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Abstract— Many disorders that affect the brain can cause
shape changes in subcortical structures, and these may provide
biomarkers for disease detection and progression. Automatic
tools are needed to accurately identify and characterize these
alterations. In recent work, we developed a surface multivariate
tensor-based morphometry analysis (mTBM) to detect mor-
phological group differences in subcortical structures, and we
applied this method to study HIV/AIDS, William’s syndrome,
Alzheimer’s disease and prematurity. Here we will focus more
specifically on mTBM in neonates, which, in its current form,
starts with manually segmented subcortical structures from MRI
images of a two subject groups, places a conformal grid on each of
their surfaces, registers them to a template through a constrained
harmonic map and provides statistical comparisons between the
two groups, at each vertex of the template grid. We improve
this pipeline in two ways: first by replacing the constrained
harmonic map with a new fluid registration algorithm that we
recently developed. Secondly, by optimizing the pipeline to study
the putamen in newborns.

Our analysis is applied to the comparison of the putamen
in premature and term born neonates. Recent whole-brain
volumetric studies have detected differences in this structure in
babies born preterm. Here we add to the literature on this topic
by zooming in on this structure, and by generating the first
surface-based maps of these changes. To do so, we use a dataset
of manually segmented putamens from T1-weighted brain MR
images from 17 preterm and 18 term-born neonates.

Statistical comparisons between the two groups are performed
via four methods: univariate and multivariate tensor-based
morphometry, the commonly used medial axis distance, and a
combination of the last two statistics. We detect widespread
statistically significant differences in morphology between the two
groups that are consistent across statistics, but more extensive
for multivariate measures.

I. INTRODUCTION

The putamen is affected in a number of disorders of the
central nervous system and in particular, several recent MRI
studies have shown morphological differences in this structure
in neonates and adolescents born preterm. For example, a
whole-brain deformation-based morphometry study [3] found
significant reduction of lentiform nuclei in premature neonates
compared to term-born controls. In addition, using voxel-
based morphometry, [19] detected changes in the putamen in
adolescents born very prematurely.

These studies highlight the need for a more detailed as-
sessment of this structure in premature children. However,

none of the morphometric studies in these subjects to date
has zoomed in specifically on the putamen. In addition, all
studies so far have been volumetric studies, but as shown in
several previous studies (see e.g. [35], [34]) important com-
plementary information may be found through surface-based
analyses. Putamen lesions have been implicated in impaired
visual function in newborn [16]. Given the involvement in the
putamen in disorders such as cerebral palsy that can affect
premature children, and it’s role in various forms of learning,
a more detailed assessment of the effect of prematurity on this
structure is sorely needed.

The contributions of this work are 3-fold. First, we propose
a novel pipeline for group comparisons of the surface anatomy
of the putamen in neonates that involves conformal grid
generation, fluid registration and a multivariate tensor-based
morphometry (mTBM) statistical analysis. Fig. 1 illustrates
our pipeline. Surface mTBM has been applied to the ventricles,
the thalamus, the hippocampus and the corpus callosum of
premature neonates [35], [22], [37], [38]. In these studies and
those of subcortical structures in adults (e.g. [33]), mTBM
increased statistical power to detect statistical differences
between groups, and improved the localization of the changes.
We expect similar results with the methods described here.

Secondly, we validate a new fluid registration algorithm, for
which we extend the Navier-Stokes equation into general sur-
face space using covariant derivatives [22]. Due to the simple
Riemannian metric induced by conformal parameterization,
this general Navier-Stokes equation is easy to compute and
is adjusted for the area distortion. Compared with early works
such as [28], our formulation is much simpler and provides
more accurate registration results.

Finally, we perform the first ever group analysis of the sur-
face of the putamen in premature neonates. More specifically,
starting from a data set of T1-weighted brain MRI, we com-
pare the manually segmented putamens of 17 preterm and 18
term-born newborn subjects using a pipeline that we recently
implemented for the surface analysis of subcortical structures
in neonates (see [35], [22]). We aim to detect surface-based
regional differences in shape between the two groups. Our
method involves conformal grid generation on the surface [31],
surface fluid registration [22] and a multivariate tensor-based
morphometry statistical analysis [33]; it has been shown to



increase detection power in our neonatal studies [35], [38], and
in adults [33]. We focus exclusively on preterm neonates with
no visible evidence of white matter injury as determined by an
expert neuroradiologist, in order to determine whether subtle
brain injuries are still present in those subjects, and whether
our pipeline is sensitive enough to detect smaller changes. Our
work provides the first precise subparcellation of the putamen
in premature neonates and allows for more regional specificity
than previous group analyses in these subjects.

II. METHOD

Fig. 1. The proposed system. The putamen is segmented from T1-weighted
images (a). A conformal grid is built on the surface (b), and fluidly registered
to a common template (c,d). Surface mTBM is applied to analyze morpho-
metric changes (e)

A. Neonatal Data

Our dataset comprises 17 premature neonates (gestational
ages 25-36 weeks, 43.02 ± 1.7218 weeks at scan time) with
normal MR scans and 18 healthy term born infants (gestational
ages 43.0150 ± 1.7392 weeks at scan time).

T1-weighted MRI scans were acquired using a dedicated
neonatal head coil on a 1.5T GE scanner using a coronal
three-dimensional spoiled gradient echo sequence. The inclu-
sion criteria for our preterm subjects were the following: 1)
prematurity, and 2) visually normal scans on conventional
MRI. Structural MR images are qualitatively classified as
controls by 2 board certified neonatal neuroradiologists. The
institutional review board at our medical center approved the
study protocol.

Term neonates with diffusion weighted abnormalities, el-
evated lactate as determined by MR spectroscopy, chromo-
somal/mitochondrial diseases, ECMO, hypotonia at birth and
other syndromes with poor neurological outcomes were ex-
cluded. Preterms were excluded based on chromosomal dis-
eases or major neurological exam abnormalities, or if they ex-
hibited brain lesions including: (1) focal white matter necrosis

as definite as cavitary/non-cavitary lesions (2) diffuse ventricu-
lomegaly (3) significantly increased subarachnoid space and
sulcal enlargement (4) diffuse excessive T2 hyperintensity by
visual criteria. Clinical information such as premature rupture
of membranes, apgar scores, postnatal sepsis, ventilation and
retinopathy of prematurity are retrospectively reviewed from
the NICU database for the for determination of other clinical
risk factors.

We manually segment the putamen with Insight Toolkit’s
SNAP program [40]. Tracings are done in the registered
template space by an experienced pediatric neuroradiologist,
using standard protocols. Fig. 1 shows an example of a
reconstructed surface and its surface mesh for one subject.

B. Surface Grid Generation

We compute conformal grids on each of the segmented
putamens using a method based on holomorphic differentials,
as described in [31]. The resulting surface parameterizations
are very robust and stable, and our grid computation method is
intrinsic and efficient because the conformal grid computation
is done by solving a linear system of equations [31].

One challenge to generate parametric surfaces for subcor-
tical structures is the complicated topology, e.g. long and
thin tail in caudate and multiple-arm structure of the lateral
ventricles. A canonical space such as a sphere [25] typically
generates a lot of distortion in these cases [33]. On the other
hand, conformal geometry may conformally map topologically
complex surfaces to a plane. The key step to turning this
nonlinear conformal parameterization problem into a linear
one is to have a topology optimization step [31]. For example,
here we leave 2 holes and model the putamens as surfaces
that are topologically equivalent to a cylinder with two open
boundaries. By computing a special group of holomorphic 1-
forms, we achieve consistent conformal parameterization. By
tracing equal parameter coordinates, we conformally map the
putamen surface to a complex domain.

We have successfully applied this method in adults to pro-
cess hippocampal and lateral ventricular surfaces in HIV/AIDS
and Alzheimer’s disease studies [33], [34], and in neonates
in the ventricules, hippocampus and thalamus and corpus
callosum [35], [38], [37]. The induced parametrization is
one-to-one, angle-preserving, and preserve small similarities
between surfaces. An example of the grids that we generated
is shown in Fig. 1.

C. Surface Fluid Registration

After computing surface geometric features, we align sur-
faces in the parameter domain with a fluid registration to
maintain smooth, one-to-one topology [6], [4]. To simulate
fluid flow on the surfaces, the Navier-Stokes equation is
extended into surface space using the manifold version of
Laplacian and divergence [1], [24]. .

Using conformal parameterization, we essentially convert
the surface registration problem to an image registration one.
In our prior work [30], we proposed an automated surface fluid
registration method combining conformal mapping and image



fluid registration [8] with mutual information [12], [17], [39],
[21], [10] as the driving force of the viscous fluid. In [30], the
mutual information between two surface feature images, i.e.,
the conformal representations of the two surfaces that need
to be registered, was maximized by the viscous fluid flow as
in [8]. On R2, fluid flow is governed by the Navier-Stokes
equation. For compressible fluid flow, we have

µ∆v(x) + (µ+ τ)∇(∇.v(x)) = f(x, u(x)). (1)

Here v(x) is the deformation velocity, and µ and τ are
the viscosity constants. f(x, u(x)) is the force field that
is used to drive the fluid flow, which was defined as the
mutual information in [30]. To simulate fluid flow on Riemann
surfaces, we need extend this equation into surface space by
the manifold version of Laplacian and divergence [1], [24],
[15]. By covariant derivatives, the Navier-Stokes equation for
Riemann surface can be defined as [22]:

µ

λ
∆v +

µ+ τ

λ
∇(∇.v) = f (2)

where λ is the conformal factor. By the scaling factor λ,
the Navier-Stokes equation is adjusted for the area distortion
introduced by the conformal parameterization. As a result,
Eq. 2 is now governing fluid flow on the manifolds. In this
paper, considering that putamens across the population should
have similar shapes, we assume the conformal representa-
tions of different putamens have similar intensity range and
distribution. Thus, the body force f driving the fluid flow
in this paper is defined as the sum of squared intensity
differences (SSD) between the deforming image and the
template image. In our experiments, the SSD based energy
formulation has similar performance with mutual information
energy which was adopted in our prior work [30] while
significantly improves algorithm efficiency compared with the
latter method. Since conformal mapping and fluid registration
generate diffeomorphic mappings, a diffeomorphic surface-to-
surface mapping is then recovered that matches surfaces in
3D.

As pointed out in [13], image registration problem should
be symmetric, i.e., the correspondences established between
the two images should not depend on the order we use to
compare them. [13] proposed a novel inverse consistent image
registration method. Instead of enforcing inverse consistency
using an additional penalty that penalizes inconsistency error
as in [7], the method in [13] directly modeled the reverse
mapping by inverting the forward mapping. [5] replaced the
linear elastic regularizer in [13] with the fluid regularization to
enable large deformations and applied the inverse consistent
fluid registration algorithm to diffusion tensor images. With
the inverse consistent scheme proposed in [5], Eq. 2 can be
extended into an inverse consistent surface fluid registration
method. Let I1(x), I2(x) be two images, using the sum of
squared intensity differences as the matching cost function,
the inverse consistent image registration problem seeks two
mappings h(x) and g(x) to minimize the following energy

function:

E(I1(x), I2(x)) =

∫
Ω

|I1(h(x))− I2(x)|2dx+ αR(h(x))

+

∫
Ω

|I2(g(x))− I1(x)|2dx+ αR(g(x)) (3)

where h(x) = x − uf (x) is the mapping from image I1
to image I2 (forward direction) and uf (x) is the forward
displacement field. g(x) = x − ub(x) is the mapping from
image I2 to image I1 (backward direction) and ub(x) is the
backward displacement field, g(x) = h−1(x). α is a positive
scalar weighting of the regularization terms applied to the
forward and backward mappings. Here we let α = 1. Eq.
3 is symmetric and does not depend on the order of I1
and I2, i.e., E(I1, I2) = E(I2, I1). With fluid regulariza-
tion scheme, R(h(x)) is defined as

∫ 1

0

∫
Ω
||Lvf (x)||2dxdt

and R(g(x)) is defined as
∫ 1

0

∫
Ω
||Lvb(x)||2dxdt with the

forward and backward velocities vf (x) and vb(x), respectively.
L = µ

λ∆ + µ+τ
λ ∇(∇.) is the surface linear operator as in Eq.

2. Then the energy function in Eq. 3 can be minimized by
solving for the velocities vf (x) and vb(x) in the following
general Navier-Stokes equations:

µ

λ
∆vf,b +

µ+ τ

λ
∇(∇.vf,b) = ff,b (4)

where the forward force field ff = −[I1(x − uf (x)) −
I2(x)]∇I1(x−uf (x)) and backward force field fb = −[I2(x−
ub(x))−I1(x)]∇I2(x−ub(x)). With the mappings h(x), g(x)
initialized as the identical mapping at t = 0, the forward
and backward mappings at time t are given by the following
equations as in [13]:

ht(x) = ht−1(x) + εη1(x) + εη2(x) (5)
gt(x) = gt−1(x) + εξ1(x) + εξ2(x) (6)

Here, ε is an infinitesimally small positive time step.
η1, η2, ξ1, ξ2 are computed as [5]:

η1(x) = −(∇ht−1(x))vt−1
f (x), η2(x) = vt−1

b (ht−1(x))

ξ1(x) = vt−1
f (gt−1(x)), ξ2(x) = −(∇gt−1(x))vt−1

b (x) (7)

We map the surfaces grids to a common template (one of
the controls), chosen at random. Since both the conformal
parameterization and fluid registration generate diffeomor-
phic mappings, a diffeomorphic surface-to-surface mapping
matches our surfaces in 3D.

D. Surface Registration by constrained harmonic map

We compare the fluid registration to a parametric surface ap-
proach to register the putamens that was implemented in [33].
The induced parameterization computes a one-to-one mapping
from an anatomical surface to a plane, which serves as a
canonical space to compute correspondences between surfaces
[9], [26]. We register putamens surfaces across subjects using
constrained harmonic maps. This approach is independent of
the template mesh selection. The constrained harmonic map
can be computed as follows.



Given two surfaces S1 and S2, whose conformal parame-
terizations are τ1 : S1 → <2 and τ2 : S2 → <2., we want to
to find a map φ : S1 → S2. Instead of directly computing φ,
we can find a harmonic map between the parameter domains.
We look for a harmonic map, τ : <2 → <2, such that its
composition with the conformal parametrization on S1 gives
the conformal parametrization on S2:

τ ◦ τ1(S1) = τ2(S2), τ ◦ τ1(∂S1) = τ2(∂S2),∆τ = 0,

where ∆ is the Laplacian. Then the map φ may be obtained
by φ = τ1 ◦τ ◦τ−1

2 . Since τ is a harmonic map, and τ1 and τ2
are conformal mappings, the resulting φ is a harmonic map.

E. Surface Multivariate Tensor-based Morphometry

Our ultimate aim is to determine the intrinsic surface
morphology of segmented putamens in preterm neonates. We
do so by applying a multivariate tensor-based morphometry
analysis [14], [33], [34].

In tensor-based morphometry, for each subject in the data
set, the registration yields a displacement field ~u between
the template and the subject’s images. A Jacobian matrix
J = Id+∇~u is computed at each vertex from the registration
between template and subjects images, where Id is the identity
matrix. These Jacobian matrices, or a function of their compo-
nents are used as metrics for group comparisons. For example,
the determinant, detJ expresses the ratio of the surface area
between the moving and fixed images while in mutlivariate
tensor-based morphometry, we use the deformation tensors
S =

√
(JTJ) (in fact their logarithm [2], [14], [33]). S

can be represented as a 2D ellipse at the center of each grid
cell, whose axes show the direction and size of the change in
area between the two surfaces at that location. In general, the
multivariate measures yield increased statistical power when
compared to the univariate ones (see e.g. [14] for the volume-
based multivariate tensor-based morphometry and [33], [35]
for the surface-based one).

In practice, the computation of the matrices is done us-
ing difference between edge lengths on the grid. Suppose
φ : S1 → S2 is a map from surface S1 to surface S2. The
derivative map of φ is the linear map between the tangent
spaces dφ : TM(p) → TM(φ(p)), induced by the map φ,
which also defines the Jacobian matrix of φ. In the triangle
mesh surface, the derivative map dφ is approximated by the
linear map from one face [v1, v2, v3] to another [w1, w2, w3].
First, the surfaces [v1, v2, v3] and [w1, w2, w3] are isometri-
cally embedded onto the plane R2, the planar coordinates of
the vertices vi, wi are denoted by the same symbol vi, wi.
Then the Jacobian matrix for the derivative map dφ can be
explicitly computed as in [32]

J = dφ = [w3 − w1, w2 − w1][v3 − v1, v2 − v1]−1. (8)

F. Medial Axis Method

One of the most commonly used morphometry measure on
surface data is the radial distance ρ from a medial axis to
a vertex of the surface [20], [27]. Here the medial axis is

computed using the center point of the iso-parametric curves,
on the conformal grid [34]. We will use the medial axis method
as a complementary measure to the surface shape analysis
from multivariate tensor-based morphometry.

G. Multivariate Statistical Analysis

We use a total of four different statistics: the deformation
tensors S, the radial distance ρ, the determinant of the Jacobian
matrix detJ and a vector (S, ρ) containing the elements of S
and ρ.

Since the S are positive definite matrices, they do not form
a vector space under the usual matrix addition and scalar
multiplication, so we can not use standard Euclidean statistics.
Instead, they are transported to the tangent plane at the origin
of the manifold of deformation tensors [2], where standard flat
space statistics can then be used. In practice, all that means
is that mTBM statistics are computed on the matrix logarithm
log(S) instead of directly on S.

For ρ and detJ , a standard voxel-wise t-test is used to com-
pare the preterm to the term-born neonates, while for either
of the multivariate tests on S or (S, ρ), group statistics are
computed using the Hotelling’s T 2 test [11] - the multivariate
extension of the Student’s t-test -, as described in [14], [33],
[34]. In order not to assume a normal distribution, we run a
vertex-based permutation test on the results [18], [14], [33].
We randomly assign diagnostic labels (premature or term-
born) to each subject, without replacement. A t- or T 2-test is
performed at each vertex using the new labels. The procedure
is repeated 10000 times. We obtain a null distribution of t
or T 2-values at each vertex to which we compare the t- or
T 2-values from the real data.

III. RESULTS

Figure 2 shows the surface statistics for all four statistics.
Clusters of significance are found bilaterally, particularly on
the anterior and inferior surface of the putamen. All measures
give similar clusters of significance, though the multivariate
measures are more powerful (but noisier) than the univariate
ones, and only the combined statistics (S, ρ) reached signifi-
cance. Clusters are primarily found in the anterior ventral part
of the putamen, bilaterally.

Figure 3 shows a comparison of the fluid registration method
compared to the constrained harmonic one. The two methods
give similar clusters of significance, which provides a vali-
dation of the fluid registration method. The fluid registration
results are noiser for surface-based statistics, though not for
the radial ones, but they give results that are more powerful.

IV. DISCUSSION

We applied a novel pipeline for surface based analysis of
subcortical structures of neonates to compare the putamen
in premature neonates compared to term born controls. We
detected widespread areas of significance throughout the puta-
men. While all measures gave consistent results, the combined
(S, ρ) statistic outperformed S all the other ones and is the
only one to reach statistical significance when correction for



multiple comparisons are applied. It is interesting to note
in particular that both ρ and S gave similar clusters of
significance, though the later describes changes constrained
to the surface, while the former gives radial information. In
addition, we compared the fluid registration to the constrained
harmonic map, and the former outperformed the later in terms
of statistical significance.

The two registration methods are similar in nature as both
of them convert surface registration problem to a familiar
2D image registration one via the conformal parametrization.
In comparison, the harmonic one relies more on geometry.
On a convex polygon, the harmonic map is always diffeo-
morphism. The limitation here is that it strongly depends on
boundary conditions as we solve the Dirichlet condition for
computing the harmonic map. The surface fluid registration
method improves the registration by considering the important
shape or functional features as image features for registration,
so that it is more general and reduces the dependence on
the boundary conditions. Fluid registration also allows large
diffeomorphisms. However, its results are not in a very tight
connection to surface intrinsic geometric features as we model
shape features as general explicit constraints.

The results found in the ventral-anterior portion of the
putamen suggest that cortical-striatal-cortical thalamic connec-
tions are abnormal, particularly since the anterior putamen
is interconnected to the limbic system [29]. However, more
work is needed to confirm this hypothesis. One interesting
surface putamen study [23] shows surface abnormalities in
the ventral or anterior putamen in teenagers with attention
deficit disorders (ADHD), similar to the results found here. As
preterm neonates are at risk of developing ADHD, it would
be of interest to understand the relationship with the results
found here to the chances of developing ADHD later in life.

We are currently working on increasing the sample size to
confirm the above results. In larger studies in adults, mul-
tivariate tensor-based morphometry outperformed univariate
methods to detect brain differences in lateral ventricles in
HIV/AIDS patients [33], and in a large Alzheimer’s morphom-
etry study (804 subjects) of subcortical structures [34]. We
expect that this will be the case in neonates too.

In the future, we aim to correlate the above results with
clinical outcome, and we will also perform group comparisons
of the putamen between older premature and control children
to see if the differences found here disappear with age.

The methods described here could be used for early de-
tection and/or risk stratification of neurological problems and
learning deficits so that innovative therapies and/or early
intervention could be administered. In the immediate neonatal
period, they could also be used to determine the effect of
certain therapies (i.e. antibiotics, hypothermia, and/or phar-
macologic agents) on the development of the putamen.

We have applied the methods here to preterm neonates, but
they can be applied to study group differences in this structure
from different neurological conditions in subjects of all ages.
The pipeline may be downloaded freely at [36].
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Fig. 2. Surface-based statistics. Top panel: P-values for the comparison of two groups, for 4 different statistics. The meaning of the different colors is shown
in the colorbar. Whole map p-values were: (a) ρ: 0.0966; (b) S: 0.0206; (c) (ρ, S): 0.0177; (d) detJ :0.1021.



Fig. 3. Comparison of Fluid and constrained harmonic registrations Top panel: P-values for the comparison of S with the two registration methods. Bottom
panel: P-values for the comparison of ρ with the two methods. The left column represents the fluid registration, while the right one is for the constrained
harmonic mapping. The meaning of the different colors is shown in the colorbar. Whole map p-values for the constrained harmonic maps were: (a) ρ: 0.0889;
(b) S: 0.055; (c) (ρ, S): 0.0362; (d) detJ : 0.0974.


