < τ2 ≤ τ1 ≤ 1 and τ1 > τ2 + 1/(2 + ε1) +
1/2.

Note that since ε1 > 0, such a choice of the pair (τ1, τ2)
is always possible, for example, by taking τ1 = 1 and
τ2 < 1/2−1/(2+ε1). We comment on the choice of the weight
sequences {βt} and {αt} associated with the consensus and in-
novation potentials respectively (see (6)). From (A.5) we note
that both the excitations for agent-collaboration (consensus)
and local innovation are persistent, i.e., the sequences {βt}
and {αt} sum to ∞ - a standard requirement in stochastic
approximation type algorithms to drive the updates to the
desired from arbitrary initial conditions. Further, the square
summability of {αt} (τ1 > 1/2) is required to mitigate the
effect of stochastic sensing noise perturbing the innovations.
The requirement βt/αt → ∞ as t → ∞ (τ1 > τ2), i.e.,

the asymptotic domination of the consensus potential over the
local innovations ensures the right information mixing thus,
as shown below, leading to optimal estimation performance.
Technically, the different asymptotic decay rates of the two
potentials lead to mixed time-scale stochastic recursions whose
analyses require new techniques in stochastic approximation
as developed in the paper.

We comment on the nature of the distributed learning
process leading to online refinement of the estimator gains
Kn(t). First note that, in the absence of sensing uncertain-
ties, i.e., with perfect knowledge of the covariances, a (non-
adaptive) distributed estimation scheme for x may be designed
as follows:

xn(t+ 1) = xn(t)− βt
∑

l∈Ωn(t)

(xn(t)− xl(t))

+αtΣc
−1
HT
nR
−1
n (yn(t)−Hnxn(t)) ,(12)

Σc =
1

N

N∑
n=1

HT
nR
−1
n Hn. (13)

The matrix Σc denotes the (normalized) Gramian assumed to
be positive definite5. The estimation methodology in (12) is
open loop as no learning is required. Further, this estimation
approach requires perfect knowledge of the entire network
observation model at each agent, i.e., each network agent is
fully aware of the model matrices {Hn}n∈V and the covari-
ances {Rn}n∈V with V denoting the set of CAs [1, · · · , N ].
Under these requirements, it was shown in [33] that the
distributed procedure (12) is asymptotically efficient as long
as the inter-CA communication network is connected6, i.e.,
achieves the asymptotic covariance Σ−1

c of the optimal real
time centralized SCADA estimator (the estimate {x̂R(t)} (4))
in the limit of large T , where Σc = NΣc. In doing so, the
scheme in [33] assumes each agent n has complete knowledge
of the global parameters Σc (and the local Rn), thus enabling
the computation of the optimal local innovation gains at each
agent leading to the best asymptotic covariance.

Now, considering the adaptive procedure (6)-(9), we note
that the key departure from (12) is that, in the current example,
the CAs are not aware of the global quantity Σc and the local
covariances Rn’s and, hence, apriori are not able to compute
and apply the optimal innovation gains Σc

−1
HT
nR
−1
n . This

necessitates the additional gain update or learning process, in
which over time the CAs try to refine their knowledge of the
optimal gain matrices based on past data samples and mutual
collaboration with the eventual goal of converging to the exact
optimal gains. In particular, the update (8) corresponds to local
learning of the unknown covariances Rn from sequentially
sensed data, whereas the subsequent collaborative step (9)

5The positive definiteness of Σc corresponds to global observability. Note,
we do not require the individual CAs to be observable, i.e, each of the matrices
Hn could be rank deficient.

6Note that the topology of the inter-CA network in terms of communicating
information may be arbitrary as long as it is connected. In particular, the
communication network may be significantly different and much sparser than
the physical grid topology which is usually dense.



refines the knowledge of the (centralized) Gramian Σc needed
for choosing the optimal local innovation gains. The adaptive
learning step incurs several additional complexities in the
analysis of the DAE scheme (its linear counterpart) with
respect to the non-adaptive open loop formulation in (12).
Firstly, one needs to establish convergence of the adaptive
gain sequence {Kn(t)} to the exact optimal gains at each
CA. More importantly, even in the event of convergence of
the adaptive gains to the desired, the rate of convergence
may be slow and apriori it is not clear whether the use of
approximate gains (at least in the initial stages) will affect
the convergence rate of the estimate update process or not.
In other words, one needs to show that the usage of the
convergent gain approximations entails no performance loss
(in terms of asymptotic covariance) for the estimate update
process. Another important observation is that, unlike (12),
the estimates {xn(t), n ∈ V } are no longer Markovian due
to the dependence of the gains Kn(t) on the past observa-
tions. From a technical viewpoint, this prevents the direct
applicability of standard stochastic approximation techniques
(see, for example, [34]) for convergence analysis. The need
for non-standard technical approaches is further substantiated
by the presence of mixed time scale potentials in the update
processes, in particular, the different decay characteristics of
the sequences {αt} and {βt} for the consensus and innovation
respectively.

IV. MAIN RESULTS

We formally state the main results of the paper. The proofs
follow from some general studies on distributed adaptive
procedures recently undertaken in [35].

The first result concerns the asymptotic agreement or con-
sensus among the various agent estimates.

Theorem 2: Let assumptions (A.1)-(A.5) hold. Then for
each τ0 such that

0 ≤ τ0 < τ1 − τ2 −
1

2 + ε1
, (14)

we have

P
(

lim
t→∞

(t+ 1)τ0 ‖xn(t)− xl(t)‖ = 0
)

= 1 (15)

for any pair of CAs n and l.
In words, Theorem 2 shows that the rate of agreement

(at least the order) depends only on the difference τ1 − τ2
of the algorithm weight parameters, the latter quantifying
the intensities of the global agreement and local innovation
potentials relative to each other. Interestingly, the order of this
convergence is independent of the network topology (as long
as it is connected in the mean) and the distributed gain learning
process (7)-(9).

Theorem 3: Let assumptions (A.1)-(A.5) hold with τ1 = 1
and a ≥ 1. Then, for each n the estimate sequence {xn(t)}
is strongly consistent. In particular, we have

Pθ∗
(

lim
t→∞

(t+ 1)τ ‖xn(t)− θ∗‖ = 0
)

= 1 (16)

for each n and τ ∈ [0, 1/2).

The above convergence rate is optimal for pathwise con-
vergence of estimates in the sense that (16) does not hold
with τ = 1/2 even for a centralized estimate sequence. This,
in turn, is due to the asymptotic normality of the centralized
estimator with a non-degenerate asymptotic covariance (see
Theorem 4 for details). Again, the interesting and non-trivial
fact to note here is that the distributed adaptive estimators
retain the centralized convergence rate irrespective of the
apparent information loss due to sparse inter-agent commu-
nication and lack of model information apriori.

The following result concerns the asymptotic normality
of the estimates generated by the distributed procedure and
establishes the asymptotic efficiency of the DAE scheme.

Theorem 4: Let assumptions (A.1)-(A.5) hold with τ1 = 1
and a = 1. Let Σc denote the matrix

∑N
n=1H

T
nR
−1
n Hn. Then,

for each n√
(t+ 1) (xn(t)− θ∗) =⇒ N

(
0,Σ−1

c

)
, (17)

where N (·) and =⇒ denote the Gaussian distribution and
weak convergence respectively.

Referring to the discussion in Section II-B (Lemma 1
in particular), we note that the DAE leads to the optimal
error covariance decay attainable, in general, by any estimator
(centralized) with information of the model parameters Hn’s
and Rn’s only and no other specifics of the observation noise
process. In particular, the distributed and adaptive ADLE is
optimal in the class of linear centralized estimators when the
noise distribution is arbitrary and is optimal in the Fisher
information sense if the noise process is Gaussian. In a
sense, Theorem 4 justifies the applicability and advantage
of distributed estimation schemes. Apart from issues of ro-
bustness, implementing a centralized estimator is much more
communication intensive as it requires transmitting all sensor
data to a fusion center at all times. On the other hand,
the distributed DAE algorithm requires only sparse local
communication among the CAs at each step, and achieves the
performance of a centralized estimator asymptotically as long
as the communication network stays connected in the mean.

V. CONCLUSION

In this paper we presented a formalism for distributed state
estimation in the electrical power grid. Under rather weak
assumptions of global observability and connectivity of the
control area communication network, the proposed distributed
adaptive scheme is shown to yield consistent system state
estimates, the convergence rate being optimal in the Fisher
information sense. As such, the proposed approach (1) exploits
in real-time the sensing diversity offered by non-conventional
sensing resources with higher accuracy and faster system
sampling rate; (2) adapts to (stochastic) uncertainties in the
information content of the sensing resources through online
learning in conjunction with the estimation procedure, so as
to effectively combine (fuse) the sensed data from different
sensing methodologies by properly weighting their measure-
ments; and (3) provides pervasive network-wide intelligence to



improve the performance of the local protection units and con-
trollers by appropriately distributing the information process-
ing and communication overhead among the various network
entities. Future research in this direction include generalizing
the above adaptive distributed framework to nonlinear (AC)
models (see also [36]) and dynamic state estimation in the
smart grid.
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[7] M. D. Ilić, J. W. Black, and M. Prica, “Distributed electric power systems
of the future: Institutional and technological drivers for near-optimal
performance,” Elect. Power Syst. Res., vol. 77, no. 9, pp. 1160–1177,
July 2009.

[8] K. Tomsovic, D. Bakken, V. Venkatasubramanian, and A. Bose, “De-
signing the next generation of real-time control, communication, and
computations for large power systems,” Proc. IEEE, vol. 93, no. 5, pp.
965–979, May 2005.

[9] S. K. Mazumder, K. Acharya, and M. Tahir, “Joint optimization of
control performance and network resource utilization in homogeneous
power networks,” IEEE Trans. Ind. Electron, vol. 56, no. 5, pp. 1736–
1745, May 2009.

[10] S. M. Amin and B. F. Wollenberg, “Toward a smart grid: power delivery
for the 21st century,” IEEE Power and Energy Magazine, vol. 3, no. 5,
pp. 34 – 41, Sept. 2005.

[11] A. Bose, “Smart transmission grid applications and their supporting
infrastructure,” IEEE Transactions on Smart Grids, vol. 1, no. 1, pp.
11–19, June 2010.

[12] F. F. Wu, K. Moslehi, and A. Bose, “Power system control centers:
Past, present, and future,” Proceedings of the IEEE, vol. 93, no. 11, pp.
1890–1908, November 2005.

[13] A. Bose, A. Abur, K. Y. K. Poon, and R. Emami, “Implementation issues
for hierarchical state estimators,” PSERC Final Project Report, August
2010.

[14] ISO New England Operating Procedure No. 18, “Metering and
telemetering criteria,” effective Date: June 1, 2010. Revision
No. 10. http://www.iso-ne.com/rules proceds/operating/isone/op18/
op18 rto final.pdf. [Online]. Available: http://www.iso-ne.com/rules
proceds/operating/isone/op18/op18 rto final.pdf

[15] R. F. Nuqui and A. G. Phadke, “Phasor measurement unit placement
techniques for complete and incomplete observability,” IEEE Transac-
tions on Power Systems, vol. 20, no. 4, pp. 2381 – 2388, 2005.

[16] IEEE Standard Definition, Specification and Analysis of Systems Used
for Supervisory Control, Data Acquisition, and Automatic Control.
IEEE Std. C37.1.1994, 1994.

[17] J. D. McDonald, Electric Power Substation Engineering. Boca Raton,
FL: CRC Press, 2003.

[18] K. Brand, V. Lohmann, and W. Wimmer, Substation Automation
Handbook. Bremgarten, Switzerland: Utility Automation Consulting
Lohmann, 2003.

[19] F. C. Schweppe, J. Wildes, and A. Bose, “Power system static state
estimation, parts I, II and III,” IEEE Trans. on Power Apparatus and
Systems, vol. 89, no. 1, pp. 120–135, January 1970.

[20] A. Monticelli, “Electric power system state estimation,” Proceedings of
the IEEE, vol. 88, no. 2, pp. 262 – 282, Feb. 2000.

[21] E. Handschin, F. C. Schweppe, J. Kohlas, and A. Fiechter, “Bad data
analysis for power system state estimation,” IEEE Transactions on Power
Apparatus and Systems, vol. 94, no. 2, pp. 329–337, April 1975.

[22] A. Monticelli, F. F. Wu, and M. Yen, “Mutiple bad data identification
for state estimation by combinatorial optimization,” IEEE Transactions
on Power Delivery, vol. 1, no. 3, pp. 361 – 369, July 1986.

[23] North American Electric Reliability Corporation, “Real-
time application of synchrophasors for improving re-
liability,” May 2010, http://www.nerc.com/docs/oc/rapirtf/Rapir
final-report-Aug-2010-lc.pdf. [Online]. Available: http://www.nerc.
com/docs/oc/rapirtf/Rapir final-report-Aug-2010-lc.pdf

[24] H. J. Koglin, T. Neisius, G. Beibler, and K. D. Schmitt, “Bad data
detection and identification,” International Journal of Electrical Power
and Energy Systems, vol. 12, no. 2, pp. 94–103, April 1990.

[25] L. Mili, T. V. Cutsem, and M. Ribbens-Pavella, “Hypothesis testing
identification: A new method for bad data analysis in power system
state estimation,” IEEE Trans. Power App. Syst., vol. PAS-103, no. 11,
p. 32393252, Nov. 1984.

[26] F. R. K. Chung, Spectral Graph Theory. Providence, RI : American
Mathematical Society, 1997.

[27] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip
algorithms,” IEEE/ACM Trans. Netw., vol. 14, no. SI, pp. 2508–2530,
2006.

[28] S. Tatikonda and S. Mitter, “Control under communication constraints,”
IEEE Transactions on Automatic Control, vol. 49, no. 7, pp. 1056 –
1068, July 2004.

[29] A. Matveev and A. Savkin, “The problem of state estimation via asyn-
chronous communication channels with irregular transmission times,”
IEEE Transactions on Automatic Control, vol. 48, no. 4, pp. 670–676,
April 2006.

[30] K. Li and J. Baillieul, “Robust and efficient quantization and coding for
control of multidimensional linear systems under data rate constraints,”
International Journal of Robust and Nonlinear Control Special Issue:
Communicating-Agent Networks, vol. 17, no. 10-11, pp. 898–920, July
2007.

[31] L.M. Le Cam and G.L. Yang, Asymptotics in statistics: some basic
concepts. New York: Springer-Verlag Inc., 2000.

[32] R. I. Jennrich, “Asymptotic properties of non-linear least squares estima-
tors,” The Annals of Mathematical Statistics, vol. 40, no. 2, pp. 633–643,
1969.

[33] S. Kar and J. M. F. Moura, “Convergence rate analysis of distributed
gossip (linear parameter) estimation: Fundamental limits and tradeoffs,”
IEEE Journal of Selected Topics in Signal Processing Signal Processing
in Gossiping Algorithms Design and Applications, vol. 5, no. 4, pp. 674–
690, August 2011.

[34] M. Nevel’son and R. Has’minskii, Stochastic Approximation and Recur-
sive Estimation. Providence, Rhode Island: American Mathematical
Society, 1973.

[35] S. Kar, J. Moura, and H. Poor, “Distributed linear parameter estimation:
asymptotically efficient adaptive strategies,” 2011, submitted to the
SIAM J. Control Optim., Initial Submission: Sept. 2011. http://arxiv.
org/abs/1109.4960.

[36] S. Kar, J. Moura, and K. Ramanan, “Distributed parameter estimation
in sensor networks: nonlinear observation models and imperfect com-
munication,” IEEE Transactions on Information Theory, vol. 58, no. 6,
pp. 3575–3605, June 2012.


