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Abstract— This paper describes the design of a practical, real-
time pitch quantization system intended for digital musical 
effects signal processing. Like most modern pitch quantizers, this 
system can be used to pitch correct and even reharmonize out-of-
tune singing to alternative musical scales simultaneously (e.g. 
major, minor, diminished, etc.) Pitch Quantization can also be 
intentionally exaggerated to produce distinctive effects 
processing which results in an emotionally inflected and/or 
“robotic” sound. This system uses intentionally simple signal 
processing algorithms which make real-time processing possible 
on constrained devices. In particular, we employ tools such as an 
octave resolver and range limiter, grain boundary expansion and 
contraction, and transient detection to enhance the performance 
of our system. 

I. INTRODUCTION 

Pitch quantization is an audio resynthesis technique which 
alters a harmonic signal’s fundamental frequency f0 so that its 
resynthesized f0 is chosen from a finite set of frequencies. In a 
typical musical application, pitch quantizers operate on vocal 
signals in which singing is slightly out-of-tune. By first 
estimating f0 and then resynthesizing the singing so that the 
new f0 lies in, say, a known diatonic major or minor scale, an 
audio engineer can correct a singer’s pitch. 

In addition to this very practical use whose aim is to 
produce a certain transparency in audio, creative applications 
of pitch quantizers can create special musical effects or serve 
different musical functions, such as pitch shifting / 
transposing vocals to higher or lower registers; reharmonizing 
vocals according to a new musical key from major to minor or 
diminished scales, etc. In addition, recent popular musics 
exaggerate the use of pitch quantizers to produce a very 
fashionable “robotic” vocal effect, popularized by artists such 
as Cher and T-Pain. Some current pitch quantization 
programs are the Antares “Autotune,” Celemony “Melodyne,” 
and Smule “I Am T-Pain” products[1][2][3]. 

In general, pitch quantizers work by first estimating the 
fundamental frequency f0 in a small segment of audio and 
then resynthesizing that segment of audio according to a new 
f0. In this sense, pitch quantizers rely heavily on frequency 
estimation and pitch period estimation, and these processes 
comprise the most important part of a pitch quantizer. 
Because pitch quantizers make use of this estimation, they are 
also closely related to time compression and expansion 
systems, which usually exploit these estimates to resynthesize 
the original segments with different lengths [4][5][8][9]. 
Frequency and pitch period estimation are well-developed and 

can be done with a myriad of different time- and frequency-
domain methods, some of which have become very intricate. 
These estimators are at the heart of many other sophisticated 
musical signal processing techniques such as music 
transcription, multiple fundamental tracking, and source 
separation [6][8]. 

However, the purpose of this paper is to show how some 
very simple, low-complexity methods can be used to create a 
practical pitch quantization system which can produce pitch 
corrected, pitch shifted, and/or reharmonized audio with 
quality approaching currently available commercial methods. 
With some careful tuning “tricks” we show that more 
complex methods are unnecessary, and that these simpler 
methods can produce a system suitable for real-time 
implementation on resource constrained devices. 

II. SYSTEM DESIGN 

A. Requirements 
We designed and implemented a pitch quantization system 

which accomplishes pitch correction, pitch shifting, and pitch 
reharmonization according to an arbitrary musical scale, such 
as diatonic major or minor scales, microtonal scales, just 
intoned / Pythagorean scales, etc. The system produces the 
exaggerated “robotic” voice effect described above. It 
operates in real time for 44.1kHz and 8.0 kHz 16-bit mono 
audio on a mobile device (iPhone 3GS), and has a reasonably 
low latency of about 20-40ms in order to produce real-time 
pitch correction without unduly disturbing a performing 
vocalist. Because the system will primarily operate on singing 
speech, it preserves the sound quality of transients in certain 
speech sounds like fricatives and plosives. It is robust enough 
to handle inexperienced users’ inadvertent speech input, such 
as half-voiced speech, laughing, and low-signal level input. In 
terms of code complexity, both MATLAB and C/C++ 
prototypes were implemented in two months by a single 
programmer, and produced audio quality comparable to 
commercially available software. 

B. Design 
Based on these constraints and some key observations, we 
designed and implemented the pitch quantization system in 
Figure 1. The system divides input audio into three non-
overlapping blocks of L=1024(256) samples at 44.1 kHz 
(8kHz), producing an ideal latency of one frame, or 23.2ms 
(32ms). Fast autocorrelation methods, similar to those used in 
[11], determine the dominant pitch period pp, in samples, in a 



 
Figure 1. Block diagram of proposed pitch quantizer. 

 
limited subset of these three windows’ samples. The 
quantization block chooses a new pitch period pp’ from a 
lookup table comprised of pitch periods corresponding to the 
notes of a specific musical scale. Next, the system employs a 
popular time-domain speech resynthesis technique, pitch- 
synchronous overlap- add (PSOLA), shown in in Figure 2. 
Using this method, individual grains of sound having length 
approximately pp’ (samples) are extracted from the middle 
input window at regular intervals of pp, and are replaced in 
the output frame buffer at regular intervals corresponding to 
pp’. The middle frame is then sent to the output, resulting in 
the single frame latency, and is saved for the next frame’s 
processing. 

This system is similar to one of the pitch correction 
methods in [9], but employs some additional enhancements to 
increase its performance, which we discuss next. 

C. Enhancements to pitch period estimation 
One key observation in designing this system is to realize 

that potentially the most complicated part of the quantizer, the 
pitch period estimator, does not have to be extremely accurate, 
and thus can be greatly simplified. One reason is that the 
quantizer will only need to choose a pitch period from those 
corresponding to a musical scale having relatively few pitches 
spaced far apart in frequency. Another reason is that 
quantized pitch periods do not have to be exactly time 
synchronized with true pitch periods. Restricting the 
quantized pitch period to change only under certain 
circumstances, in a slightly delayed manner, can stabilize the 
output and also produce good artistic results. In fact, this is 
exactly how a pitch quantizer produces the currently 
fashionable “robotic” voice effect. To be clear, building 

hysteresis into the change from one frame’s pp’ to another 
does not increase the system latency at all; however, delaying 
the change in pp’ for not only one but perhaps several frames 
can be used to good practical and artistic effect. For these 
reasons, we choose the simple autocorrelation method of pitch 
period estimation, especially since pitch periods can be read 
directly off of autocorrelation records. Thus, even though true 
pitch f0 can change significantly in a single frame, the system 
only has to produce pitch period estimates accurate to 50-100 
cents in pitch for diatonic scales, and synchronized to within 
40-60ms of true pitch. 

Nonetheless, pitch period estimates need to be accurate 
enough to resolve higher frequencies, where pitch periods 
which differ by only a few samples can differ significantly in 
corresponding frequency and pitch class. These estimators 
also need to be able to detect frequencies in the low male 
range. When dealing with low pitches, the larger the 
autocorrelation window size, the more computational power is 
required, but the lower the pitch can be detected. The naïve 
solution is to increase the length L of all of the analysis 
windows and to use the longest possible autocorrelation 
analysis window of 3L. However, this significantly increases 
the system latency and computational burden. We employ a 
simple solution which decouples the input audio frames from 
the autocorrelation window. We use a variable autocorrelation 
window size, nominally 2L samples, centered around the 
second input audio frame. In this manner, we sacrifice a 
slightly larger computational burden for some increase in low 
frequency performance, while keeping the system latency the 
same, at L samples. This scheme is shown in Figure 2. 



a)  

                                 
b)  

 

                                     
Figure 2. PSOLA-based based pitch quantization. Figure 2a (Figure 2b) shows pitch shifting upwards (downwards) to a target 
pitch period pp’ using an initial pitch period estimate of pp. Grains of audio extracted from the input frames are truncated 
(enlongated) on either side before insertion into the output frame if more than three grains overlap at any given point (if silence 
would result in using non-enlogated grains). 

 
Another enhancement we introduce to improve sound 

quality is an octave resolver and an intervallic range limiter. 
First, we limit the allowed change of quantized pitch period 
estimates to a major tenth upward and downward from one 
frame to the next, since it is highly unusual for most singers to 
make this change within 32ms, the maximum frame size of 
the current system.  

Next, we use an octave resolver to remove octave 
ambiguities in some frames. It is well known that for certain 
signals, peaks in the autocorrelation function with similar 
strengths can occur at lags corresponding to octaves above or 
below the true fundamental. For example, the transition from 
glottal to harmonic sounds in the same frame of audio can 
produce these types of octave ambiguities in the 
autocorrelation function.  

We use the following simple scheme to determine whether 
an octave error has occurred. While the two components of 

this algorithm are both imperfect and quite simple when used 
alone, their joint use produces surprisingly good results: 
 

1. Limit the range of intervallic change from pp in the 
current frame to pp’ in the previous frame. If pp’ differs 
from pp by a musical interval larger than a major 10th, 
ignore the current frame’s pp and use pp’ from the 
previous frame instead. Goto step 5. 

2. Retain the ordinates of the strongest three peaks from a 
simple peak picker operating on the autocorrelation 
function of the current frame.  

3. If: 
a. the strongest peak in a frame is not higher than the 

next highest peak by a certain percentage, or 
clearance; and if  

b. all three peaks in the current frame are in octave 
relationships to within a certain hysteresis; and  



c. if the autocorrelation function from the previous frame 
produced a quantized pitch period estimate pp’ in the 
same pitch class but in a different octave than the 
strongest peak in step a; then 

d. an octave error has occurred. 
4. If an octave error has occurred in step 3, then ignore the 

pitch period estimate pp of the current frame and use the 
same quantized pitch period estimate pp’ of the previous 
frame in the PSOLA resynthesis of the current frame. 

5. Complete the rest of the PSOLA resynthesis using the 
chosen pp’. 

  

D. Enhancements to PSOLA-based resynthesis 
Another key observation is that time-domain speech 

resynthesis methods such as PSOLA preserve the fine time-
domain structure of transient signals very well. We choose not 
to use popular frequency domain techniques like the phase 
vocoder for this reason, since more complicated tools are 
needed to handle transients and to avoid some “phasy” 
resynthesis artifacts [7]. 

As shown in Figure 2, the basic PSOLA algorithm 
reorganizes windowed grains of input sound originally 
regularly spaced at intervals of pp into the output frame at 
regularly spaced intervals of pp’. The input grains have length 
2pp’, and the difference between pp and pp’ determines the 
amount of overlap. If pp<pp’, the resulting audio is shifted 
downwards to the next quantized pitch level, and vice-versa. 
If pp=pp’, there is a 50% overlap in the grains in the output 
frame, the resynthesis essentially produces no pitch change, 
and the output and input audio sound largely the same even 
though the waveforms are slightly different. 

While time domain processing is fast and simple, there are 
some important details to implement in order to produce good 
sounding audio. For example, when pp>>pp’, pitch is shifted 
upwards by a large amount. In this case, several grains can 
overlap at any one instant in time, producing an unwanted 
comb filtering, flangy effect. To avoid this, The grains of 
audio in Figure 2a are reduced in size from 2pp’, one sample 
at a time from the left and right sides, until only a maximum 
of three grains overlap. Similarly, when pp<<pp’, pitch is 
shifted downwards by a large amount, and the grains of sound 
can be placed so far apart in the output that there is silence 
between them. This can cause an unnatural, pulsed glottal 
effect – a usually undesirable effect for transparent audio but 
which we note can be an interesting artificial effect in some 
cases. To avoid this in the current implementation, the grains 
of audio in Figure 2b are augmented one sample at a time on 
either end past a total length of 2pp’ so as to avoid silence 
between grains. An important wrinkle in this scheme is that 
there need to be enough samples in the three available input 
windows to allow for grain expansion at low frequencies, and 
this requirement can further restrict pp to have a lower than 
originally designed upper bound. 

We also investigated a number of other PSOLA parameters, 
but in the interest of both simplicity and sound quality, we left 
these parameters out. For example, there is some debate as to 
whether the grains should be taken (replaced) at regular or 

irregular intervals in the input (output) frames. Some PSOLA 
systems are careful to extract grains from the input so as to 
align as best as possible from grain to grain certain time-
domain features, such as waveform peaks or zero-crossing 
locations. To this extent, we tried using an intelligent grain 
selection system to observe these parameters. However, we 
found that irregularly taken (replaced) and/or feature-aligned 
grains produced an unstable, inconsistent wavering output at 
the cost of a large mount of computing power. 

E. Enhancements to transient performance 
Another key observation is that the time-domain nature of 

PSOLA resynthesis preserves the sound quality of transient 
speech sounds such as fricatives and plosives better than other 
methods. While this is another reason we choose to use 
PSOLA resynthesis, these sounds need to be handled 
correctly in a pitch shifting application. Changing the 
quantized pitch period pp’ abruptly in frames near transients 
can produce undesirable artifacts such as scratches and clicks 
due to a changing grain overlap percentage in these frames. 
Therefore, what is needed is a way to essentially turn off the 
entire pitch quantization system in these frames, so that these 
transients are simply passed through unaltered to the output. 

We use a simple transient detector constructed from a zero-
crossing detector to determine whether or not a transient is 
present in the current frame. If the number of zero crossings is 
high, we declare a transient is in the current frame, and 
artificially set the estimated pitch period pp for the current 
frame to the quantized pitch period pp’ in the previous frame, 
ignoring the current frame’s actual estimate of pp. By forcing 
pp=pp’, the input audio is effectively passed to the output 
without pitch correction, as explained in the previous section. 
In this manner, the transient is left intact and unprocessed. 
This tactic works because this reconstruction property does 
not rely on the exact value of pp’. 

F. Pitch period quantizer 
The actual pitch quantizer block in Figure 2 is very basic, 

and consists only of a comparator and a lookup table which 
holds the pre-computed pitch periods of a known and desired 
scale. The lookup table simply contains pitch periods 
corresponding to notes from the scale’s predetermined 
reference pitch such as A4=440 Hz. Nonetheless, this block 
produces many different musical effects by changing how the 
comparator works and maps pp to the pp’ values in the lookup 
table. Inclusion of hysteresis to the comparator adds 
robustness and stabilizes the audio output, while using 
always-round-up or round-down strategies can produce an 
intermittent, inflected diatonic sharpening or flattening effect 
while still keeping the singer in tune with a particular scale. 
The quantization block also implements transposition effects 
by mapping pp’ to another table entry a fixed number of scale 
degrees higher or lower. Finally, the quantization block can 
also reharmonize vocals on the fly by using a lookup table 
with pitch periods derived from the desired scale. For 
example, using a major scale lookup table with vocals sung in 
the parallel minor key will force the resynthesized output to 
be in the major mode. 



                                  
Figure 3. Pitch quantizer used for reharmonization of Suzanne Vega’s “Tom’s Diner” from minor to major mode. 

 

 
Figure 4. Pitch quantizer used for pitch correction of Ne-Yo’s “So Sick.” 

 

III. EXAMPLES 

Figure 3 gives an example of how the pitch quantizer can 
be used to reharmonize vocals from a minor to a major mode. 
The source audio is the beginning to a well-known pop song 
by Suzanne Vega called “Tom’s Diner.” In this example, the 
syllables “sit”; “morn”; “dine”; and “corn” are all sung on the 
pitch “A”, the third degree of the F# natural minor scale, a 

minor third above F#. The pitch quantizer can be used to 
convert the syllables above to sound at A#, one semitone 
higher, so that the segment sounds as if it is in the key of F# 
major. Figure 3 shows how the raw pitch period estimates are 
mapped to quantized pitch periods which lie in the F# major 
scale. This figure also shows how zero crossings increase near 
some fricatives, such as the beginning of the syllable “sit,” 
and force the pitch quantizer to turn off near those areas. 



Figure 4 gives another example of the pitch quantizer. This 
excerpt is from another pop song by Ne-Yo called “So Sick.” 
This longer excerpt shows how out of tune vocals can be 
fixed, and gives more extensive examples where the zero 
crossing transient detector forces the pitch quantizer off. 

While we did not conduct formal listening tests, we 
informally compared our system to the output from the 
Antares Autotune product line, and the found that the two 
systems produced comparable results. Interested readers are 
welcome to contact the author for sound examples. 

IV. SHORTCOMINGS AND ROOM FOR IMPROVEMENT 

Our system can be improved in a number of ways. The 
pitch period detector can be fooled by gutteral sounds like /g/, 
and the octave resolver is not perfect in all cases. The limited 
size of the autocorrelation analysis window in Figure 2 places 
a lower bound on detected frequencies which is not often low 
enough for deep male voices. Also, pitch periods in our 
system are only allowed to be whole number of samples. This 
causes some problems at high frequencies, where very short 
pitch periods cannot exactly match the resolution required by 
scale notes in the upper registers. The problem is most 
pronounced for high female singers at the lower operating 
sampling rate of 8kHz. 

Although the ideal latency is one frame in the current 
implementation, we note that overall latency of a production 
system is highly dependent on the underlying hardware and 
driver set of a given platform. So, while our system has an 
idea latency of one frame, we have noted a higher actual 
latency on different platforms. This prototype has been 
implemented for iOS running on the iPhone 3GS, for Apple 
OSX using the Core Audio framework as an Audio Unit, for 
Apple OSX using the PortAudio API, and for a Ubuntu 12.04 
(embedded linux) platform on the Beagleboard XM using the 
ALSA driver set and JACK audio framework. Each of these 
systems handles hardware latency in different ways, and each 
adds a minimum of one to three more frames of latency to the 
overall signal path. 

Notwithstanding extra platform-dependent latency, we note 
that the ideal latency of our system can be made considerably 
lower than one frame by using a time-domain pitch period 
detector which operates directly on the time domain 
waveform. These methods require only a few pitch periods for 
their computations, as opposed to requiring autocorrelation 
functions computed from a full frame of samples. In fact, we 
first experimented with the methods given in [10] and [12] 
and found them to be extremely fast and efficient. However, 
these methods require careful tuning and can be hard to 
control, so we opted for the currently implemented 
autocorrelation technique. 

The logic relating different components of the system can 
be difficult and complex. For example, different combinations 
of exceptions occurring at the same time can be difficult to 
handle. Octave confusion, low signal power, and the 
occurrence autocorrelation functions without strong peaks can 
happen in combination, and care must be taken to handle 
these cases in a reasonable manner. 

The quantization block in Figure 2 is not fully automatic. 
This is because its block’s lookup table must be constructed 
from a predetermined reference pitch, such as defining 
A4=440 Hz. A fully automatic system would determine the 
reference pitch automatically. 

V. CONCLUSION 

This paper introduced a practical pitch quantization system 
using simple signal processing algorithms. The system 
exploits the time-domain nature of the PSOLA algorithm to 
preserve transient quality, and uses other tools like an octave 
resolver and grain boundary expansion and contraction to 
improve sound quality. We have implemented this system to 
produce a pitch correction system comparable to other 
commercially available products, and we look forward to 
continuing to port our algorithm to other platforms, such as 
imbedded and newer mobile devices. 
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