
Design of a pitch quantization and pitch correction
system for real-time music effects signal processing

Corey Cheng*†
*Massachusetts Institute of Technology, 617-253-2268, coreyc@mit.edu

†EconoSonoMetrics, LLC, coreyicheng@gmail.com

Abstract— This paper describes the design of a practical, real-
time pitch quantization system intended for digital musical
effects signal processing. Like most modern pitch quantizers, this
system can be used to pitch correct and even reharmonize out-of-
tune singing to alternative musical scales simultaneously (e.g.
major, minor, diminished, etc.) Pitch Quantization can also be
intentionally exaggerated to produce distinctive effects
processing which results in an emotionally inflected and/or
“robotic” sound. This system uses intentionally simple signal
processing algorithms which make real-time processing possible
on constrained devices. In particular, we employ tools such as an
octave resolver and range limiter, grain boundary expansion and
contraction, and transient detection to enhance the performance
of our system.

I. INTRODUCTION

Pitch quantization is an audio resynthesis technique which
alters a harmonic signal’s fundamental frequency f0 so that its
resynthesized f0 is chosen from a finite set of frequencies. In a
typical musical application, pitch quantizers operate on vocal
signals in which singing is slightly out-of-tune. By first
estimating f0 and then resynthesizing the singing so that the
new f0 lies in, say, a known diatonic major or minor scale, an
audio engineer can correct a singer’s pitch.

In addition to this very practical use whose aim is to
produce a certain transparency in audio, creative applications
of pitch quantizers can create special musical effects or serve
different musical functions, such as pitch shifting /
transposing vocals to higher or lower registers; reharmonizing
vocals according to a new musical key from major to minor or
diminished scales, etc. In addition, recent popular musics
exaggerate the use of pitch quantizers to produce a very
fashionable “robotic” vocal effect, popularized by artists such
as Cher and T-Pain. Some current pitch quantization
programs are the Antares “Autotune,” Celemony “Melodyne,”
and Smule “I Am T-Pain” products[1][2][3].

In general, pitch quantizers work by first estimating the
fundamental frequency f0 in a small segment of audio and
then resynthesizing that segment of audio according to a new
f0. In this sense, pitch quantizers rely heavily on frequency
estimation and pitch period estimation, and these processes
comprise the most important part of a pitch quantizer.
Because pitch quantizers make use of this estimation, they are
also closely related to time compression and expansion
systems, which usually exploit these estimates to resynthesize
the original segments with different lengths [4][5][8][9].
Frequency and pitch period estimation are well-developed and

can be done with a myriad of different time- and frequency-
domain methods, some of which have become very intricate.
These estimators are at the heart of many other sophisticated
musical signal processing techniques such as music
transcription, multiple fundamental tracking, and source
separation [6][8].

However, the purpose of this paper is to show how some
very simple, low-complexity methods can be used to create a
practical pitch quantization system which can produce pitch
corrected, pitch shifted, and/or reharmonized audio with
quality approaching currently available commercial methods.
With some careful tuning “tricks” we show that more
complex methods are unnecessary, and that these simpler
methods can produce a system suitable for real-time
implementation on resource constrained devices.

II. SYSTEM DESIGN

A. Requirements
We designed and implemented a pitch quantization system

which accomplishes pitch correction, pitch shifting, and pitch
reharmonization according to an arbitrary musical scale, such
as diatonic major or minor scales, microtonal scales, just
intoned / Pythagorean scales, etc. The system produces the
exaggerated “robotic” voice effect described above. It
operates in real time for 44.1kHz and 8.0 kHz 16-bit mono
audio on a mobile device (iPhone 3GS), and has a reasonably
low latency of about 20-40ms in order to produce real-time
pitch correction without unduly disturbing a performing
vocalist. Because the system will primarily operate on singing
speech, it preserves the sound quality of transients in certain
speech sounds like fricatives and plosives. It is robust enough
to handle inexperienced users’ inadvertent speech input, such
as half-voiced speech, laughing, and low-signal level input. In
terms of code complexity, both MATLAB and C/C++
prototypes were implemented in two months by a single
programmer, and produced audio quality comparable to
commercially available software.

B. Design
Based on these constraints and some key observations, we
designed and implemented the pitch quantization system in
Figure 1. The system divides input audio into three non-
overlapping blocks of L=1024(256) samples at 44.1 kHz
(8kHz), producing an ideal latency of one frame, or 23.2ms
(32ms). Fast autocorrelation methods, similar to those used in
[11], determine the dominant pitch period pp, in samples, in a

Figure 1. Block diagram of proposed pitch quantizer.

limited subset of these three windows’ samples. The
quantization block chooses a new pitch period pp’ from a
lookup table comprised of pitch periods corresponding to the
notes of a specific musical scale. Next, the system employs a
popular time-domain speech resynthesis technique, pitch-
synchronous overlap- add (PSOLA), shown in in Figure 2.
Using this method, individual grains of sound having length
approximately pp’ (samples) are extracted from the middle
input window at regular intervals of pp, and are replaced in
the output frame buffer at regular intervals corresponding to
pp’. The middle frame is then sent to the output, resulting in
the single frame latency, and is saved for the next frame’s
processing.

This system is similar to one of the pitch correction
methods in [9], but employs some additional enhancements to
increase its performance, which we discuss next.

C. Enhancements to pitch period estimation
One key observation in designing this system is to realize

that potentially the most complicated part of the quantizer, the
pitch period estimator, does not have to be extremely accurate,
and thus can be greatly simplified. One reason is that the
quantizer will only need to choose a pitch period from those
corresponding to a musical scale having relatively few pitches
spaced far apart in frequency. Another reason is that
quantized pitch periods do not have to be exactly time
synchronized with true pitch periods. Restricting the
quantized pitch period to change only under certain
circumstances, in a slightly delayed manner, can stabilize the
output and also produce good artistic results. In fact, this is
exactly how a pitch quantizer produces the currently
fashionable “robotic” voice effect. To be clear, building

hysteresis into the change from one frame’s pp’ to another
does not increase the system latency at all; however, delaying
the change in pp’ for not only one but perhaps several frames
can be used to good practical and artistic effect. For these
reasons, we choose the simple autocorrelation method of pitch
period estimation, especially since pitch periods can be read
directly off of autocorrelation records. Thus, even though true
pitch f0 can change significantly in a single frame, the system
only has to produce pitch period estimates accurate to 50-100
cents in pitch for diatonic scales, and synchronized to within
40-60ms of true pitch.

Nonetheless, pitch period estimates need to be accurate
enough to resolve higher frequencies, where pitch periods
which differ by only a few samples can differ significantly in
corresponding frequency and pitch class. These estimators
also need to be able to detect frequencies in the low male
range. When dealing with low pitches, the larger the
autocorrelation window size, the more computational power is
required, but the lower the pitch can be detected. The naïve
solution is to increase the length L of all of the analysis
windows and to use the longest possible autocorrelation
analysis window of 3L. However, this significantly increases
the system latency and computational burden. We employ a
simple solution which decouples the input audio frames from
the autocorrelation window. We use a variable autocorrelation
window size, nominally 2L samples, centered around the
second input audio frame. In this manner, we sacrifice a
slightly larger computational burden for some increase in low
frequency performance, while keeping the system latency the
same, at L samples. This scheme is shown in Figure 2.

a)

b)

Figure 2. PSOLA-based based pitch quantization. Figure 2a (Figure 2b) shows pitch shifting upwards (downwards) to a target
pitch period pp’ using an initial pitch period estimate of pp. Grains of audio extracted from the input frames are truncated
(enlongated) on either side before insertion into the output frame if more than three grains overlap at any given point (if silence
would result in using non-enlogated grains).

Another enhancement we introduce to improve sound

quality is an octave resolver and an intervallic range limiter.
First, we limit the allowed change of quantized pitch period
estimates to a major tenth upward and downward from one
frame to the next, since it is highly unusual for most singers to
make this change within 32ms, the maximum frame size of
the current system.

Next, we use an octave resolver to remove octave
ambiguities in some frames. It is well known that for certain
signals, peaks in the autocorrelation function with similar
strengths can occur at lags corresponding to octaves above or
below the true fundamental. For example, the transition from
glottal to harmonic sounds in the same frame of audio can
produce these types of octave ambiguities in the
autocorrelation function.

We use the following simple scheme to determine whether
an octave error has occurred. While the two components of

this algorithm are both imperfect and quite simple when used
alone, their joint use produces surprisingly good results:

1. Limit the range of intervallic change from pp in the
current frame to pp’ in the previous frame. If pp’ differs
from pp by a musical interval larger than a major 10th,
ignore the current frame’s pp and use pp’ from the
previous frame instead. Goto step 5.

2. Retain the ordinates of the strongest three peaks from a
simple peak picker operating on the autocorrelation
function of the current frame.

3. If:
a. the strongest peak in a frame is not higher than the

next highest peak by a certain percentage, or
clearance; and if

b. all three peaks in the current frame are in octave
relationships to within a certain hysteresis; and

c. if the autocorrelation function from the previous frame
produced a quantized pitch period estimate pp’ in the
same pitch class but in a different octave than the
strongest peak in step a; then

d. an octave error has occurred.
4. If an octave error has occurred in step 3, then ignore the

pitch period estimate pp of the current frame and use the
same quantized pitch period estimate pp’ of the previous
frame in the PSOLA resynthesis of the current frame.

5. Complete the rest of the PSOLA resynthesis using the
chosen pp’.

D. Enhancements to PSOLA-based resynthesis
Another key observation is that time-domain speech

resynthesis methods such as PSOLA preserve the fine time-
domain structure of transient signals very well. We choose not
to use popular frequency domain techniques like the phase
vocoder for this reason, since more complicated tools are
needed to handle transients and to avoid some “phasy”
resynthesis artifacts [7].

As shown in Figure 2, the basic PSOLA algorithm
reorganizes windowed grains of input sound originally
regularly spaced at intervals of pp into the output frame at
regularly spaced intervals of pp’. The input grains have length
2pp’, and the difference between pp and pp’ determines the
amount of overlap. If pp<pp’, the resulting audio is shifted
downwards to the next quantized pitch level, and vice-versa.
If pp=pp’, there is a 50% overlap in the grains in the output
frame, the resynthesis essentially produces no pitch change,
and the output and input audio sound largely the same even
though the waveforms are slightly different.

While time domain processing is fast and simple, there are
some important details to implement in order to produce good
sounding audio. For example, when pp>>pp’, pitch is shifted
upwards by a large amount. In this case, several grains can
overlap at any one instant in time, producing an unwanted
comb filtering, flangy effect. To avoid this, The grains of
audio in Figure 2a are reduced in size from 2pp’, one sample
at a time from the left and right sides, until only a maximum
of three grains overlap. Similarly, when pp<<pp’, pitch is
shifted downwards by a large amount, and the grains of sound
can be placed so far apart in the output that there is silence
between them. This can cause an unnatural, pulsed glottal
effect – a usually undesirable effect for transparent audio but
which we note can be an interesting artificial effect in some
cases. To avoid this in the current implementation, the grains
of audio in Figure 2b are augmented one sample at a time on
either end past a total length of 2pp’ so as to avoid silence
between grains. An important wrinkle in this scheme is that
there need to be enough samples in the three available input
windows to allow for grain expansion at low frequencies, and
this requirement can further restrict pp to have a lower than
originally designed upper bound.

We also investigated a number of other PSOLA parameters,
but in the interest of both simplicity and sound quality, we left
these parameters out. For example, there is some debate as to
whether the grains should be taken (replaced) at regular or

irregular intervals in the input (output) frames. Some PSOLA
systems are careful to extract grains from the input so as to
align as best as possible from grain to grain certain time-
domain features, such as waveform peaks or zero-crossing
locations. To this extent, we tried using an intelligent grain
selection system to observe these parameters. However, we
found that irregularly taken (replaced) and/or feature-aligned
grains produced an unstable, inconsistent wavering output at
the cost of a large mount of computing power.

E. Enhancements to transient performance
Another key observation is that the time-domain nature of

PSOLA resynthesis preserves the sound quality of transient
speech sounds such as fricatives and plosives better than other
methods. While this is another reason we choose to use
PSOLA resynthesis, these sounds need to be handled
correctly in a pitch shifting application. Changing the
quantized pitch period pp’ abruptly in frames near transients
can produce undesirable artifacts such as scratches and clicks
due to a changing grain overlap percentage in these frames.
Therefore, what is needed is a way to essentially turn off the
entire pitch quantization system in these frames, so that these
transients are simply passed through unaltered to the output.

We use a simple transient detector constructed from a zero-
crossing detector to determine whether or not a transient is
present in the current frame. If the number of zero crossings is
high, we declare a transient is in the current frame, and
artificially set the estimated pitch period pp for the current
frame to the quantized pitch period pp’ in the previous frame,
ignoring the current frame’s actual estimate of pp. By forcing
pp=pp’, the input audio is effectively passed to the output
without pitch correction, as explained in the previous section.
In this manner, the transient is left intact and unprocessed.
This tactic works because this reconstruction property does
not rely on the exact value of pp’.

F. Pitch period quantizer
The actual pitch quantizer block in Figure 2 is very basic,

and consists only of a comparator and a lookup table which
holds the pre-computed pitch periods of a known and desired
scale. The lookup table simply contains pitch periods
corresponding to notes from the scale’s predetermined
reference pitch such as A4=440 Hz. Nonetheless, this block
produces many different musical effects by changing how the
comparator works and maps pp to the pp’ values in the lookup
table. Inclusion of hysteresis to the comparator adds
robustness and stabilizes the audio output, while using
always-round-up or round-down strategies can produce an
intermittent, inflected diatonic sharpening or flattening effect
while still keeping the singer in tune with a particular scale.
The quantization block also implements transposition effects
by mapping pp’ to another table entry a fixed number of scale
degrees higher or lower. Finally, the quantization block can
also reharmonize vocals on the fly by using a lookup table
with pitch periods derived from the desired scale. For
example, using a major scale lookup table with vocals sung in
the parallel minor key will force the resynthesized output to
be in the major mode.

Figure 3. Pitch quantizer used for reharmonization of Suzanne Vega’s “Tom’s Diner” from minor to major mode.

Figure 4. Pitch quantizer used for pitch correction of Ne-Yo’s “So Sick.”

III. EXAMPLES

Figure 3 gives an example of how the pitch quantizer can
be used to reharmonize vocals from a minor to a major mode.
The source audio is the beginning to a well-known pop song
by Suzanne Vega called “Tom’s Diner.” In this example, the
syllables “sit”; “morn”; “dine”; and “corn” are all sung on the
pitch “A”, the third degree of the F# natural minor scale, a

minor third above F#. The pitch quantizer can be used to
convert the syllables above to sound at A#, one semitone
higher, so that the segment sounds as if it is in the key of F#
major. Figure 3 shows how the raw pitch period estimates are
mapped to quantized pitch periods which lie in the F# major
scale. This figure also shows how zero crossings increase near
some fricatives, such as the beginning of the syllable “sit,”
and force the pitch quantizer to turn off near those areas.

Figure 4 gives another example of the pitch quantizer. This
excerpt is from another pop song by Ne-Yo called “So Sick.”
This longer excerpt shows how out of tune vocals can be
fixed, and gives more extensive examples where the zero
crossing transient detector forces the pitch quantizer off.

While we did not conduct formal listening tests, we
informally compared our system to the output from the
Antares Autotune product line, and the found that the two
systems produced comparable results. Interested readers are
welcome to contact the author for sound examples.

IV. SHORTCOMINGS AND ROOM FOR IMPROVEMENT

Our system can be improved in a number of ways. The
pitch period detector can be fooled by gutteral sounds like /g/,
and the octave resolver is not perfect in all cases. The limited
size of the autocorrelation analysis window in Figure 2 places
a lower bound on detected frequencies which is not often low
enough for deep male voices. Also, pitch periods in our
system are only allowed to be whole number of samples. This
causes some problems at high frequencies, where very short
pitch periods cannot exactly match the resolution required by
scale notes in the upper registers. The problem is most
pronounced for high female singers at the lower operating
sampling rate of 8kHz.

Although the ideal latency is one frame in the current
implementation, we note that overall latency of a production
system is highly dependent on the underlying hardware and
driver set of a given platform. So, while our system has an
idea latency of one frame, we have noted a higher actual
latency on different platforms. This prototype has been
implemented for iOS running on the iPhone 3GS, for Apple
OSX using the Core Audio framework as an Audio Unit, for
Apple OSX using the PortAudio API, and for a Ubuntu 12.04
(embedded linux) platform on the Beagleboard XM using the
ALSA driver set and JACK audio framework. Each of these
systems handles hardware latency in different ways, and each
adds a minimum of one to three more frames of latency to the
overall signal path.

Notwithstanding extra platform-dependent latency, we note
that the ideal latency of our system can be made considerably
lower than one frame by using a time-domain pitch period
detector which operates directly on the time domain
waveform. These methods require only a few pitch periods for
their computations, as opposed to requiring autocorrelation
functions computed from a full frame of samples. In fact, we
first experimented with the methods given in [10] and [12]
and found them to be extremely fast and efficient. However,
these methods require careful tuning and can be hard to
control, so we opted for the currently implemented
autocorrelation technique.

The logic relating different components of the system can
be difficult and complex. For example, different combinations
of exceptions occurring at the same time can be difficult to
handle. Octave confusion, low signal power, and the
occurrence autocorrelation functions without strong peaks can
happen in combination, and care must be taken to handle
these cases in a reasonable manner.

The quantization block in Figure 2 is not fully automatic.
This is because its block’s lookup table must be constructed
from a predetermined reference pitch, such as defining
A4=440 Hz. A fully automatic system would determine the
reference pitch automatically.

V. CONCLUSION

This paper introduced a practical pitch quantization system
using simple signal processing algorithms. The system
exploits the time-domain nature of the PSOLA algorithm to
preserve transient quality, and uses other tools like an octave
resolver and grain boundary expansion and contraction to
improve sound quality. We have implemented this system to
produce a pitch correction system comparable to other
commercially available products, and we look forward to
continuing to port our algorithm to other platforms, such as
imbedded and newer mobile devices.

REFERENCES

[1] “Autotune” application from Antares. Website:
http://www.antarestech.com/products/auto-tune-7.shtml

[2] “Melodyne” application from Celemony. Website:
http://www.celemony.com/cms/index.php?id=products_editor

[3] “I Am T-Pain” iPhone application from Smule Corp. Website:
http://iamtpain.smule.com/

[4] Crockett, Brett G. “High quality multi-channel time-scaling and
pitch-shifting using auditory scene analysis.” New York: 115th
Audio Engineering Society Convention, Paper 5948, 2003.

[5] James, Nichols. “An Interactive Pitch Defect Correction System
For Archival Audio.” Budapest, Hungary: 20th International
Audio Engineering Society Conference: Archiving, Restoration,
and New Methods of Recording, 2001.

[6] Klapuri, Anssi P. “Multiple Fundamental Frequency Estimation
Based on Harmonicity and Spectral Smoothness.” IEEE
Transactions on Speech and Audio Processing, vol. 11 no. 6,
November 2003.

[7] Laroche, J. “Phase vocoder: about this phasiness business.”
New Paltz, NY: 1997 ASSP Workshop on Applications of Signal
Processing to Audio and Acoustics (WASPAA).

[8] Laroche, Jean and Dolson, Mark. “New phase-vocoder
techniques for pitch-shifting, harmonizing and other exotic
effects.” New Paltz, New York: 1999 Workshop on Applications
of Signal Processing to Audio and Acoustics (WASPAA).

[9] Lech, M. and Kostek, B. “A system for automatic detection and
correction of detuned singing.” Paris: Acoustics ’08, European
Acoustics Association.

[10] Rabiner, Lawrence and Shafer, Ronald. Digital Processing of
Speech Signals. New York: Prentice Hall, 1978.

[11] Verhelst, W. and Roelands, Marc. “An overlap-add technique
based on waveform similarity (WSOLA) for high quality time-
scale modification of speech.” Minneapolis: 1993 International
Conference on Acoustics, Speech, and Signal Processing
(ICASSP).

[12] Zölzer, Udo (ed.). DAFX – Digital Audio Effects. West Sussex,
England: John Wiley & Sons, 2002.

