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Abstract—People’s behaviors are usually dictated by their
surroundings. The surrounding environment affects the character
and disposition of the people within it. The goal of our work
is to automatically recognize the type of environments one
is in. In this paper, we introduce a hierarchical structure to
recognize environments using the surrounding audio. We can use
this structure to discover high-level representations for different
acoustic environments in a data-driven fashion. Being able to
perform such function would allow us to better understand
how we could utilize such information to assist in predicting a
person’s emotion or behavior. To accurately make an informative
decision about behaviors or emotions, it is important to have the
ability to differentiate between different types of environments.
Environmental sound contains large variances even within a
single environment and is constantly changing. These changes
and events are dynamic and inconsistent. The goal is to come
up with models that is robust enough to generalize to different
situations. Learning a hierarchy of sound types would improve
and clarify problems caused by the confusion between multiple
acoustic environments with similar characteristics. We propose a
framework for a composite of deep belief networks (composite-
DBNs) as a way to represent various levels of representations
and to recognize twelve different types of common everyday
environments. Experimental results demonstrate promising per-
formance in improving the state of art recognition for acoustic
environments.

I. INTRODUCTION

There has been recent interest in behavioral informatics,
such as recognizing emotions using acoustic features . For
example, Polzehl et al. exploit both linguistic and acoustic
feature for modeling anger recognition in speech [1] and Busso
et al. uses facial expression and speech to recognize emotions
[2]. People’s general behavior is typically dictated by their
surrounding environments. Therefore, to accurately formulate
an informative prediction about a behavior or emotion, it is
necessary to determine the type of situation that person is in.
For example, if someone is in a business meeting or in a class
room, typical behaviors will be more subdued as compared to
being at the beach or in an amusement park. Our goal is to
investigate the utility of the environmental surroundings and
their influence on people’s behavior. The first step toward this
goal is having the ability to determine the type of environment
one is situated in.

The nature of environment is dynamic and constantly chang-
ing. The difficulty comes as natural environments contain large
variances, even within a single environment, making it difficult

to to build models for. Despite these differences, humans
can distinguish and contextualize them. For example, humans
could easily differentiate between sounds originating from
outside on the streets, inside a restaurant, coffee shop, or train
station, etc. We could mostly agree that it is relatively easy
for us to identify something as a restaurant environment even
when presented with audio recordings of varying restaurant
locations or settings. This implies that there are commonalities
between different locations of the same situation or context.
This work attempts to uncover these commonalities despite the
noise and variance that comes with the changing environment
so that we are able to utilize the surrounding information in a
more tangible manner. If we could learn some commonalities
between certain related environments, then we could use this
information, fusing with other features (e.g. speech or video),
to make a more informative decision by adding another level
of confidence.

The advantage of using audio for recognition is that it is
computationally cheaper to process as compared to video, for
example, being more practical for real-time applications. In
addition, video recordings requires much world knowledge
and their quality is dependent on the lighting and angle of
the video camera. However, realistic environmental sound is
typically noisy and contains similar characteristics between
different environments. Another challenge is that some types
of sounds are perceptually different but the statistical features
are similar (or vice versa). For example, ocean wave and
car crash sound is perceptually different sounding, but the
temporal and spectral features are similar. Two different types
of motors might sound very similar, but the extracted features
are different [3].

In this work, we investigate the use of a richer generative
model based method for acoustic environmental classification
and to discover high-level representations for different acoustic
environments in a data-driven fashion. Specifically, we con-
sider a composite of deep belief networks (DBNs) as a way
to model environmental audio and investigate its applicability
with noisy auditory data for robustness and generalization.

II. CLASSIFICATION OF ACOUSTIC ENVIRONMENT

Natural environmental sounds, in addition to being noisy
and having large amount of variance, have no divisible or
clear structure between different types. These audio requires



representation by complex models, but traditional audio clas-
sifiers still deteriorate dramatically when using realistic en-
vironmental sound that are noisy or have overlapping classes.
Traditional classification methods, like Gaussian mixture mod-
els (GMM) [4] and Hidden Markov Models (HMM) [5], are
commonly used classifiers for audio classification in general.
HMMs have been extensively used in speech and works well
with sounds that change in duration. Since environmental
sounds or general ambient sounds lack such temporal structure
or phonetic structure that speech has, there is no set alphabet
that allows for slices of non-speech sound to be divided into,
making HMM-based methods difficult to implement. Non-
linear classifier like SVM and traditional neural network have
shown to work well for audio classification to discriminate on
non-linear separable classes [6]. However, they do not scale
well to long feature vectors as input and larger number of
classes (e.g. over 10 classes). Since they are not as efficient
as GMMs or HMMs, these non-linear classifiers have been
utilized to a lesser extent.

A. Deep Belief Networks (DBN)

In recent years, there has been a large interest in deep
learning and using neural network with recent introduction
of a fast greedy layer-wise unsupervised learning algorithm
by Hinton et al [7]. DBNs have been applied to music audio
[8] and to learn features for speech recognition [9]. The idea
of using this method is to learn some abstract representations
of the input data in a layer-wise fashion using unsupervised
learning, which then can be used as input for supervised
learning in tasks such as classification and regression.

DBN is a neural network constructed from multiple layers of
Restricted Boltzmann Machines (RBMs). A RBM is a bipartite
graph composed of a layer of stochastic visible units v and a
layer of stochastic hidden unit h. Many RBMs can be stacked
on top of each other by linking the hidden layer of one RBM
to the visible layer of the next RBM, forming a multilayer
neural network. Previously, traditional neural network were
trained using gradient descent. Using gradient descent, how-
ever, makes neural networks difficult or impossible to train.
Hinton proposes a greedy layer-wise unsupervised pre-training
phase, which in [7, 10] showed that this unsupervised pre-
training builds a representation from which made it possible
to perform supervised learning by fine-tuning the resulting
weights using gradient descent learning (similar to traditional
neural network learning). In other words, the unsupervised
stage sets the weights of the network to be closer to a good
solution than random initialization, thus avoiding local minima
which made occur when using supervised gradient descent.

The DBN is trained in two phases. The pre-training phase
considers each layer (an RBM) separately and trains layers
closest to the input layer first. It takes the output of the first
layer and use it as input to the next layer, and so forth.
It uses the greedy layer-wise Contrastive Divergence (CD)
pre-training for initializing weights. The overall pre-training
process is repeated several times, layer by layer, obtaining a
hierarchical model in which each layer captures strong high-

order correlations between its input units. This phase allows
the DBN to make use of unlabeled data in an unsupervised
manner. The second phase of training is a supervised, global
fine-tuning phase that is similar to training traditional neural
network training. Gradient descent is used to obtain a fine-
tuning of the parameters for optimal reconstruction of the input
data. For more detailed treatment of DBN, we refer readers to
[7].

III. DBN FOR ENVIRONMENTAL SOUND

A. Experimental Setup

Environment types were chosen so that they are made up
of ambient sounds of a particular environment, composed of
many sound events. We do not consider each constituent sound
event individually, but as many properties of each environment.
We used recordings of natural (unsynthesized) sound clips
obtained from [11]. Our auditory environment types were
chosen so that they are made up mostly of non-speech and non-
music sounds. One could think of it as background noise of a
particular environment, composed of many sound events. The
twelve environment types considered were: 1) Inside casino, 2)
Playground, 3) Nature-nighttime, 4) Nature-daytime, 5) Inside
restaurants, 6) Next to rivers/streams, 7) Train passing, 8)
Inside vehicles, 9) Raining, 10) Street with traffic, 11) Ocean
waves, and 12) Thundering.

The sound clips used are of varying lengths (1-3 minutes
long) and are later processed by dividing them up into 3-
second segments and downsampled to 22050 Hz sampling rate,
mono-channel and 16 bits per sample. Each 3-sec segment
makes up an instance for training/testing. The audio was
analyzed using a rectangular window of 512 points (23.3
msec) with 50% overlap. We represented the audio using
Mel-frequency cepstrum coefficient analysis (MFCC) [5] and
Matching Pursuit (MP)-features [12]. MFCC is the most
common feature representation for audio and has shown to
work relatively well for speech and music, but their per-
formance degrades in the presence of noise. MP-features,
which is a feature extraction method specifically proposed
for environmental sounds [12]. Previous research on audio
features have shown that using MP-features for environmental
sounds proved to be successful in aiding with classification
of unstructured environmental sound. Since MP-features are
discrete values, we discretize MFCCs using equal frequency
discretization method from [13], which resulted with 174-
dimensional feature vector for each data sample. We kept
samples originated from the same source separate from one
another. With this setup, none of the training and test items
originated from the same source. Since the recordings were
taken from a wide variety of locations, the ambient sound
might have a very high variance. The only preprocessing
we performed on the data was verifying that they were not
saturated and to remove the silent parts from beginning and
end of the files. The data used consisted of two different
sets: Set A: Samples were selected so that they are more
homogeneous within each type of environment. The samples



Fig. 1. Configuration of DBN used

are also enforced so that each type of sound tend to be distinc-
tively sounding different from one another, which minimized
overlaps as much as possible. Each environment contained
at least four separate source recordings, and segments from
the same source file were considered a batch. We use three
batches for training and one batch for testing, which leads us
to perform a 4-fold cross validation for the features. There
are around 10-15 files for each environment. Set B: Samples
that are related to the same environment types as in Set A,
but more diverse sounds of the same class . There are no
restrictions on the data, like homogeneity within each class or
minimal overlap between types.

We use a DBN with three hidden layers with 100 hidden
units for the first and second layers and 450 hidden units for
the third layer. The input layer consists of 174 units which
corresponds to the dimension of the feature vector and 12
output units for the number of target classes. We use a learning
rate of 0.1. A schematic representation is given in Fig. 1.

B. Classification

To analyze the performance of DBN for environmental
sounds, we experimented with various settings and compared
the results to those obtained by using GMM. For GMM clas-
sifiers, we use 5 mixtures throughout all of our experiments.
Note that it is possible to tailor the number of mixtures to each
class of data. The improvement has shown to be negligible but
will cause the classifier to be specialized to the training data.
Therefore, we decided to just use a set number of mixtures
throughout all of our experiments.

We compared results on classification of: 1) using only Set
A and 2) using both Set A and B The results are shown in
Table I.

As expected, the more complex DBN model perform
slightly better than GMM. We can see that when we included
Set B, it increased the classification accuracy of the DBN, but
the opposite occurred in the case with using GMM. It has
difficulties handling the extra data.

TABLE I
CLASSIFICATION ACCURACIES COMPARING DBN AND GMM (IN %)

Data set used DBN GMM
A 67.9 64.8
A + B 79.6 41.7

When including the more diverse training data Set B to the
DBN method, the performance improved for eight classes,
but reduced the results in three classes, ranging from 5-
23%. The improvement was most significant for Near river
from 10% to 95% and for restaurant from 20% to 87.5%.
For GMM, the performances of casino, nature nighttime and
Ocean waves were reduced to 0%. The misclassifications
seem to gravitate toward classes Near river, On vehicle, and
Raining. The bias might be deduced from the characteristics of
these three classes being somewhat more constant and homo-
geneous sounding, particularly for Near river and Raining. The
resulting classification GMM are biased toward classifying the
test data into them, as compared to models that are more
diverse.

Using A and B for training provide better performance
overall for using DBN. By introducing variability into the data,
the performance for certain classes might slightly degrade, but
is limited. The increase in the recognition ability for other
classes outweighs the amount that has decreased. Even when
introducing additional information that might be noisy, DBNs
performance does not suffer as much and less dramatic than
GMM.

IV. COMPOSITE-DBNS

Learning a hierarchy of sound types could improve and
clarify problems caused by the confusion of an acoustic envi-
ronment with similar characteristics. For example, a restaurant
and a shopping mall, both shared characteristics of being
indoors and in a crowd with people talking, but the restaurant
contains clanking of utensils, whereas in a mall setting,
there are footsteps and shuffling of feet. The use of suitable
hierarchies would also allow us to assign confusing samples
to more practical and general classes. For example, we could
group Near river and Raining into fluidic type and place
Restaurant and Casino into an indoor-crowd type. It allows
environments to be grouped together using the heuristic that a
good grouping of the two classes would minimize the number
of misclassified.

To automatically build this hierarchy of DBNs in some opti-
mal way, we investigate on learning audio structural models for
the general environments utilizing a hierarchy of sound types.
DBN actually supplies us with a simple method to accomplish
this.

The idea is to utilize the combination of activations between
the last hidden layer and each of the target output units of a
trained DBN. Let us consider the experiment with the same
set up as in Sec. III. After the DBN is trained, each target unit
would be equipped with a set of activations. Using these acti-
vations as features, we calculate the pairwise distance between
pairs of activation set for each environment type using cosine
similarity measure. From there, we generated a hierarchical



Fig. 2. Dendrogram using hierarchical clustering with cosine similarity mea-
sure, based on activations of a trained 12-class DBN (distance along the y-axis
depicts their measure of similarity)

Fig. 3. Dendrogram using hierarchical clustering with cosine similarity mea-
sure using MP-features and MFCC directly (without using DBN).

clustering from the resulting pairwise distances using averaged
linkage for the hierarchical structure of environment types. A
dendrogram from the result is depicted in Fig 2

A composite DBN framework was built based on the results
provided by the hierarchical clustering of the activations found
from the 12-class classification in Sec. III-B This composite
DBN yielded an average of 91.9%. To the best of our knowl-
edge, this is a significant improvement on classification over
previous proposed methods discriminating this many different
types of general environmental sounds.

As a baseline for comparison, we eliminated the DBN step
and obtain a hierarchical clustering founded from using only
the basic audio features (MP-features and MFCCs) that was
used for training the DBNs. For the distance measure, we
also used cosine similarity and averaged linkage to generate
the clusters. Using the average of each cluster, we obtain a
dendrogram to illustrate the distances between each class, as
depicted in Fig. 3. We can observe that the dendrogram created
is unevenly branched, meaning that the clusters are considered
to be very similar to each other, thus making it difficult to

separate and permit the branches to be distributed more widely.
The high level grouping of the classes are grouped together
more acoustically sounding. For example Ocean might be
closer to Thundering due to the crashing sound and both Train
and Nature-nighttime have high frequency periodic sounds. For
comparison, a composite DBN was also created based on these
results Fig. 3, which yields an average classification accuracy
of 51.76%.

V. CONCLUSIONS AND FUTURE WORK

This paper proposes a framework for generative modeling
of environmental sound using DBN in a hierarchal structure.
Our framework demonstrates the ability to model different
environmental sound types despite overlapping and noisy data.
Experimental results demonstrate promising performance in
improving the state of art recognition for audio environments.
It is encouraging that we could utilize more unrestrictive data
to improve generalization.

The use of additional information of a person’s surrounding
environment would increase the performance in multimodal
emotion recognition. Learning a hierarchical structure of sound
types would alleviate the confusion between multiple acoustic
environments with similar characteristics. We can develop
multimodal fusion models to include, for example, speech and
knowledge of the environment. Utilizing additional informa-
tion about the environment would allow us to make a more
informative decision by adding another level of confidence in
any automatic recognition process.
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